当前位置:文档之家› 实验绿色荧光蛋白

实验绿色荧光蛋白

实验绿色荧光蛋白
实验绿色荧光蛋白

生物技术实验报告

姓名:张龙龙

学号:2011506066

班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水

母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成.

一.实验目的

1、了解表达用基因克隆引物设计的原理和方法。

2、了解利用原核表达系统表达外源基因的原理、流程及方法。

3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。

二.实验原理

基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。

本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达

三.实验材料及仪器

1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21;

2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。

四.实验内容

4.1 质粒的提取、酶切及电泳鉴定:

1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ;

酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸

DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T

4 lisase。

2)实验步骤:

质粒的提取与鉴定

(1)在含有质粒的DH5α平板菌落上挑取单菌落,接种于20ml含有100μl /ml Apm的LB液体培养基中,37℃、200rpm振荡培养过夜。

(2)分装菌液到1.5ml离心管中,冰浴2min。4℃、12000rpm离心5min,收集菌体,弃上清。再用同样方法收集一次菌体。

(3)将细菌沉淀重悬于100μl预冷的溶液Ⅰ中,涡旋剧烈振荡,混匀,冰浴10min。

(4)加200μl新鲜配制的溶液Ⅱ,盖紧管口,轻柔快速颠倒离心管5次,充分混匀,冰浴5min。

(5)加入150μl预冷的溶液Ⅲ,盖紧管口,轻柔快速颠倒离心管数次,使溶液Ⅲ在粘稠的细菌裂解物中分散均匀,见白色絮状沉淀,可在冰上放置10min。4℃、12000rpm 离心10min。

(6)加等体积的酚/氯仿(1:1),震荡混合有机相和水相,冰浴3min。4℃、12000rpm 离心10min,吸取上层水相转移到另一新离心管中。

(7)加等体积的氯仿:异戊醇(24:1),振荡混合有机相和水相,4℃、12000rpm 离心10min,吸取上层水相转移到另一新离心管中。

(8)加入2倍体积预冷的无水乙醇,-20℃沉淀DNA 10-20min。4℃、12000rpm 离心10min,弃上清,留沉淀(管底有少量白色沉淀)。

(9)分2次加入1ml预冷的70%乙醇洗涤沉淀, 12000rpm 离心5min,抽吸去除所有上清,放置室温干燥,让酒精挥发。

(10)加30μl TE(内含浓度50μg/ml的RNase A)溶解DNA,37℃放置30min,消化RNA。-20℃保存备用。

(11)制1%的琼脂糖凝胶:加25ml×TAE缓冲液于三角瓶。称取0.25g琼脂糖加到三角瓶中,与微波炉加热至完全溶化。冷却至60℃左右,加1μl的GoldView 溶液,摇匀。轻缓倒入封好两端和加上梳子的电泳胶板中,静置冷却30min以上。轻轻拔掉梳子,将凝胶放入电泳槽中,加入电泳缓冲液(TAE)中,使电泳缓冲液刚好没过凝胶约1mm。

(12)点样:取5μl质粒DNA及2μl加样缓冲液混合上样,80—100v约电泳20—30min。

质粒DNA的酶切

(1)酶切:按如下双酶切体系(20μl)混合

反应物ⅠⅡ

质粒5μl 3μl

XhoⅠ(10U/μl) 0.5μl 0.5μl

NdeⅠ(10U/μl)0.5μl 0.5μl

10×buffer 2μl 2μl

ddH

O 12μl 14μl

2

先加水,再加buffer,加质粒,加内切酶,放离心机上混匀。在37℃水浴4h。(2)电泳,在紫外观察分析仪上观察酶切结果。

4.2目的基因的获得和重组载体的构建

1)实验试剂:模板DNA;dNTP;Taq DNA聚合酶;引物;10×buffer(内含

Mg2+);ddH

2O;10×T

4

DNA连接酶buffer;T

4

DNA连接酶。

2)实验步骤:

目的基因的获得、检测及回收

(1)依次混匀下列试剂:反应体系

ddH

2

O 9.5 μl

Mix 12.5 μl

上游引物 1 μl

下游引物 1 μl

模板 1 μl

混合后瞬时离心。

(2)PCR反应程序

94℃预变性 3 min

94℃变性 30 sec

52℃退火 30 sec 30个循环

72℃延伸 1 min

72℃延伸 1 min

4℃

(3)电泳:扩增产物用1% 的琼脂糖凝胶进行电泳分析,检查反应产物及长度。(4)用干净的刀片将需要的DNA条带从凝胶上切下来,称取重量。

(5)以0.1g 凝胶对应300μl 的体积加入PN。

(6)50℃水浴10min ,期间不断温和上下翻动离心管至胶完全溶解。

(7)将上一步的到的溶液加入到一个吸附柱中,吸附柱再放入收集管中,13000rpm 离心60s,弃掉废液。

(8)加入800μl漂洗液PW,13000rpm离心60s,弃掉废液。

(9)加入500μl漂洗液PW,13000rpm离心60s,弃掉废液。

(10)将离心吸附柱放回收集管,13000rpm离心2min。

(11)取出吸附柱,放入一个干净的离心管中,在吸附膜的中间位置加入适量洗脱缓冲液EB 30μl,洗脱缓冲液在65℃水浴中预热,室温放置2min,13000rpm 离心1min,然后将离心的溶液重新加回到离心吸附柱中,13000rpm离心1min。(12)电泳检测回收产物,余置于-20℃保存。

重组质粒的连接

将PCR扩增的目的基因片段产物与PGM-T载体连接。反应体系(μl)如下;

体系成分体积(μl)

溶液Ⅰ 5

PGM-T载体 0.2

目的基因产物 4.8

将反应液混合,16℃ 30 min。

4.3感受态细胞的制备及转化

1)实验试剂:LB培养液;0.1mol/L CaCl2溶液;E.coli DH5α受体菌(R-M-);

LB培养基;氨苄青霉素;IPTG;X-gal。

2)实验步骤

感受态细胞的制备

(1)活化E.coli DH5α菌株:将实验室保存的E.coli DH5α菌株甘油管用无菌去离子水1:100稀释后,平板划线法接种在无抗生素的LB固体培养基上,37℃培养过夜,见有菌落长出,用接种环从平板上挑取一个单菌落,接种到20ml无抗生素的新鲜LB液体培养基中,37℃、200rpm振荡培养过夜。

(2)按照1%接种量,从上述培养液中吸取菌液2ml,转接入200ml新鲜的无抗生素的LB液体培养基中,37℃、200rpm振荡继续培养至OD

值为0.3-0.5左右。

400

(3)在已灭菌的10ml离心管总吸取上述培养液10ml,冰浴20min 后,4℃、6000rpm离心10min,收集菌丝,弃上清。

(4)加2ml冰预冷的0.1mol/L CaCl

溶液,重悬菌体,冰浴10min。4℃、6000rpm

2

离心10min,收集菌丝,弃上清。

溶液中,轻轻重(5)将每一份沉淀轻缓的悬于0.4ml冰预冷的0.1mol/L CaCl

2

悬菌体沉淀。冰上放置10min。

(6)分装100μl/管(冰浴分装),置-4℃冰箱保存。

连接产物转化感受态细胞

(1)转化用固体LB培养基平板的制备

向含有100μg/ml氨苄青霉素(Amp)的固体LB培养基平板上加50mg/ml 的IPTG 16μl和20mg/ml的X-gal 40μl,用灭菌涂布棒涂布均匀,37℃避光倒置3 h,让溶解X-gal的二甲基酰胺尽量挥发干净。加入IPTG和X-gal的转化用平板应避光保存,以防试剂见光分解。

(2)连接产物转化E.coli DH5α感受态细胞

①去5μl连接产物加到100μl E.coli DH5α感受态细胞(从-70℃冰箱取出放于冰上,带钢解冻加入连接产物)中,轻弹混匀,冰浴20min。

②取出离心管,42℃水浴热击90s,立即置冰浴中冷却3min。

③向离心管中加入900μl 37℃预热的无抗生素的LB液体培养基,混匀后,37℃、200rpm振荡培养1 h,复苏菌体。

④取出离心管,6000rpm离心2min,弃上清800μl,用剩余的月100μl 上清液将沉淀菌体吹打混匀后,加到含100μl/ml氨苄青霉素(Amp)的IPTG 和X-gal的LB固体培养基平板上,用无菌涂布棒轻轻涂布均匀。放在室温直至液体吸收。倒置平板,37℃恒温培养14-16h,直至长出单菌落。

4.4重组子的筛选鉴定

1)实验试剂:dNTP;Taq聚合酶;引物;10×buffer(内含Mg2+);ddH2O ;

NdeⅠ;XhoⅠ;Apm;LB培养基

2)实验步骤

重组质粒的PCR鉴定

(1)挑取单菌落:使用无菌枪头挑取5个白色单菌落,放入内含有氨苄抗生素的LB液体培养基的1.5ml离心管中,振荡培养4h以上,吸取0.5μl菌液作为PCR反应模板,其余继续培养。

(2)PCR反应体系(10μl)

O 9.5 μl

ddH

2

Mix 12.5 μl

上游引物 1 μl

下游引物 1 μl

模板 1 μl

混匀后瞬时离心。

(3)PCR反应程序

94℃预变性 3 min

94℃变性 30 sec

52℃退火 30 sec 30个循环

72℃延伸 1 min

72℃延伸 1 min

4℃

(4)电泳:扩增产物用1%琼脂糖凝胶进行电泳。

重组质粒的酶切鉴定

(1)挑取上述经菌液PCR鉴定为阳性的菌落,接种到20ml含60μg/ml Apm 的LB液体培养基中,37℃、200rpm摇床培养过夜。

(2)质粒DNA的提取(碱裂解法),加50-100μl TE(内含50μl/ml的RNAaseA)溶解DNA,37℃放置30min,消化RNA。

(3)双酶切鉴定体系:用限制性内切核酸酶对PCR阳性菌落提取的质粒做双酶切鉴定。

酶切体系(20μl)

体系成分体积

质粒5μl

XhoⅠ(10U/μl) 0.5μl

NdeⅠ(10U/μl)0.5μl

10×buffer 3.0μl

ddH

O 11μl

2

4.5目的基因在原核细胞中的表达

1)实验试剂:LB培养基;kan;IPTG。

2)实验步骤

(1)重组质粒的转化:将重组质粒转化表达宿主菌E.coil BL

(2)重组质粒的鉴定

(3)重组质粒的诱导表达

五.实验结果与分析

实验一:质粒DNA的提取和酶切电泳鉴定

实验结果:当时实验时,有两个是只加氯仿,还有两个是按实验步骤操作的,结果只有两条明显的条带.如图2所示。有条带的是 1、4管

没有条带的是 2、3管

实验分析①在实验过程中,试剂添加失误或试剂配制不成功。导致未提出纯化DNA。

②杂质没有去除干净,DNA没有完全提纯

③加入酚/氯仿没有被异戊醇/氯仿中和完全,导致那两个失败。

实验二:目的基因的获得和重组载体的构建

实验结果跑胶结果:与maker比较得 bp DNA

胶重:3g 电泳检测结果:与目的基因大小一致

实验三:大肠杆菌感受态的制备和连接产物转化感受态细胞

实验结果:失败,没有筛选出蓝白斑

实验分析:①在实验过程中,操作不严谨,不够细心

②小组成员在无菌操作时其他组员在旁边说话,可能谈话的过程中,

使溶液或器皿受到污染,导致实验失败

③在涂板时,没有将溶液均匀地涂开或涂板的时间太短,导致实验失败

实验四:重组质粒的酶切和PCR鉴定

实验结果:获得重组质粒操作过程中仪器故障

实验分析:①刚开始实验失败,失败的原因是PCR仪在工作时突然停止,导致重组质粒在PCR扩增时没有充分扩增,导致实验失败。

②图片上最后一个条带有点暗,原因是点滴的体积太少。

实验五:目的基因在原核细胞中表达

实验结果:可观察到荧光络合物。如图4所示

实验分析:归功于小组团员的团结和努力

六.实验讨论

讨论:重组质粒转化率不高,其原因可能有以下几点:

(1)生长时期:实验发现在对数中期的大肠杆菌易生感受态,转化时菌浓度应控制在不超过107个/ml。浓度过高或者过低都会影响转化效率。(2)CaCl2法0 ℃放置时间的影响:细菌经0 ℃ CaCl2处理后转化率随时间的推移而增加,24 h达到最高,之后转化率逐渐下降。(3)化合物及无机离子的影响:在钙离子的基础上,联合其他二价金属离子或还原剂等物质处理细菌,可使转化率

提高100-1000倍。(4)质粒大小、构型的影响:用于转化的质粒DNA应主要是超螺旋态DNA。转化效率与外源DNA的浓度在一定范围内成正比,但当加入外源DNA的量过多或体积过大时,转化效率就会降低。1 ng超螺旋DNA即可使50 ul的感受态细胞达到饱和。一般情况下DNA溶液的体积不应超过感受态细胞体积的5%。(5)防止杂菌和杂DNA的污染:整个操作过程均应在冰浴低温和无菌条件下进行,所用器皿,如离心管、EP管等均应彻底洗净,并经高压灭菌处理,所有的试剂都要灭菌,且注意防止被其他试剂、DNA酶或杂DNA所污染,否则均会影响转化效率或杂 DNA的转入,为以后的筛选、鉴定带来不必要的麻烦。(6)试剂的质量:所用的试剂,如CaCl2等均需是最高纯度的,并用超纯水配制,最好分装保存于干燥的冷暗处。(7)42 ℃热处理时间很关键,转移速度要快,且温度要准确,同时注意热处理过程中离心管不要摇动。(8)菌液涂平皿操作时,应避免反复来回涂,因为感受态细胞的细胞壁有了变化,过多的机械挤压涂布会使细胞破裂,影响转化率。

心得体会:本实验设计是一个综合性的,与我们平时实验经历相比对我们的要求更多更严。它主要要求我们形成认真思考的习惯,自己查阅本实验的相关文献,分析本实验的目的,通过本实验要达到什么样的结果,达到预计的结果需要通过怎样的方案实现,根据实验需要和自己的相关了解自己设置适合的实验方案,增强我们的思维能力和动手能力,同时也使我们的团队合作精神得到了提高,并学会把我们所学的知识有机的结合到一起。

七.参考文献

参考文献

[1]刘亮伟,陈红歌,刘新育,王明道,高玉千,梁振普,邱立友,申进文. 基因工程操作中易犯错误分析及对策[J]. 化工高等教育,2009,04:61-64.

[2]牛延宁,刘敏,马黄如,王晖. 基因工程实验教学中检测重组DNA分子方法的改进[J]. 实验室研究与探索,2009,12:109-111.

[3]秦红霞,王萍兰,徐玲玲,李同建. 基因工程实验教学改革与探索[J]. 安徽农业科学,2010,07:3813-3814+3816.

[4]财音青格乐,杨冬,刘士望,张爽,刘琳. 基因工程实验教学的改进与实践[J]. 化学工业与工程,2005,S1:81-82.

[5]穆虹,易继财,姚涓. 基因工程综合设计性实验的教学实践[J]. 实验室研究与探索,2007,07:102-104.

[6]何燕,张婷,吴昌学,杨明,单可人,官志忠. 医学生物技术本科生基因工程实验教学改革与实践[J]. 现代医药卫生,2013,11:1735-1736.

[7]曾凤英,臧学丽,郭红军. 浅谈基因工程学生综合实践能力的培养[J]. 中国民族民间医药,2013,09:45+48.

[8]陈国梁,薛皓,贺晓龙,孙志宏. 普通院校基因工程实验教学的改革与创新[J]. 高校生物学教学研究(电子版),2012,04:47-50.

[9]朱旭芬,赵小立,丁鸣,金文涛. “基因工程实验”精品课程建设的探索与思考[J]. 中国大学教学,2011,08:54-55.

[10]韦宇拓,杜丽琴,陆坚,卢春花,梁晓夏. 标准模块化设计在基因工程实验课程教学中的应用[J]. 安徽农业科学,2012,18:9959-9960

图一

图二

图三

图四

实验绿色荧光蛋白

生物技术实验报告 姓名:张龙龙 学号:2011506066 班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水 母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成. 一.实验目的 1、了解表达用基因克隆引物设计的原理和方法。 2、了解利用原核表达系统表达外源基因的原理、流程及方法。 3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。 二.实验原理 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达 三.实验材料及仪器 1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21; 2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。 四.实验内容 4.1 质粒的提取、酶切及电泳鉴定: 1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ; 酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸 DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T 4 lisase。 2)实验步骤: 质粒的提取与鉴定

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述 生命科学学院 2010级李积锋 1241410007 【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。 【关键词】水母绿色荧光蛋白生色团变种 1绿色荧光蛋白简介 绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。 水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。 2绿色荧光蛋白的表达和成熟 GFP的表达水平受多种因素的影响。在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。目前适用于哺乳动物的表达系统不受影响。GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。 用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如

何帮助GFP折叠和成熟的线索。另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。 3绿色荧光蛋白的应用 3.1报告基因和细胞标记 GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。但在这方面的应用中,最大的缺点就是没有放大作用,它不能象酶一样能通过加工无数的底物分子而将信号放大所以一般都需强启动子以驱动GFP基因在细胞内足量的表达也可用亚细胞分辨率的显微成像系统检测基因产物,靶入的基因被限制于一个细胞器内,GFP的浓度则相对提高了许多倍。 3.2融合标记 应用得最多和最成功的是GFP同宿主蛋白构成融合子来监测宿主蛋白的定位 和最后归宿既有荧光又有宿主蛋白原有的正常功能和定位的融合蛋白效果最佳GFP可融合于宿主蛋白的C端或N端,也可插入其内部迄今为止,GFP已成功地靶入了大部分细胞器中,如质膜、细胞核、内质网、高尔基体、分泌小体、线粒体、液泡和吞噬体等。 3.3 其它 GFP分子生色团的坚固外层保护荧光不被熄灭,但同时也降低了GFP分子的荧光对环境的敏感性通过随机重组和基因定向突变得到了多种对环境敏感的GFP,它们可用作环境指示剂如:对PH敏感GFP的可以测定细胞器内的PH值;通过基因工程,可GFP在中插入磷酸化位点以便用磷酸化控制GFP的荧光。另外,最近报道的利用靶入了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时这种丝是一种能在黑暗中发绿色荧光的纤维。 4应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点:

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

南方医科大学分生实验-绿色荧光蛋白(EGFP)的基因克隆

绿色荧光蛋白(EGFP)的基因克隆 南方医科大学学院 摘要 本实验旨在学习基因克隆并检验,绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因,便于实验。本实验通过将含有目的基因GFP的pEGFP-N1质粒和pMD18-T载体进行酶切、电泳、回收、连接、转入、筛选之后,把GFP基因成功导入到大肠杆菌DH5α(克隆菌)中,从而实现荧光蛋白基因的克隆和表达。 关键词:绿色荧光蛋白克隆表达 实验名称绿色荧光蛋白的基因克隆 2015- ~ 实验日期 实验地点 2015- 合作者指导老师 评分教师签名批改日期 一、实验目的 1.学习使用限制性内切酶进行DNA酶切的原理和方法。 2.学习掌握琼脂糖凝胶电泳的基本原理和操作方法。 3.掌握PCR技术原理和PCR仪的操作方法。 4.学习PCR产物的TA克隆的基本原理和操作步骤。 5.了解和掌握大肠杆菌的制备方法的基本原理和操作要点以及DNA转化大肠杆菌的原理和方 法。

6.掌握双酶切法鉴定重组DNA的基本原理和操作步骤,以及菌落PCR鉴定重组DNA的基本原 理和方法。 7.掌握IPTG诱导GFP基因表达的基本原理和操作步骤 二、实验原理 1.pEGFP-N1质粒 2.T载体

三、材料与方法: 1.实验材料: 质粒:pEGFP-N1 T载体:pUCm-T 菌种:DH5(克隆菌) PCR引物: F——GGCATATGGTGAGCAAGGGCGA R——CGGGATCCCTTGTACAGCTCGTC Tm=56 实验试剂: 即用型蓝白T载体(pMD18-T vector cloning kit) 快速DNA连接试剂盒 限制性内切酶:EcoR I(Fermentas) Axygen质粒提取试剂盒 抗生素:氨苄青霉素(Amp)、卡那霉素(Kan) X-gal、IPTG等 实验仪器: 超净工作台,恒温摇床,高压灭菌锅,恒温培养箱,台式高速离心机,大容量冷冻离心机,PCR仪,紫外分光光度计,水平电泳槽,垂直电泳槽,电泳仪,凝胶成像系统,制冰机、超低温冰箱等 2.方法 分离目的基因→限制酶切割目的基因与载体→连接重组体→转入受体细胞→筛选重组体、转化子 四、实验具体流程 1.获取外源基因 1)碱裂解法提取质粒 使用Axygen质粒提取试剂盒

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表 达和粗提取 欧阳歌谷(2021.02.01) 南方医科大学 2011预防医学(卫生检验检疫) 摘要 目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。方法:从 E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。将含有GFP基因的质粒转化到感受态细胞 E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。用IPTG诱导GFP基因表达可以看到浅绿色菌落。最后对绿色荧光蛋白进行粗提取。结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。 关键词:绿色荧光蛋白基因克隆重组表达转化粗提取

目录 1 前言3 2 实验目的4 3 实验设备4 4 材料及试剂5 5 实验操作步骤5 5.1操作流程5 5.2质粒DNA的分离与纯化6 5.2.1 质粒的培养6 5.2.2 质粒的DNA的碱提取法6 5.2.3 质粒DNA的鉴定与纯化7 5.3酶切及连接8 5.3.1 双酶切8 5.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)8 5.3.3 连接9 5.4大肠杆菌感受态细胞的制备及转化9 5.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附 录)9

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白的研究现状与应用

绿色荧光蛋白的研究现状与应用 【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。 【关键词】绿色荧光蛋白;生色团;报告基因 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。 1 绿色荧光蛋白的理论研究 1.1绿色荧光蛋白的发现 绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。 1.2绿色荧光蛋白的结构和发光原理 1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。GFP的最大和次大的激发波长分别是395nm和475nm。溶液中,395nm激发的荧光发射峰在508nm,375nm激发的荧光发射峰在503nm。 1.3绿色荧光蛋白的优点 绿色荧光蛋白的独特之处即它的优点很多,主要有:荧光反应不需要底物和任何其他辅助因子,只需要在蓝光和紫外光下照射,利用荧光显微镜甚至是直接用肉眼就可以观察,易于检测且灵敏度高;荧光性质稳定,对光漂白有较强的耐受性;无毒害,转化后细胞仍可连续传代;通用性好,无种属特异性;分子量小,易于构建载体;不受假阳性干扰,结果真实可靠;可进行活细胞定时定位观察;易于得到突变体。 2 绿色荧光蛋白的应用 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP 应用研究的先河。也正是由于绿色荧光蛋白的许多优点,使得其应用十分广泛。 2.1作为报告基因 GFP通常用作报告基因,可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。GFP最显著的优势是荧光反应不需要底物和其他辅助因子。有利必有弊,

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

绿色荧光蛋白GFP的研究进展及应用_吴沛桥

■通信作者 E mail :baxiaoge1957@yahoo .com .cn 绿色荧光蛋白GFP 的研究进展及应用 吴沛桥1 ,巴晓革 2■ ,胡海1,赵静 1 (1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210) 摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着 极其广泛的应用前景。我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。 关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用 中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04 Research Progress and Application of Green Fluorescent Protein WU Peiqiao 1 ,BA Xiaoge 2 ,HU Hai 1 ,ZHAO Jing 1 (1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ; 2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China ) A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed . Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application 1 引 言 发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。1962年Shimomura 等 [1] 首先从多管水母(Ae quoria victoria ) 中分离出一种分子量为20kD 的称为A equorin 的蛋白。由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即 Ae quoria GFP 和Renilla GFP 。 2 GFP 的理化性质,荧光特性及其改进 2.1 GFP 的理化性质 从水母体内分离到的GFP 基因,长达2.6kD ,由 3个外显子组成,分别编码69、98和71个氨基酸。GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。A equoria GFP 分子量约27×103 ,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。两种GFP 含有相同的 生色团,发射光谱基本相同(λmax =508~509nm )。 GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。Renilla GFP 的稳定性就更为显著。它在上述一系列的变性条件下都很稳定,不易变性。根据Sheen 生物医学工程研究 J ournal of Biomedical Engineering Res earch 2009,28(1):83~86

绿色荧光蛋白基因重组与鉴定

分子生物学综合性实验结题报告 绿色荧光蛋白基因 左xx1 学 10110902014 10110904007 班 10G20 专生物制药 学生物医药

摘要 绿色荧光蛋白(green fluorescent protein)基因是一种重要的报告基因,将其和另外一种基因融合在一起,能检测到融合蛋白的表达情况。本实验中我们使用BamH Ⅰ和Not Ⅰ从pEGFP-N3质粒上得到EGFP基因,再把它重组到pET-28a表达载体上,将重组体转化入DH5a菌种中进行培养,采取酶切发法鉴定的方法对转化的重组子进行鉴定。 关键词:绿色荧光蛋白;酶切;载体;

Green fluorescent protein gene is a kind of important report gene, its and another gene fusion together, can detect the fusion protein expression. In this experiment we use BamH Ⅰand Not Ⅰfrom pEGFP - N3 plasmid get EGFP gene, again it restructuring to pET - 28 a expression vector and recombinant into DH5a strains in training and take enzyme cut hair method appraisal method to transform the restructuring of the child for identification. Keywords:Green fluorescent protein gene;enzyme cut;

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

绿色荧光蛋白的研究

绿色荧光蛋白的分子生物学 及其应用 吴琦 四川农业大学 二○○九年十二月

2008年诺贝尔化学奖获得者及其贡献下村修,日本人,名古屋大学理学博士毕业后赴美,先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。1962 年从一种水母中发现了荧光蛋白,被誉为生物发光研究第一人。钱永健,美籍华裔,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫医学奖得主。其主要贡献在于利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面公认的先驱。马丁·沙尔菲,美国哥伦比亚大学生物学教授,他获奖的主要贡献在于向人们展示了绿色荧光蛋白作为发光的遗传标签的作用,这一技术被广泛运用于生理学和医学等领域 。

1962年Shimomure 等首先从维多利亚水母(Aequorea Victoria )中分离出了GFP (Green-Fluorescent Protein) 。绿色荧光蛋白的研究史 维多利亚水母 (Aequorea Victoria)

A test tube containing a sample of a cyan (greenish-blue) fluorescent protein from a sea anemone illuminated by ultra-violet light from below.

绿色荧光蛋白的研究史 1992年Prasher等克隆了GFP基因的cDNA,并分析了GFP 的一级结构。

绿色荧光蛋白的研究史 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河。

对绿色荧光蛋白(GFP)的了解及应用

对绿色荧光蛋白的了解及应用 学院:生命科学学院 姓名:马宗英 年级:2011 学号:2011012923

前言 绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。 【关键词】绿色荧光蛋白生命科学应用 一、绿色荧光蛋白 绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。 野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。 生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。图2为生色团的形成机制。 图1 多管水母中GFP生色团的化学结构和附近序列 图2生色团的形成机制 目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机

制也有很大差异。 二、GFP在生命科学中的应用 1、作为蛋白质标签(protein tagging) 利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。由于GFP只有238个氨基酸,相对较小,所以将其与其它蛋白质融合后并不影响自身的发光功能。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更为详尽的观察的新方法。如细胞分裂、染色体复制和分裂、发育和信号转导等过程的研究均是借助绿色荧光蛋白进行标记。 GFP作为蛋白质标签除用于特定蛋白质的标记定位外,还大量用于各种细胞成分的标记如细胞骨架、质膜、细胞核等等。曾经有人将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境监测以及探测信号转导过程等等,以上都可以为传统生物学研究提供新思路和新方法。 2、药物筛选 利用细胞表面标记,通过流体细胞分光光度计或荧光活化细胞筛选仪,可以分离与纯化特殊类型的细胞;同时还可利用不同颜色GFP衍生物标记相关蛋白质,来观察在单细胞内相互作用的靶细胞,再借助于荧光激活细胞分离器、等聚焦显微镜分离出目的细胞,从而可方便地用于大规模筛选新的药物。 另一方面,利用GFP来进行药物筛选由于必须与迁移的信号分子相偶联的限制,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。 3、用于免疫学 可采用基因工程的方法生产GFP标记抗体,以取代传统的免疫学标记方法,建立一种简便、快速的免疫诊断新技术。相比于一般的标记物,GFP对光稳定、对抗体的标记率可达100%,而且因为GFP是直接与抗体结合,所以无需添加任何底物,可以避免非抗原抗体结合的背景干扰等。 线粒体中表达的GFP是研究比较成功的一种小分子抗体,因为它可以在宿主细胞内大量表达,易于基因工程操作,尤其易于构架抗体融合蛋白。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。 在制备抗体时,为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His 序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题,由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体,若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。 除了以上应用之外,绿色荧光蛋白还普遍应用于跟踪观察微生物、发育机理研究、细胞筛选以及生物传感器等许多生命科学研究中。 三、GFP的突变及其应用 GFP作为一种新型标记物,正受到科学界的广泛关注,而且野生型的GFP也不断地在被改造,著名的生物学家钱永健所完成的单点突变(S65T) 显著提高了GFP的光谱性质,其荧

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

相关主题
文本预览
相关文档 最新文档