当前位置:文档之家› 单端反激式开关电源-主电路设计

单端反激式开关电源-主电路设计

单端反激式开关电源-主电路设计
单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。

本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。

关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y

ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form.

The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output.

Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y

目录

前言 (3)

1.反激式PWM高频开关电源的工作原理 (4)

1.1 PWM开关电源 (5)

1.1.1 开关电源简介 (5)

1.1.2 PWM开关电源原理 (6)

1.2 反激式变换器 (8)

1.2.1 反激变换器的工作原理 (8)

1.2.2 反激变换器的工作模式 (9)

1.3 单相二极管整流桥 (9)

1.4 缓冲电路(吸收电路) (10)

2.TOPSwitch-GX芯片 (11)

2.1 TOPSwitch-GX的性能 (12)

2.2 TOPSwitch-GX的内部结构及引脚 (12)

2.2.1 TOPSwitch-GX的内部结构 (12)

2.2.2 TOPSwitch-GX的引脚功能 (14)

3.反激式变换器的高频变压器设计 (15)

3.1 开关电源变压器的绕线技术 (16)

3.1.1 绕组符合安全规程 (16)

3.1.2 低漏感的绕制方法 (17)

3.1.3 变压器紧密耦合的绕制方法 (19)

3.2 确定磁心的尺寸 (20)

3.3 反激式变压器的设计 (22)

4.单端反激式开关电源-主电路设计 (24)

4.1 单端反激式开关电源主电路介绍 (25)

4.2 单端反激式开关电源驱动电路介绍 (26)

5.设计结果及分析 (27)

5.1 设计输出电压及波形 (28)

5.2 设计结果分析 (32)

结论 (33)

致谢 (34)

参考文献 (34)

附录 (35)

前言

本课题主要掌握反激式PWM高频开关电源的工作原理。电源在一个典型系统中

担当着非常重要的角色。从某种程度上,可以看成是系统的心脏。电源给系统的电路提供持续的、稳定的能量,使系统免受外部的侵扰,并防止系统对其做出伤害。所以,本课题主要是用TOPSwitch-GX系列是单片开关电源中的TOP244Y设计反激式开关电源从而到平稳的直流输出,实现设计一个稳定的电源输出。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源,节约资源及保护环境方面都具有重要的意义。TOPSwitch-GX系列是单片开关电源第四代产品,最大输出功率从75W扩展到290W,将开关频率提高到132KHz,这有助于减小高频变压器及整个开关电源的体积。当开关电源的负载很轻时,能自动将开关频率从132KHz降低到30KHz,可降低开关损耗,进一步提高电源效率。

本设计要求电源的输入为电网电压(市电),经滤波后进入单相二极管整流桥,再经大电容滤波得到直流高压,通过PWM控制,在反激变换器的变压器二次侧得到高频矩形波电压,再经滤波得到平稳的直流输出。而本人主要研究主电路的制作和绕制高频变压器,高频变压器采用EE25型磁心,配10引脚的骨架,用直径为0.38mm的漆包线绕制。最后以反激电路的框架进行主电路的设计。

1.反激式PWM高频开关电源的工作原理

1.1 PWM开关电源

1.1.1 开关电源简介

电源是各种电子设备必不可少的组成部分,它的性能好坏直接影响到电子设备的技术指标及能否安全可靠地工作。目前常用的直流稳压电源分为线性电源和开关电源两大类。线性稳压电源亦称串联调整式稳压电源,其稳压性能好,输出纹波电压很小,但它必须使用笨重的工频变压器与电网进行隔离,并且调整管的功率损耗较大,致使电源的体积和重量大、效率低。开关电源被誉为高效节能电源,它是利用现代电力电子技术,通过控制开关通断的时间比率来维持输出电压稳定的一种电源,具有体积小、重量轻、功率小、效率高、纹波小、噪声低、易扩容、智能化程度高等优良特性,广泛应用在诸如计算机、电视机、摄像机等电子设备上。它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。

目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备中。而随着近些年来科学技术的不断发展,开关电源技术在实际需要的推动下快速的发展,具体的发展趋势可以总结为以下几个方面:

(1)高频化

开关频率的提高有利于开关电源的体积减小,重量减轻,动态响应得到改善。早期开关电源的频率仅为几千赫兹,随着电力电子器件及磁性材料性能的不断改进,开关频率渐渐地提高。在这个过程中,IGBT的出现,使得开关电源的容量不断增大,在许多中等容量范围内,迅速取代了晶闸管相控电源。并且,IGBT的开关速度很高,通态压降低。但是,随着开关频率的提高,电源的电磁干扰问题也变得突出起来。如何在提高开关频率的情况下,最大限度的减少电磁干扰对电源的影响,是一个摆在科研工作者面前的急需解决的问题。

(2)非隔离DC/DC技术

近年来,非隔离DC/DC 技术发展迅速。它们基本上可以分成两大类。一类在内部含有功率开关元件,称DC/DC 转换器。另一类不含功率开关,需要外接功率MOSFET ,称DC/DC 控制器。按照电路功能划分,有降压的STEP-DOWN、升压的

BOOST ,还有能升降压的BUCK-BOOST 或SEPIC等,以及正压转成负压的INVERTOR 等。其中品种最多,发展最快的还是降压的STEP-DOWN。根据输出电流的大小,分为单相、两相及多相。控制方式上以PWM 为主,少部分为PFM。目前一套电子设备或电子系统由于负载不同,会要求电源系统提供多个电压挡级。如台式PC机就要求有+12V、+5V、+ 3.3V、- 12 V四种电压以及待机的+ 5 V 电压,主机板上则需要2.5 V、1.8 V、1.5 V甚至 1 V 等。一套AC/DC 中不可能给出这样多的电压输出,而大多数低压供电电流都很大,因此开发了很多非隔离的DC/DC。(3)数字化

高频开关电源的另一发展趋势是数字化。过去在传统功率电子技术中, 控制部分是按模拟信号来设计和工作的。随着数字处理技术的发展成熟, 其优点明显便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰,提高抗干扰能力、便于软件包的调试和遥感遥测遥调, 也便于自诊断、容错等技术的植入等。这类电源大体上包括两个部分,即硬件和软件。其中,硬件部分包括PWM 的逻辑部分、时钟、放大器环路的模数转换、数模转换以及数字处理、驱动、同步整流的检测和处理等。而在软件方面可以通过DSP或热待机状态;有效调整系统工作点,使系统处于最佳效率工作点。比如艾默生网络能源公司的通信电源休眠节能技术,就是使电源系统根据系统的负载情况和系统当前模块的工作情况,通过合理的逻辑判断和控制,在保证系统冗余安全的条件下,有选择的打开或休眠部分模块,使系统工作在最佳效率点,节能效率显著。通过采用以上节能方案优化通信电源系统设计,可将目前业界在网应用的通信电源的实际工作效率低载时提高7~8 个百分点,高载时提高3~4 个百分点,从而使基站内通信电源达到直接节能与间接节能的目的。

1.1.2 PWM开关电源原理

开关电源的典型结构如图1-1 所示,其工作原理是:市电进入电源首先经整流和滤波转为高压直流电,然后通过开关电路和高频开关变压器转为高频率低压脉冲,再经过整流和滤波电路,最终输出低电压的直流电源。同时在输出部分有一个电路反馈给控制电路,通过控制PWM 占空比以达到输出电压稳定。

图1-1 开关电源的典型结构

开关电源由以下4 部分构成:

(1)主电路:从交流电网输入,到直流输出的主要电路。主要包括输入电磁干扰滤波器、输入整流滤波器、高频变压器、功率开关管和输出整流滤波器。

(2)控制电路:包括输出端取样电路、反馈电路和脉宽调制器(或通∕断控制电路)。(3)检测及保护电路:检测电路有过电流检测、过电压检测、欠电压检测、过热检测等;保护电路可分为过电流保护、过电压保护、欠电压保护、箝位保护、过热保护、自动重启动、软启动、缓启动等多种类型。

(4)其他电路:如锯齿波发生器、偏置电路、光耦合器等。

开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压。开关电源按控制原理来分类,大致有脉冲宽度调制式简称脉宽调制(Pulse WidthModulation ,缩写为PWM)式;脉冲频率调制方式简称脉频调制(Pulse Frequency Modulation ,缩写为PFM)式;混合调制方式(它属于PWM 和PFM的混合方式)。

其中,脉冲宽度调制式,简称脉宽调制(Pulse WidthModulation ,缩写为PWM)式。其主要特点是固定开关频率,通过改变脉冲宽度来调节占空比,实现稳压目的。其核心是脉宽调制器。开关周期的固定为设计滤波电路提供了方便。但是,它的缺点是受功率开关最小导通时间的限制,对输出电压不能作宽范围调节;此外,输出端一般要接假负载亦称预负载,以防止空载时输出电压升高。目前,大多数的集成开关电源采用PWM 方式[1]。

图1-2 两种控制方式的调制波形

1.2 反激式变换器

1.2.1 反激变换器的工作原理

反激变换器的工作原理见图1-3。从图1-3可以看出当高压开关管Q被PWM脉冲激励而导通时,输入电压便施加到高频变压器的原边绕组Np上,由于变压T1副边整流二极管D1反接,副边绕组Ns没有电流流过;当开关管关断时,副边绕组Ns 上电压极性颠倒,整流二极管D1被正偏,开关管导通期间储存在变压器中的能量便通过整流二极管D1向负载释放。这种变换器在高压开关管导通期间只存储能量,在截止期间才向负载传递,高频变压器在工作过程中既是变压器又相当于一个储能用电感。输出端加由电感器Lo和两Co电容组成的一个低通滤波器,变压器初级需有Cr,Rr和Dr组成的RCD漏感尖峰吸收电路。

图1-3 反激变换器的工作原理

1.2.2 反激变换器的工作模式

反激变换器有电流断续、电流临界连续以及电流连续3种工作模式。在电流断续模式下,导通期间储存在初级绕组中的能量,在下一个周期开始前完全传递到次级和负载上,当次级电流回零时与下一个周期的开始之间存在一个死区时间。 在电流临界连续模式下,次级电流回零时刚好是下一个周期的开始时刻,是一种无死区时间的临界状态。在电流连续模式下,下一个周期开始时,次级仍有剩余能量,次级电流没有回零,反激变换器可工作在不同模式下,但特性不同。

1)断续模式具有更高的电流峰值,在关断期间具有更高的输出电压尖峰。线圈的铜损要大一些,铁耗也大。连续模式下输出电压尖峰小,因变换器传递函数存在右半平面零点,只有大幅降低带宽才能使反馈环稳定。

2)断续模式下的负载瞬态响应更快,在相同输出功率下,初级感抗比连续模式下初级感抗小,使得高频变压器体积较小。

3)断续模式下二极管的反向恢复时间不是十分重要,因为在施加反向电压之前正向电流为零,未出现由二极管反向恢复引起的振铃现象,传导EMI 噪声比较小。 4)断续模式一般用于负载变化小的场合。负载变化大的场合让变换器在小电流时工作并保持断续模式,大电流时工作并保持连续模式,以减小电感体积。

1.3 单相二极管整流桥

如图1-4所示,VT1和VT4组成一对桥臂,在2u 正半周承受电压2u ,得到触发脉冲即导通,当2u 过零时关断。VT2和VT3组成另一对桥臂,在2u 正半周承受电压-2u ,得到触发脉冲即导通,当2u 过零时关断。

图1-4 单相桥式整流电路接电阻负载时的电路及波形

1.4 缓冲电路(吸收电路)

缓冲电路又称吸收电路,如图1-5所示。其作用是抑制电力电子器件的内因过压、du/dt、或者过电流和di/dt,减小器件的开关损耗。

缓冲电路可分为关断缓冲电路和开通缓冲电路。关断缓冲电路又称为du/dt抑制电路,用于吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗。开通缓冲电路又称为di/dt抑制电路,用于抑制器件开通时的电流过冲和di/dt,减小开通损耗。

另一种分类方法:缓冲电路中储能元件能量如果消耗在其吸收电阻上,则称其为耗能式缓冲电路;如果缓冲电能将其储能元件的能量回馈给负载或电源,则称其为馈能式缓冲电路,或称为无损吸收电路[6]。

图1-5 di/dt抑制电路和充放电型RCD缓冲电路及波形2.TOPSwitch-GX芯片

2.1 TOPSwitch-GX的性能

被誉为“高效节能”的开关电源(SwitchingModePowerSupply-SMPS)自问世以来,以其高效率、小体积、低成本等优点已在通讯、航天、航空、工业自动化装置及仪器仪表等领域广泛应用。美国动力公司(Power Integrations-PI)于二十世纪90年代中期推出的新型高频单片开关电源芯片,更被誉为“顶级开关电源”。PI公司继TOPSwitch-FX之后新推出的TOPSwitch-GX第四代单片开关电源集成电路,极大地简化了250 W以下的开关电源设计和缩短了产品的开发周期,为新型、高效、低成本、小体积开关电源的推广与普及创造了条件。TOPSwitch-GX系列器件主要包括下列型号:TOP242P~TOP244P、TOP242G~TOP244G、TOP242Y~TOP250Y等共33种型号,它们主要有以下特点:

(1)最大输出功率由FX系列的75 W扩展到250W;

(2)新增加的线路检测端(L)和极限电流设定端(X),代替了TOPSwitch-FX的多功能端(M)的全部控制功能,使用更加灵活方便;

(3)具备软启动功能,最大限度地降低峰值电压和电流,减轻了元器件启动时的负担;

(4)具有可编程设定极限电流和输入电压欠压、过压检测功能;

(5)具有线性限压检测,无关断尖峰干扰;

(6)负载很轻时,能自动将开关频率从132kHz降低到30 kHz半频模式下则由66 kHz降至15 kHz ,从而降低开关损耗,进一步提高转换效率[8]。

2.2 TOPSwitch-GX的内部结构及引脚

2.2.1 TOPSwitch-GX的内部结构

TOPSwitch-GX的内部结构如图2-1所示,由图可知,该电路主要由以下几部分组成:

(1)控制电压源控制电压UC向并联调整器和门驱动级提供偏置电压,控制电流

IC 调节占空比;

(2)带隙基准电压 所有的临界TOPSwitch 内部电压都由一个温度补偿的带隙参考基准得出。该参考基准也产生一个温度补偿的电流源,它被微调在精确设置的振荡频率和调节MOSFET 栅级的驱动电流;

(3)振荡器 用于产生脉宽调制器所需要的锯齿波、时钟信号及最大占空比信号; (4)并联调整器/误差放大器 误差放大器将反馈电压与5.7V 基准电压进行比较,输出误差电流Ifb 在Re 上形成误差;

(5)脉宽调制器 脉冲宽度调制器提供电压型控制环,以驱动输出级MOSFET ,其占空比与流入控制脚的电流成反比。该脚在Re 两端产生一个电压误差信号,经RC 滤波后,与内部振荡器锯齿波相比较,产生一定占空比的波形;

(6)门驱动级和输出级 门驱动级用于驱动功率开关管,使之按一定速率导通。MOSFET 管的漏-源击穿电压大于700V ;

(7)过流保护电路 过流比较器的反向输入端接阀值电压it U lim ,同相输入端接MOSFET 的漏极;

(8)具有滞后特性的过热保护电路 当芯片结温大于135℃时,过热保护电路将关断输出级;当芯片结温低于70℃时,电路恢复正常工作,即具有滞后特性; (9)关断/自动重启电路 一旦调节失控,将立即使电路在低占空比下工作,倘若故障被排除,则自动重新启动电源,恢复正常工作;

(10)高压电流源 在启动或滞后调节模式下,高压电流源经过电子开关S 给内部电路提供偏置,电源正常工作时,电子开关S 改接内部电源,将高压电流源关断; (11)软启动 软启动时间为10ms ,以减轻启动时元器件的负荷冲击;

(12)输入过压、欠压检测及保护电路 通过外接电阻器设定过压、欠压的保护电压,并且可以在电源关断时防止自动重启动脉冲的干扰;

(13)轻载时自动降低开关频率 开关频率及占空比能随输出端负载的降低而自动减少,保证其在轻载时仍具有很好的调节特性;

(14)停止逻辑及开启电压为1V 的电压比较器 通过改变线路检测端流入或流出电流的大小及方向来控制开关电源的通、断状态。线路检测端内部还增加了开启电压为1V 的电压比较器,此开启电压可用于远程通断控制[4]。

图2-1 TOPSwitch-GX芯片内部结构图

2.2.2 TOPSwitch-GX的引脚功能

TOPSwitch-GX的引脚排列如图2-2所示,有六个引出端,分别是控制端C,线路检测端L,极限电流设定端X,源极S,开关频率选择端F,漏极D。由其内部结构图4可知,该电路主要由控制电压源、带隙基准电压源、并联调整器/误差放大器、脉宽调制器(PWM)、振荡器、门驱动级和输出级、过流保护电路、过热保护电路、软启动电路、关断/自启动电路及高压电流源等部分组成。

图2-2 TOPSwitch-GX引脚排图TOP-220-7C(Y)封装

TOPSwitch-GX的管脚说明:

漏极(D):MOSFET管漏极输出。高压开关电流源通过此脚为内部提供启动偏置电流。

开关频率选择端(F):用于选择开关频率的输入引脚,连接至源极(S)时为132 kHz,连接至控制端(C)时为66 kHz。

源极(S):将其连接至输出MOSFET源极时可得到高压功率回馈。

极限电流设定端(X):从外部设定芯片的极限电流。

线路检测端(L):此端具有过压保护、欠压保护和远程通/断控制功能。

控制端(C):用于调节占空比的误差放大器与电流输入脚。

本次设计就是用TOPSwitch-GX系列中的TOP244Y来制作,图2-3是基于TOPSwitch-GX的反激式变换器框图[8]。

图2-3 基于TOPSwitch-GX的反激式变换器框图

3.反激式变换器的高频变压器设计

3.1 开关电源变压器的绕线技术

3.1.1 绕组符合安全规程

磁性元件的设计是一个优秀的开关电源设计的关键。合理的磁性元件电气和物理的设计对每一个开关电源工作的可靠性有极大的影响。已有多部介绍磁性元件原理和设计的著作,而本次是从开关电源设计实用手册的角度来介绍磁性元件的设计。由于开关电源是磁性元件一个特定的应用场合,所以磁性元件的设计过程可以大大地简化。这样一来不需要理解磁性元件设计的各个方面的细节,可以最快地完成设计。

开关电源变压器的物理绕线方法是很重要的,它会使电源性能差别很大。好的绕线方法可以使电源性能变得非常好,反之也可以使电源噪声很大,性能变差。开关电源变压器与50/60Hz的工频变压器相比,设计要求更为苛刻。

变压器的绕制,主要有三个方面的因素要考虑:

1.电源是否必须符合所有的安全规范。

2.绕组之间耦合要好。

3.所有绕组的漏感应尽可能小。

这些因素有些是相互影响的,所以需要采取折中办法。

如果开关电源的输入电压峰值高于40V,就要受到一个或多个国际安全规程组织所制订的规程约束。这些组织一般互相借鉴对方的安全规程,但设计者仍要再查看自己产品所销往的市场对这方面的要求。国际电工委员会(IEC)是这些标准的主要制订者,其标准为所有欧洲共同体的安全规程组织所采用。其余的安全规程组织,如美国UL、加拿大标准机构(CAS)、和日本的VCCI一起努力,在IEC标准的基础上采用统一的安全规程。这将使同一套标准在全世界范围都可使用。在每个国家,不同的市场也有不同的标准。市场的不同,也是IEC标准要努力协调的一部分。

在“离线式”或输入交流电压90~260V的开关电源中,通常使用的磁心是E-E型磁心和从E-E型磁心派生出来的一些磁心。这些磁心都有骨架,这使得它们制造比较容易。安全规程组织对变压器结构的要求是很明确的。爬电距离或输入绕组和输出绕组表面的距离不能小于4mm。为了满足这个要求,变压器制造者可以在骨架中绕

线区的两端放置2mm 厚的绝缘带,把绕线绕在边沿的带子之间。这些边沿的带子在绝缘的绕组之间总共增加了4mm 的距离。常见的符合IEC 标准的变压器如图3-1所示。

图3-1 符合IEC 的交错离线式变压器

导线从骨架中引出的时候也要绕上绝缘带,这也是由于标准规定导线通过这4mm 空间时的要求。输入和输出端之间也要有4mm 的距离,也就是它们之间的爬电距离要比这个大。这可以通过骨架上输出端模压成“固定槽或类似的结构来实现。 输入的两个极性[直流的正负端,相线与零线]之间的爬电距离最少要有3.2mm 。 表面的电导率随着它工作时所处的环境和平均湿度的长期影响而变化。上面提到的爬电距离要随着应用场合的不同而改变。设计者一定要参考适用的技术规范。 额外增加的绝缘带、绝缘套管和引出端距离使最后的变压器成品体积更大,成本也增加。这是由于这些都是手工操作,需要花费很多时间。 3.1.2 低漏感的绕制方法

减小绕组漏感有多种方案和绕制技巧可选择。漏感是指没有耦合到磁心或其他绕组的可测量的电感量。它的影响就像一个独立的电感串接在绕组的引线上一样。它是导致功率开关管漏极或集电极和输出二极管阳极上的尖峰的原因。这是由于它的磁通无法被二次绕组所匝链。

对于已选定的磁心和计算好的绕组,可以根据式(3-1)估算漏感。

??

?

??+=310012

1w ins x mt leak b T W n L K L (3-1)

式中 K —取3

mt L —整根绕线线绕在骨架上平均每匝的长度,单位为in ;

x n —绕组所包含的匝数; 1W —绕组的宽度,单位为in ;

ins T —绕线的绝缘厚度,单位为in ;

w b —制作好的变压器所有绕组的厚度,单位为in 。

公式给出了影响绕组漏感的主要因素。变压器设计者能够控制的主要因素是选择磁心中柱长的磁心。绕组越宽,漏感越小。一次二次耦合的好坏对一次漏感也有很大的影响。这点可以从把一次绕组分成两半,二次绕组夹在中间或交错在中间的绕法中看出来。

另外一个比较麻烦的变压器寄生参数是线圈的匝间电容,这可以分布在整个绕组各个线圈之间的小电容来表示。一次输入电压较高的变压器,绕线间的分布电容是一个问题。特别是离线式或高输入电压的开关电源中,这个问题就更突出了。这个寄生电容是由于同一绕组邻近线圈的电位不同而引起的。式(3-2)表示的就是一个绕组中两匝之间存储的能量,并且这个公式说明了这些电容产生的原因。在开工转换时,这个能量就以尖峰的形式释放。

)2ln(0194.02)

(d

s V E stored (3-2)

式中 S —绕组之间的距离,单位为m ; d —导线直径,单位为m 。

如果线圈一层接着一层来回绕,分布电容存储的能量就很大。最后,线圈间的电压差也很大,甚至有可能接近绝缘击穿电压。这会得到很糟的结果。图3-2所示的就是三种不同的绕制方法。

图3-2 减少匝间电容的绕线方法

a)直接绕法b)累进式绕法c)分开骨架的方法

(差)(很好)(好)

这些减小分布电容的绕制方法可以极大地减小导线间的绝缘压力,减小了相邻线圈间由于绝缘被击穿而产生电弧的可能性。

3.1.3 变压器紧密耦合的绕制方法

一次与二次,二次与二次绕组的紧密耦合,是变压器设计者最理想的目标。

1.绞合绕法

这种方法是通过一对绞合的导线来增加绕组间的耦合。就是把两根或更多的导线绞合在一起,然后把它们同时绕到骨架上。绞得太紧,容易损坏绝缘层。这种方法保证所有的线绕在相邻近的位置,所有可以提供最好的耦合效果。即使绕组的匝数不一样,绕组只有部分是绞合在一起的,这种方法也有助于提高绕组间的耦合因数。2多线绕组法.

这种绕线技术就是把两根或多根导线放在一起同时绕,不过并没有把这些导线绞合在一起。大部分时候是把它们紧挨在一起的。

当然,如果一次电压峰值高于40V时,不能用多线绕组或绞合绕组的绕制方法来同时绕一次和二次绕组。输入电压低于AC206V时,安全规程机构要求一次、二次绕组之间放三层1mil的聚酯薄膜。这会破坏这两个绕组间的耦合。为了提高一次、二次绕组之间的耦合,可以把这两个绕组交错在一起(见图3-1)。这种绕法比起只是简单地把二次绕组绕在一次绕组上的绕法,所花的劳动量更大。因此,在一次、二次绕组匝数比超过15-20:1时候,推荐使用这种交错绕法。这就包括输入电压为AC240V或比这高而输出电压不高于DC+5V的电源。从图3-3就可以看出,交叉绕法在输入电压AC480V的离线反激式电路中的效果。

图3-3 在离线反激式变换器中交叉绕制方法对波形的影响

从这两张波形图中,容易看出它们之间的尖峰能量的区别。通常这些能量消耗在一次侧的钳位或吸收电路中。

采用上述变压器绕线技术,尽管会增加变压器的成本,但是效果比较好,可以提高整个电源的性能。对于整个电源的长期运行来说,可以节省资金。

3.2 确定磁心的尺寸

确定磁心的尺寸对于某个应用场合来说,选择磁心尺寸要考虑五个主要因数:

因素:影响的参数:

A(磁心横截面积)

输出功率

c

A(磁心横截面积)

磁通是双象限,还是单象限的

c

输入电压

A(磁心窗口面积)

w

A(磁心窗口面积)

绕组数目

w

A(磁心窗口面积)

绕线方式

w

每个制造厂商都用自己不同的方法来确定磁心尺寸。有些是用图表的方法,有些只是简单地说明在特定的应用场合下各种磁心可以传递能量,还有些是用含义模糊的是式子来说明,这些式子采用不同的工程单位,会使人困惑。下面介绍估计初始磁心尺寸的两种方法。

磁心尺寸选择方法1

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

UCC38C43隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路 图 开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。 电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器 转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器 次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如 图2所示。 图2 M1导通与截止的等效拓扑 电流型PWM 与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一 个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。 下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。 设V导通,则有 L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样 Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器 的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

反激式开关电源原理

反激式开关电源原理 反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源. "反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态. 与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载. 电机配导线(电机一个千瓦大约2A) "1.5加二,2.5加三" "4后加四,6后加六" "25后加五,50后递增减五" "百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。即6mm2的可配12kW,选相近规格即配1lkW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。"25后加五",是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW 电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。"百二导线,配百数",是说120mm2的铜芯塑料线可配1OOkW电动机,选相规格即90kW 电动机。2.电动机配用导线的对表速查例如一台Y180L-4、22kW电动机,从速查表查得应配BV型16mm2的铜芯塑料线。七、有关使用速查表的几项说明1.表中所列电动机为Y系列380V/50Hz三相异步电动机,对于其它系列电动机,只要额定电压和频率相符,额定电流相接近,也可参考使用。2.选用的BV型铜芯塑料线截面,是以水泥厂供用电距离在200m及以下,年运行时问7000~8000h,以降低线路损耗节电效益显著等条件考虑的。如果供电距离大于200m,则需要按常规的导线选用设计条件(如发热条件、电压损耗条件、经济电流密度、机械强度),另行设计计算。如果采用BLV型塑料铝芯线,其规格要降一级选用。即2.5mm2铝芯线可代替1.5mm2铜芯线,4mm2铝芯线可代替2.5mm2铜芯线……,其它依此类推。 热继电器配置 一般情况下,可选用两相结构热继电器,但当三相电压的均衡性较差,工作环境恶劣或无人看管的电动机,宜选用三相结构的热继电器。对于三角形接线的电动机,应该选用带断相保护装置的热继电器。 2、热继电器额定电流选择。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

单端反激式开关电源(毕业设计)

目录 摘要 (2) 第一章开关电源概述 (1) 1.1 开关电源的定义与分类 (1) 1.2 开关电源的基本工作原理与应用 (1) 1.2.1 开关电源的基本工作原理 (1) 1.2.2 开关电源的应用 (2) 1.3 开关电源待解决的问题及发展趋势 (5) 1.3.1 开关电源待解决的问题 (5) 1.3.2 开关电源的发展趋势 (5) 第二章设计方案比较与选择 (7) 2.1 本课题选题意义 (7) 2.2 方案的设计要求 (7) 2.3 选取的设计方案 (8) 第三章反激式高频开关电源系统的设计 (9) 3.1 高频开关电源系统参数及主电路原理图 (9) 3.2 单端反激式高频变压器的设计 (10) 3.2.1 高频变压器设计考虑的问题 (10) 3.2.2 单端反激式变压器设计 (11) 3.3 高频开关电源控制电路的设计 (15) 3.3.1 PWM 集成控制器的工作原理与比较 (15) 3.3.2 UC3842工作原理 (17) 3.3.3 UC3842的使用特点 (18) 3.4 反馈电路及保护电路的设计 (19) 3.4.1 过压、欠压保护电路及反馈 (19) 3.4.2 过流保护电路及反馈 (19) 3.5变压器设计中注意事项 (20) 第四章总结 (21) 参考文献 (23) 致谢 ............................................................................................................................ 错误!未定义书签。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

单端反激式开关电源

交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。 (二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护

霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。 C2电容; 吸收电容,主要作用为吸收IGBT的过流与过压能量。 (2)直-交部分 VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。把直流电逆变频率,幅值都可调的交流电。 VT1-VT6是续流二极:作用是把在电动机在制动过程中将再生电流返回直流电提供通道并为逆变管VT1-VT6在交替导通和截止的换相过程中,提供通道。(3)控制部分:电源板、驱动板、控制板(CPU板) 电源板:开关电源电路向操作面板、主控板、驱动电路、检测电路及风扇等提供低压电源,开关电源提供的低压电源有:±5V、±15V 、±24V向CPU其附属电路、控制电路、显示面板等提供电源。 驱动板:主要是将CPU生成的PWM脉冲经驱动电路产生符合要求的驱动信号激励IGBT输出电压。 控制板(CPU板):也叫CPU板相当人的大脑,处理各种信号以及控制程序等部分 [注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23) ]

单端反激开关电源

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的! 反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。 先学习下Buck-Boost变换器 工作原理简单介绍下 1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量! 2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量! 3.接着开始下个周期! 从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量! 根据电流的流向,可以看出上边输出电压为负输出! 根据伏秒法则 Vin*Ton=Vout*Toff Ton=T*D Toff=T*(1-D)

代入上式得 Vin*D=Vout*(1-D) 得到输出电压和占空比的关系Vout=Vin*D/(1-D) 看下主要工作波形 从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout); 再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。 如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!

从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。 把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器! 还是和上边一样,先把原理大概讲下:

一款基于UC3842的单端反激式开关电源的设计

一款基于UC3842的单端反激式开关电源的设计 164908060( 楼主 ) 2013-8-31 11:00:32只看该作者 981 | 21 倒序浏览引言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。 电路设计和原理 1 UC3842工作原理 UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。其中脚1外接阻容元件,用来补偿误差放大器的频率特性。脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。脚3是电流检测输入端,与电阻配合,构成过流保护电路。脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。输出电压将决定变压器的变压比。由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

20w单端反激式开关电源课件

电子综合设计与制作课程设计(论文) 20w单端反激式开关电源设计 院(系)名称电子与信息工程学院 专业班级电子122 学号120404063 学生姓名卡拉卡提 指导教师孙福明 起止时间:2014.12.15—2014.12.26

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息工程

摘要 近年来,随着电力电子技术的发展,开关稳压电源正朝着小型化、高频化﹑继承化的方向发展,高效率的开关电源已经得到了越来越广泛的应用,单端反激式电路以其简单,可以高效提供直流输出等诸多优点,特别适合设计小功率的开关电源。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET 构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 本文介绍了一种单端反激式单片开关电源的设计方法。该开关电源输入电压单相170~ 260V,输入交流电频率45~65HZ,输出直流电压12V恒定,输出直流电流2A,最大功率:25W,可获得高质量的稳压输出。参照给定的该电源的技术参数,设计了该开关电源的滤波、整流、逆变等电路。详细的给出了开关电源高频变压器的设计方法,文中给出了主电路图,通过基本计算,选择控制电路和保护电路的结构以及变压器的变比及容量。本文重点介绍该电源的设计思想,工作原理及特点。 关键词:开关电源;反激电路;脉宽调制

目录 第1章绪论 (1) 1.1开关电源技术概况 (1) 1.2本文设计内容 (1) 第2章需求分析 (1) 2.1调研情况 (1) 2.2开关电源种类 (1) 2.3 单端反激式开关电源 (1) 2.4 开关稳压电源的电路原理框图 (2) 2.5调宽式开关稳压电源的基本原理 (3) 2.6开关电源的两种工作模式 (4) 第3章系统设计 (5) 3.1系统总体结构设计 (5) 3.2具体电路设计 (5) 3.2.1整流部分 (5) 3.2.2控制设计 (6) 3.2.3保护电路设计 (7) 3.3元器件型号选择 (7) 3.3.1 EMI滤波电路 (7) 3.3.2整流电路 (8) 3.3.3控制电路 (8) 3.4驱动电路 (8) 第4章课程设计总结 (10) 参考文献 (11)

什么样的电路是单端反激

单位的项目需要一个开关电源,而产品空间的设计又导致无法使用市售的成品电源,于是我就领到了这个设计开关电源的任务。 这个任务的内容是设计一款220V AC网电源输入,带有5V500mA,12V6A输出的隔离式开关电源,对效率、纹波等其他的要求不高。 1、电源的主回路 1.1什么样的电路是单端反激 如图一所示的电路构成的电源电路就是常说的单端反激开关电源。 基本工作原理 简单说就是当Q1开通时,输入的直流电压通过初级绕组向变压器灌入能量;Q1关断时变压器内灌注的能量通过次级绕组释放,经D1整流、C2滤波后供负载使用。(插基本原理示意图) 1.2单端反激电源的优点 首先这个结构是与网电隔离的(国外的资料一般叫离线式)安全性好;这种结构相对简单,比较好做; 通过改变开关脉冲占空比和变压器的变比可以很容易的实现大范围的电压调整; 1.3单端反激电源的限制 最大的限制就是输出功率咯,一般就是几十瓦或者百来瓦。有这个限制的原因是这种电路结构的输出功率取决于通过变压器原边的电流峰值,而这个峰值跟原边的电感量(还有开关频率、占空比等其他因素),如果想把电源的功率做的很大,那么变压器的电感量会小到跟分布参数接近,最后没办法成功的绕出一个合适的变压器来。 所以在设计电源一开始的时候,应该对要设计的电源功率有一个规划,资料上的说法是如果设计功率在100W以内那么可以采用单端反激的结构,否则应该考虑单端正激的结构。 这一次我要设计电源大概是80瓦的,所以我选择了单端反激的结构。 另一个限制是占空比,单端反激的结构中,开关信号的占空比一般不超过45%。这是因为在单端反激的结构中,由于变压器绕组的反电动势存在,作为开关管在关断时需要承受的电压为:

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

单端反激式开关稳压电源(修改版)

单端反激式开关稳压电源 学生姓名: xxx 学生学号: xxx 院(系): xxx 年级专业: xxx 指导教师: xxx 二〇一三年十二月

摘要 电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。 UC3842是一种性能优良的电流控制型脉宽调制器。假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。设计思路,并附有详细的电路图。 关键词:开关电源,uc3842,脉宽调制,功率,IGBT

目录 摘要.......................................................... I 1 设计要求 (1) 2 设计方案 (2) 2.1开关稳压电源系统总体框图 (2) 2.2电路结构的选择 (2) 2.3 启动电路 (3) 2.4 PWM脉冲控制驱动电路 (4) 2.5 直流输出与反馈电路 (4) 2.6 总体电路图分析 (6) 3 设计过程 (7) 3.1变压器和输出电感的设计 (7) 3.2 电路仿真波形 (8) 4 PCB设计 (11) 4.1 PCB设计规范 (11) 4.2 PCB设计图 (14) 5总结和体会 (15) 参考文献 (16) 附录1:总体电路图 (17)

相关主题
文本预览
相关文档 最新文档