当前位置:文档之家› 交直流调速实验指导书

交直流调速实验指导书

交直流调速实验指导书
交直流调速实验指导书

交直流调速实验指导书

王兵编写

肖伸平审核

湖南工业大学电气与信息工程学院

2008年8月

目录

实验一晶闸管直流调速系统各主要单元的调试1实验二电压单闭环不可逆直流调速系统调试4实验三带电流截止负反馈的转速单闭环直流调速系统调试8实验四电压、电流双闭环不可逆直流调速系统调试12实验五转速、电流双闭环不可逆直流调速系统调试16实验六模拟式直流调速装置514C实验21实验七数字式直流调速装置6RA70实验23实验八交流调速装置MM420实验27实验九矢量控制交流调速装置(CUVC)单机实验32十附件35 THWPGZ-2型网络型高级维修电工技能实训智能考核装置简介35

实验一晶闸管直流调速系统各主要单元的调试

一、实验目的

(1) 熟悉直流调速系统各主要单元部件的工作原理。

(2) 掌握直流调速系统各主要单元部件的调试步骤和方法。

二、实验所需挂件及附件

三、实验内容

(1)调节器Ⅰ的调试

(2)调节器Ⅱ的调试

(3)反号器的调试

(4)零电平检测的调试

(5)转矩极性鉴别的调试

(6)逻辑控制的调试

四、实验方法

(1)“调节器Ⅰ”的调试

①调零

将PMT-04中“调节器Ⅰ”所有输入端接地,再将比例增益调节电位器RP1顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅰ“7”端的输出,使调节器的输出电压尽可能接近于零。

②调整输出正、负限幅值

把“5”、“6” 两端短接线去掉,此时调节器Ⅰ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅰ的“3”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。

③测定输入输出特性

再将反馈网络中的电容短接(将“5”、“6”端短接),使调节器Ⅰ为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压,测出相应的输出电压,直至输出限幅,并画出曲线。

④观察PI特性

拆除“5”、“6”两端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。改变调节器的放大倍数(调节RP1),观察输出电压的变化。

(2) “调节器Ⅱ”的调试

①调零

将PMT-04中“调节器Ⅱ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“11”、“12”两端短接,使“调节器Ⅱ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅱ“14”端的输出,使调节器的输出电压尽可能接近于零。

②调整输出正、负限幅值

把“11”、“12”两端短接线去掉,此时调节器Ⅱ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅱ的“4”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。

③测定输入输出特性

再将反馈网络中的电容短接(将“11”、“12”端短接),使调节器Ⅱ成为P调节器,在调节器的输入端分别逐渐加入正负电压,测出相应的输出电压,直至输出限幅,并画出曲线。

④观察PI特性

拆除“11”、“12”两端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。改变调节器的放大倍数(调节RP1),观察输出电压的变化。

(3)“(AR)反号器”的调试

测定输入输出比例,输入端加入+5V电压,调节RP1,使输出端为-5V。

(4)“转矩极性鉴别”的调试

“转矩极性鉴别”的输出有下列要求:

电机正转,输出U M为“1”态。

电机反转,输出U M为“0”态。

将给定输出端接至“转矩极性鉴别”的输入端,同时在输入端接上万用表以监视输入电压的大小,示波器探头接至“转矩极性鉴别”的输出端,观察其输出高、低电平的变化。“转矩极性鉴别”的输入输出特性应满足图1-1(a)所示要求,其中U sr1=-0.25V,U sr2=+0.25V

(5)“零电平检测”的调试

其输出应有下列要求:

主回路电流接近零,输出U I为“1”态。

主回路有电流,输出U I为“0”态。

其调整方法与“转矩极性鉴别”的调整方法相同,输入输出特性应满足图3-1(b)所示要求,其中U sr1=0.2V,U sr2=0.6V。

(a)转矩极性鉴别(b) 零电平检测

图1-1 转矩极性鉴别及零电平检测输入输出特性

(6)“逻辑控制”的调试

测试逻辑功能,列出真值表,真值表应符合下表:

调试方法:

A、首先将“零电平检测”、“转矩极性鉴别”调节到位,符合其特性曲线。给定接“转矩极性鉴别”的输入端,输出端接“逻辑控制”的U M。“零电平检测”的输出端接“逻辑控制”的U I,输入端接地。

B、将PMT-04给定的RP1、RP2电位器顺时针转到底,将S2打到运行侧。

C、将S1打到正给定侧,用万用表测量“逻辑控制”的“5”、“12”和“6”、“13”端,“5”、“12”端输出应为高电平,“6”、“13”端输出应为低电平,此时将PMT-04中给定部分S1开关从正给定打到负给定侧,则“5”、“12”端输出从高电平跳变为低电平,“6”、“13”端输出也从低电平跳变为高电平。在跳变的过程中用示波器观测“9”端输出的脉冲信号。

D、将“零电平检测”的输入端接高电平,此时将PMT-04中给定部分的S1开关来回扳动,“逻辑控制”的输出应无变化。

五、实验报告

(1) 画各控制单元的调试连线图。

(2) 简述各控制单元的调试要点

实验二电压单闭环不可逆直流调速系统调试

一、实验目的

(1) 了解电压单闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2) 掌握晶闸管直流调速系统的一般调试过程、调试步骤、方法及参数的整定。

(3) 提高对系统分析及故障分析处理的能力。

屏上挂件排列顺序:PMT-02、PMT-03、PMT-04、PWD-17

三、实验线路及原理

在电压单闭环中,将反映电压变化的电压隔离器输出电压信号作为反馈信号加到“电压调节器”(用调节器Ⅱ作为电压调节器)的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压Uct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电压负反馈闭环系统。电机的最高转速也由电压调节器的输出限幅所决定。调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。当“给定”恒定时,闭环系统对电枢电压变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电压能稳定在一定的范围内变化。

图2-1 电压单闭环系统原理图(Ld=200mH,R=2250Ω)

在本实验中,PMT-04上的“调节器Ⅱ”作为“电压调节器”使用。

四、实验内容

(1) PMT-04上各基本单元的调试。

(2) Uct不变时直流电动机开环特性的测定。

(3) Ud不变时直流电动机开环特性的测定。

(4) 电压单闭环直流调速系统的机械特性。

五、实验方法

(1) PMT-02和PMT-03上的“触发电路”调试。

(2) Uct不变时的直流电机开环外特性的测定

①按图2-1接线(电压调节器先不接,Ug直接接Uct),PMT-03上的移相控制电压Uct由PMT-04上的“给定”输出Ug直接接入,直流发电机接负载电阻R,将正给定的输出调到零。

②先闭合励磁电源开关,按下PMT01上面的启动按钮,使主电路输出三相交流电源(线电压为220V),然后从零开始逐渐增加“给定”电压Ug,使电动机慢慢启动并使转速n达到1200r/min。

③改变负载电阻R的阻值,使电动机的电枢电流从空载直至额定电流Ied.即可测出在Uct不变时的直流电动机开环外特性n=f(Id),测量并记录数据于下表:

(3) Ud不变时直流电机开环外特性的测定

①控制电压U ct由PMT-04的“给定”Ug直接接入,直流发电机接负载电阻R,将正给定的输出调到零。

②按下PMT01控制屏启动按钮,然后从零开始逐渐增加给定电压Ug,使电动机启动并达到1200r/min.

③改变负载电阻R,使电动机的电枢电流从空载直至Ied。用电压表监视三相全控整流输出的直流电压Ud,在实验中始终保持Ud不变(通过不断的调节PMT-04上的“给定”电压Ug来实现),测出在Ud不变时直流电动机的开环外特性n=f(Id),并记录于下表:

(4)基本单元部件调试

①移相控制电压Uct调节范围的确定

直接将PMT-04“给定”电压Ug接入PMT-03移相控制电压Uct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察Ud的波形。当正给定电压Ug由零调大时,Ud将随给定电压的增大而增大,当Ug超过某一数值Ug'时,Ud的波形会出现缺相的现象,这时Ud反而随Ug的增大而减小。一般可

确定移相控制电压的最大允许值Uctmax=0.9Ug',即Ug的允许调节范围为0~Uctmax。如果我们把给定输出限幅定为Uctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录Ug'于下表中:

将给定退到零,再按停止按钮切断电源。

②调节器的调零

将PMT-04中“调节器Ⅱ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“11”、“12”短接,使“调节器Ⅱ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅱ”的“14”端,使调节器的输出电压尽可能接近于零。

③调节器正、负限幅值的调整

把“调节器Ⅱ”的“11”、“12”端短接线去掉,此时调节器Ⅱ成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到调节器Ⅱ的“4”端,当加一定的正给定时,调整负限幅电位器RP4,使“调节器Ⅱ”的输出电压为最小值,当调节器输入端加负给定时,调整正限幅电位器RP3,使之输出正限幅值为Uctmax。

④电压反馈系数的整定

直接将控制屏上的励磁电压接到电压隔离器的“1、2”端,用直流电压表测量励磁电压,并调节电位器RP1,当输入电压为220V时,电压隔离器输出+6V,这时的电压反馈系数γ =U fn/U d=0.027 V/V。

⑤“(AR)反号器”的整定

测定输入输出比例,输入端加入+5V电压,调节RP1,使输出端为-5V。

(5) 电压单闭环直流调速系统

①按图4-2接线,在本实验中,PMT-04上的“给定”电压Ug为负给定,电压反馈为正电压,将“调节器Ⅱ”接成P(比例)调节器或PI(比例积分)调节器。直流发电机接负载电阻R,给定输出调到零。

②直流发电机先轻载,从零开始逐渐增大“给定”电压Ug,使电动机转速接近n=1200r/min。

③由小到大调节直流发电机负载R,测定相应的Id和n,直至电动机Id=Ied,即可测出系统静态

六、实验报告

(1) 根据实验数据,画出Uct不变时直流电动机开环机械特性。

(2) 根据实验数据,画出Ud不变时直流电动机开环机械特性。

(3) 根据实验数据,画出电压单闭环直流调速系统的机械特性

七、实验事项

(1)在记录动态波形时,可先用双踪慢扫描示波器观察波形,以便找出系统动态特性较为理想的调节器参数,再用数字存储示波器或记忆示波器记录动态波形。

(2)电机启动前,应先加上电动机的励磁,才能使电机启动。在启动前必须将移相控制电压调到零,使整流输出电压为零,这时才可以逐渐加大给定电压,不能在开环或速度闭环时突加给定,否则会引起过大的启动电流,使过流保护动作,告警,跳闸。

(3)通电实验时,可先用电阻作为整流桥的负载,待确定电路能正常工作后,再换成电动机作为负载。

(4)在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反,确保为负反馈,否则会造成失控。

(5)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。

(6)PMT-03与PMT-04不共地,所以实验时须短接PMT-03与PMT-04的地。

实验三带电流截止负反馈的转速单闭环直流调速系统调试

一、实验目的

(1) 了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。

(2) 掌握单闭环直流调速系统的调试方法及电流截止负反馈的整定。

(3) 加深理解转速负反馈在系统中的作用。

(4) 能对一些常见故障进行分析与处理。

屏上挂件排列顺序:PMT-02、PMT-03、PMT-04、PWD-17

三、实验线路及原理

图3-1 带电流截止负反馈的转速单闭环直流调速系统(Ld=200mH,R=2250Ω)转速单闭环直流调速系统是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U Ct,用作控制整流桥的

“触发电路”,触发脉冲经功率放大后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由“电流调节器”的输出限幅所决定。在本系统中“电流调节器”可采用PI(比例积分)调节器或者P(比例)调节器,当采用P(比例)调节器时属于有静差调速系统,增加“调节器Ⅱ”的比例放大系数即可提高系统的静特性硬度。为了防止在启动和运行过程过程中出现过大的电流冲击,系统引入了电流截止负反馈。由“电流变换器(FBC)”取出与电流成正比的电压信号(FBC的“3”端),当电枢电流超过一定值时,将“电流调节器”的“5”端稳压管击穿,送出电流反馈信号进入“电流调节器”进行综合调节,以限制电流不超过其允许的最大值。

四、实验内容

(1) 三相晶闸管触发电路的调试。

(2) 测定和比较直流电动机开环机械特性和转速单闭环直流调速系统的静特性。

(3) 整定电流截止负反馈的转折点,并检验电流负反馈效应。用慢扫描示波器观察和记录系统加入电流截止负反馈后,突加给定启动时电流Id和转速n的波形。

五、实验方法

(1) PMT-02和PMT-03上的“触发电路”调试。

(2) 直流电机开环机械特性的测定

①按图3-1分别将主回路和控制回路接好线。PMT-03上的移相控制电压U ct由PMT-04挂件上的“给定”输出U g直接接入,直流发电机接负载电阻R(R接2250Ω:将两个900Ω并联之后与两个900Ω串联),L d用PWD-02上200mH,将给定的输出调到零。

②先闭合励磁电源开关,按下PMT01“电源控制屏”启动按钮,使主电路输出三相交流电源,然后从零开始逐渐增加“给定”电压U g,使电动机转速慢慢升高并使转速n 达到1200r/min。

③改变负载电阻R的阻值,使电机的电枢电流从额定电流I ed直至空载,测量并记录数据于下表:

(3) 基本单元部件调试

①移相控制电压Uct调节范围的确定

直接将PMT-04“给定”电压Ug接入PMT-03移相控制电压Uct的输入端,”三相全控整流”输出接电阻负载R,用示波器观察Ud的波形。当正给定电压Ug由零调大时,Ud将随给定电压的增大而增大,当Ug超过某一数值Ug'时,Ud的波形会出现缺相的现象,这时Ud反而随Ug的增大而减小。一般可确定移相控制电压的最大允许值Uctmax=0.9Ug',即Ug的允许调节范围为0~Uctmax。如果我们把给定输出限幅定为Uctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录Ug'于下表中:

将给定退到零,再按停止按钮切断电源。

②调节器的调零

将PMT-04中“调节器Ⅱ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“11”、“12”短接,使“调节器Ⅱ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅱ”的“14”端,使调节器的输出电压尽可能接近于零。

③调节器正、负限幅值的调整

把“调节器Ⅱ”的“11”、“12”端短接线去掉,此时调节器Ⅱ成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到调节器Ⅱ的“4”端,当加一定的正给定时,调整负限幅电位器RP4,使“调节器Ⅱ”的输出电压为最小值,当调节器输入端加负给定时,调整正限幅电位器RP3,使之输出正限幅值为Uctmax。

④转速反馈系数的整定

直接将“给定”电压Ug接PMT-03的“移相控制电压Uct”的输入端,“三相全控整流”电路接直流电动机负载,Ld用PMT-02上的200mH,输出给定调到零。

打开励磁电源开关,按下启动按钮,从零逐渐增加给定,使电机提速到n =150Or/min,调节“速度变换”上转速反馈电位器RP1,使得该转速时反馈电压Ufn=+6V,这时的转速反馈系数α =Ufn/n =0.004V/(r/min)。

(4) 转速负反馈单闭环直流调速系统调试及闭环静特性的测定。

①按图3-3接线(电流变换器的电流反馈输出端“3”不要接),在本实验中,PMT-04的“给定”电压U g为负给定,转速反馈电压为正值,将“调节器Ⅱ”接成P(比例)调节器或PI(比例积分)调节器。直流发电机接负载电阻R(R接2250Ω:将两个900Ω并联之后与两个900Ω串联),L d用PWD-02上200mH,给定输出调到零。

②直流发电机先轻载,从零开始逐渐调大“给定”电压U g,使电动机的转速接近n=l200r/min。

③由小到大调节直流发电机负载I,测出电动机的电枢电流I d和电机的转速n,直至I d=I ed,即可测出系统静态特性曲线n =f(I

(5) 电流截止负反馈环节的整定。

用弱电导线将PMT-02上的“电流互感器输出”对应连接到PMT-04上的电流变换器的“TA1、TA2、TA3”端,把电流变换器的电流反馈输出端“3”接到“调节器Ⅱ”的输入端“5”,从零开始逐渐调大“给定”电压U g,使电动机的转速接近n=l200r/min;由小到大调节直流发电机负载I,使主回路电流升至1A。调整电流反馈单元(FBC+FA)中的电流反馈电位器RP1,使电流反馈电压“If”逐渐升高直至将“调节器Ⅱ”的输入端“5”连接的稳压管击穿,此时电动机的转速会明显降低,说明电流截止负反馈环节已经起作用。I N即为截止电流。停机后可突加给定启动电动机。

①动态波形的观察。先调节好给定电压Ug,使电动机在某一转速下运行,断开给定电压Ug的

开关S2

然后突然合上S2,即突加给定启动电动机,用慢扫描示波器观察和记录系统加入电流截止。

负反馈后的电流Id和转速n的动态波形曲线。

②测定挖土机特性。具有电流截止负反馈环节的转速负反馈单闭环直流调速系统的静特性是挖

土机特性,其测定方法如下:逐渐增加给定Ug,使电动机转速接近n=l200r/min,由小到大调节直流

发电机负载I,使主回路电流升至1A,记录额定工作点的数据。然后继续改变负载R使电流超过截止

电流,转速下降到接近于零为止。记录几组转速和电流的数据,可画出挖土机特性。

六、实验报告

(1) 根据实验数据,画出直流电动机开环机械特性。

(2) 根据实验数据,画出转速单闭环直流调速系统的闭环静特性。

(3) 计算并比较机械特性和静特性的静差率S。

七、注意事项

(1) 电机启动前,应先加上电动机的励磁,才能使电机启动。

(2) 在系统未加入电流截止负反馈环节时,不允许突加给定,以免产生过大的冲击电流,使过流

保护动作,实验无法进行。

(3) 通电实验时,可先用电阻作为整流桥的负载,待确定电路能正常工作后,再换成电动机作为负载。

(4) 在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反,确保为负反馈,否则会造

成失控。

(5) 直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电

机的使用寿命,或发生意外。

(6) PMT-03挂件上的“给定”、PMT-04之间不共地,所以实验时须短接PMT-03与PMT-04的地。

实验四电压、电流双闭环不可逆直流调速系统调试

一、实验目的

(1) 了解双闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2) 掌握电压、电流双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3) 提高对系统分析及故障分析处理的能力。

屏上挂件排列顺序:PMT-02、PMT-03、PMT-04、PWD-17

三、实验线路及原理

电压、电流双闭环直流调速系统是由电压和电流两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),实验系统的原理框图组成如图4-1所示。

图4-1 电压、电流双闭环直流调速系统原理框图

四、实验内容

(1) 各控制单元调试。

(2) 测定电流反馈系数β、电压反馈系数γ。

(3) 测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。

(4) 闭环控制特性n=f(U g)的测定。

(5) 观察、记录系统动态波形。

五、实验方法

(1) PMT-02和PMT-03上的“触发电路”调试。

(2) 双闭环调速系统调试原则

①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

②先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和电压均为负反馈后,才可组成闭环系统。

③先内环,后外环,即先调试电流内环,然后调试电压外环。

④先调整稳态精度,后调整动态指标。

(3) 控制单元调试

①移相控制电压Uct调节范围的确定

直接将PMT-04“给定”电压Ug接入PMT-03移相控制电压Uct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察Ud的波形。当正给定电压Ug由零调大时,Ud将随给定电压的增大而增大,当Ug超过某一数值Ug'时,Ud的波形会出现缺相的现象,这时Ud反而随Ug的增大而减小。一般可确定移相控制电压的最大允许值Uctmax=0.9Ug',即Ug的允许调节范围为0~Uctmax。如果我们把给定输出限幅定为Uctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保

将给定退到零,再按停止按钮切断电源,结束步骤。

②调节器的调零

将PMT-04中“调节器Ⅰ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅰ”的“7”端,使调节器的输出电压尽可能接近于零。

将PMT-04中“调节器Ⅱ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“11”、“12”两端短接,使“调节器Ⅱ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅱ”的“14”端,使调节器的输出电压尽可能接近于零。

③调节器正、负限幅值的调整

把“调节器Ⅰ”的“5”、“6”端短接线去掉,此时“调节器Ⅰ”成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到“调节器Ⅰ”的“3”端,当加一定的正给定时,调整负限幅电位器RP4,使“调节器Ⅰ”的输出负限幅值为-6V,当调节器输入端加负给定时,调整正限幅电位器RP3,使之输出电压为最小值。

把“调节器Ⅱ”的“11”、“12”端短接线去掉,此时调节器Ⅱ成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到调节器Ⅱ的“4”端,当加一定的正给定时,调整负限幅电位器RP4,使之输出电压的绝对值为最小值,当调节器输入端加负给定时,调整正限幅电位器RP3,使“调节器Ⅱ”的输出正限幅值为U ct max。

④电压反馈系数的整定

直接将控制屏上的励磁电压接到电压隔离器的“1、2”端,用直流电压表测量励磁电压,并调节电位器RP1,当输入电压为220V时,电压隔离器输出+6V,这时的电压反馈系数γ =U fn/U d=0.027 V/V。

⑤电流反馈系数的整定

用弱电导线将PMT-02上的“电流互感器输出”对应连接到PMT-04上的电流变换器的“TA1、TA2、TA3”端,直接将“给定”电压U g接入PMT-03移相控制电压U ct的输入端,整流桥输出接电阻负载R(将两个900Ω串联),负载电阻放在最大值,输出给定调到零。

按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流变换器”上的电流反馈电位器RP1,使得负载电流I d=0.65A时,“3”端I f的的电流反馈电压U fi=3V,这时的电流反馈系数β= U fi/I d= 4.615V/A。

(4) 开环外特性的测定

①PMT-03上的移相控制电压U ct由PMT-04挂件上的“给定”输出U g直接接入,直流发电机接负载电阻R(R接2250Ω:将两个900Ω并联之后与两个900Ω串联),L d用PMT-02上200mH,将给定的输出调到零。

②按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压U g,使电机启动升速,调节U g和R使电动机电流I d=I ed(电动机额定电流),转速到达1200r/min。

将给定退到零,断开励磁电源,按下停止按钮,结束实验。

(5) 系统静特性测试

①按图4-4接线,PMT-04挂件上的“给定”电压U g输出为正给定,电压反馈电压为负电压,直流发电机接负载电阻R,L d用PMT-02上的200mH,负载电阻放在最大值处,给定的输出调到零。将调节器Ⅰ、调节器Ⅱ都接成P(比例)调节器后,接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,增加给定,观察系统能否正常运行,确认整个系统的接线正确无误后,将“调节器Ⅰ”,“调节器Ⅱ”均恢复成PI(比例积分)调节器,构成实验系统。

②机械特性n =f(I d)的测定

A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200r/min,然后接入

发电机负载电阻R,逐渐改变负载电阻,直至I d=I ed(额定电流),即可测出系统静态特性曲线n =f(I d),

并记录于下表中:

B,再测试n=800r/min时的静态特性曲线,并记录于下表中:

C、闭环控制系统n=f(U g)的测定

调节U g及R,使I d=I ed(额定电流),n=l200r/min,逐渐降低U g,记录U g和n,即可测出闭环控制

特性n = f(U g)。

(6) 系统动态特性的观察

用慢扫描示波器观察动态波形。在不同的系统参数下(调节RP1),用示波器观察、记录下列动态

波形:

①突加给定U g

电动机启动时的电枢电流I d(“电流变换器”的“3”端)波形和转速n(“速度变换”的,

“4”端)波形。

②突加额定负载(20%I ed?100%I ed)时电动机电枢电流波形和转速波形。

③突降负载(100%I ed?20%I ed)时电动机的电枢电流波形和转速波形。

六、实验报告

(1) 根据实验数据,画出闭环控制特性曲线n =f(U g)。

(2) 根据实验数据,画出两种转速时的闭环机械特性n =f(I d)。

(3) 根据实验数据,画出系统开环机械特性n =f(I d),计算静差率,并与闭环机械特性进行比较。

(4) 分析系统动态波形,讨论系统参数的变化对系统动、静态性能的影响。

七、注意事项

在记录动态波形时,可先用双踪慢扫描示波器观察波形,以便找出系统动态特性较为理想的调

节器参数,再用数字存储示波器或记忆示波器记录动态波形。

实验五转速、电流双闭环不可逆直流调速系统调试

一、实验目的

(1) 了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2) 掌握转速、电流双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3) 提高对系统分析及故障分析处理的能力。

屏上挂件排列顺序:PMT-02、PMT-03、PMT-04、PWD-17

三、实验线路及原理

许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。转速、电流双闭环直流调速系统是由转速和电流两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。实验系统的原理框图组成如图5-1所示:

图5-1 转速、电流双闭环直流调速系统原理框图

系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。“调节器Ⅰ”、“调节器Ⅱ”均设有限幅环节,“调节器Ⅰ”的输出作为“调节器Ⅱ”的给定,利用“调节器Ⅰ”的输出限幅可达到限制启动电流的目的。“调节器Ⅱ”的输出作为“触发电路”的控制电压U ct,利用“调节器Ⅱ”的输出限幅可达到限制αmax的目的。

四、实验内容

(1) 各控制单元调试。

(2) 测定电流反馈系数β、转速反馈系数α。

(3) 测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。

(4) 闭环控制特性n=f(U g)的测定。

(5) 观察、记录系统动态波形。

五、实验方法

(1) PMT-02和PMT-03上的“触发电路”调试见第二章实验一。

(2) 双闭环调速系统调试原则

①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

②先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负反馈后,才可组成闭环系统。

③先内环,后外环,即先调试电流内环,然后调试转速外环。

④先调整稳态精度,后调整动态指标。

(3) 控制单元调试

①移相控制电压Uct调节范围的确定

直接将PMT-04“给定”电压Ug接入PMT-03移相控制电压Uct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察Ud的波形。当正给定电压Ug由零调大时,Ud将随给定电压的增大而增大,当Ug超过某一数值Ug'时,Ud的波形会出现缺相的现象,这时Ud反而随Ug的增大而减小。一般可确定移相控制电压的最大允许值Uctmax=0.9Ug',即Ug的允许调节范围为0~Uctmax。如果我们把给定输出限幅定为Uctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录Ug'于下表中:

将给定退到零,再按停止按钮切断电源。

②调节器的调零

将PMT-04中“调节器Ⅰ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅰ”的“7”端,使调节器的输出电压尽可能接近于零。

将PMT-04中“调节器Ⅱ”所有输入端接地,再将RP1电位器顺时针旋到底,用导线将“11”、“12”两端短接,使“调节器Ⅱ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量“调节器Ⅱ”的“14”端,使调节器的输出电压尽可能接近于零。

③调节器正、负限幅值的调整

把“调节器Ⅰ”的“5”、“6”端短接线去掉,此时“调节器Ⅰ”成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到“调节器Ⅰ”的“3”端,当加一定的正给定时,调整负限幅电位器RP4,使“调节器Ⅰ”的输出负限幅值为-6V,当调节器输入端加负给定时,调整正限幅电位器RP3,使之输出电压为最小值。

把“调节器Ⅱ”的“11”、“12”端短接线去掉,此时调节器Ⅱ成为PI (比例积分)调节器,然后将PMT-04挂件上的给定输出端接到调节器Ⅱ的“4”端,当加一定的正给定时,调整负限幅电位器RP4,使之输出电压的绝对值为最小值,当调节器输入端加负给定时,调整正限幅电位器RP3,使“调节器Ⅱ”的输出正限幅值为U ct max。

④电流反馈系数的整定

用弱电导线将PMT-02上的“电流互感器输出”对应连接到PMT-04上的电流变换器的“TA1、TA2、TA3”端,直接将“给定”电压U g接入PMT-04移相控制电压U ct的输入端,整流桥输出接电阻负载R(将两个900Ω并联),负载电阻放在最大值,输出给定调到零。

按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流变换器”上的电流反馈电位器RP1,使得负载电流I d=0.65A时,“3”端I f的的电流反馈电压U fi=3V,这时的电流反馈系数β= U fi/I d= 4.615V/A。

⑤转速反馈系数的整定

直接将“给定”电压U g接PMT-03上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用PMT-02上的200mH,输出给定调到零。

按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到n =150Or/min时,调节“速度变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α =U fn/n =0.004V/(r/min)。

(4) 开环外特性的测定

①PMT-03上的移相控制电压U ct由PMT-04挂件上的“给定”输出U g直接接入,直流发电机接负载电阻R(R接2250Ω:将两个900Ω并联之后与两个900Ω串联),L d用PMT-02上200mH,将给定的输出调到零。

②按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压U g,使电机启动升速,调节U g和R使电动机电流I d=I ed,转速到达1200r/min。

③增大负载电阻R阻值(即减小负载I),可测出该系统的开环外特性n =f(I),记录于下表中:

D700变频器实验指导书 (2)

实验三变频器功能参数设置与操作实训 一、实验目的 1.熟悉变频器主回路接线; 2.掌握三菱D700型交流变频器的参数设置方法; 3.掌握利用变频器控制电机的基本操作方法。 二、实验内容 1、利用D700操作面板设置变频器参数,实现变频器的参数恢复出厂值设置。 2、再设置变频器参数,实现通过操作面板操作交流变频器,从而控制电机的起动/停止、正/反方向运转、调速; 3、重新设置变频器参数,实现通过外接端子操作交流变频器,从而控制电机的起动/停止、正/反方向运转以及通过电位器调速。 三、仪器设备 1、三菱的D700型交流变频器一台; 2、电动机一台。

首先,仔细认真的阅读关于D700 变频器的相关资料,了解变频器参数设置的方法,控制端子的定义,各参数的意义,尤其是上表中参数的意义。确定下面各实验步骤中应设置的参数及参数值。写出预习报告,预习报告必须填写好上表中后两列。 实验中依次完成下列实验步骤: 1、恢复出厂值设置 为了本次实验的需要,首先恢复出厂设置,方法是:设置Pr.CL(参数清除)、ALLC(参数全部清除)=“1”,可使参数恢复为出厂设置的初始值。 注意:初始化结束后,系统设定为“显示简单模式的参数”状态(Pr.160=“9999”(初始值)),为了下面的实验必须设置Pr.160=“0”,将系统改为“显示所有参数”状态。 2、在V/F控制模式下(变频器的初始设定模式)的工作 (1)面板操作方式工作 1)设置变频器参数(Pr.79=“1”),将变频器设置成操作面板操作方式; 2)根据实验用异步电动机的名牌数据修改电机额定参数; 3)通过面板操作实现交流变频器的起动/停止、正/反方向运转、调速(预习报告中要写出应设置的参数及参数值,操作的方法)。 4)修改电机的加速时间与减速时间来控制电动机起动与停车时间;体会加减速时间对电机起停过程的影响。 5)观察频率最大为多少Hz时,能用手将异步电动机堵转(即握住电机轴,电机不再能转动)?(思考:按照基频以下为恒转矩工作的性质,无论频率高低,电机输出转矩应该不变,但为什么在较低频率时却能够将电机堵转?在实验报告中加以说明。) (2)外部端子操作方式工作 1)按下面接线示意图所示接线(预习报告中要写出图中用到的端子的意义及接线的意义)。2)设置变频器参数(Pr.79=“2”),将变频器设置成外接端子操作方式; 3)通过外接端子操作和外部电位器控制频率,实现交流变频器的起动/停止、正/反方向运转以及电位器调速(预习报告中要写出应设置的参数及参数值,操作的方法)。 4)观察当外部电位器调至最大时,运行频率是否为变频器基准频率50Hz?如果不是调整参数使之成为基准频率50Hz。(预习报告中要写出应设置的参数,操作的方法)。

产品管理-电脑产品可靠性试验作业指导书 精品

作业指导书WORK INSTRUCTION 文件名称:Doc. Name Fujitsu产品可靠性试验作业指 导书 Fujitsu’s Product Reliability Test WI 文件编号: Doc. No. WI/750/050 拟制部门:Prepared by RTC版号: Version A/0 受控印章Ctrl. Stamp 受控副本章Ctrl. copy

一. 温湿(带操作)试验 1 目的 评价产品在温湿条件下使用和贮存的可靠性. 2 适用范围 适用于中名(东莞)电子有限公司生产的Fujitsu计算机音箱产品. 3 试验设备 恒温恒湿试验箱、噪音发生器 4 试验步骤 4.1 环境条件:温度:15℃~30℃,相对湿度:35%~80%. 4.2 取1对(或以上)无包装的合格样品. 4.3 将样品(工作状态下)放入恒温恒湿试验箱内(温度:30°C,RH:90%),2小时后,取出样品,在室温下放 置1小时. 4.4 试验后,检查样品的外观和功能. 5 质量要求 5.1 试验后,产品的外观和功能应正常,样品应无异音. 5.2 试验前、后,样品的灵敏度变化须小于3dB. 6 参考文件 《Fujitsu可靠性试验项目》客户数据 7 记录保存年限 《RTC试验报告》750PR002 3年 二. 低温(带操作)试验 1 目的 评价产品在低温条件下使用和贮存的可靠性. 2 适用范围 适用于中名(东莞)电子有限公司生产的Fujitsu计算机音箱产品. 3 试验设备 冰箱、噪音发生器. 4 试验步骤 4.1 环境条件:温度:15℃~30℃,相对湿度:35%~80%. 4.2 取1对(或以上)无包装的合格样品. 4.3 将样品(工作状态下)放入冰箱内(温度:0°C),8小时后,取出样品,在室温下放置1小时. 4.4 试验后,检查样品的外观和功能. 5 质量要求 5.1 试验后,产品的外观和功能应正常,样品应无异音. 5.2 试验前、后,样品的灵敏度变化须小于3dB. 6 参考文件 《Fujitsu可靠性试验项目》客户数据

电气工程及其自动化交流调速实验指导书

实验一三相交流调压电路实验 一、实验目的 (1)了解三相交流调压触发电路的工作原理。 (2)加深理解三相交流调压电路的工作原理。 (3)了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-23所示。图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 图3-23三相交流调压实验线路图 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试 ①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。 ⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-23连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载(1800Ω),接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°及180°时的输出电压波形,并记录相应的输出电压有效值,填入下表: 七、实验报告 (1)整理并画出实验中记录的波形,作不同负载时的U=f(α)的曲线。 (2)讨论、分析实验中出现的各种问题。

实训指导书(西门子MM440变频器)

柳州职业技术学院 变频器实训指导书(西门子MM440)

电气自动化技术专业 任务1 变频器的面板操作与运行 任务目的: 1. 熟悉变频器的面板操作方法。 2. 熟练变频器的功能参数设置。 3. 熟练掌握变频器的正反转、点动、频率调节方法。 任务引入: 变频器MM440系列(MicroMaster440)是德国西门子公司广泛应用与工业场合的多功能标准变频器。它采用高性能的矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,以满足广泛的应用场合。对于变频器的应用,必须首先熟练对变频器的面板操作,以及根据实际应用,对变频器的各种功能参数进行设置。 相关知识点: 一.变频器面板的操作 利用变频器的操作面板和相关参数设置,即可实现对变频器的某些基本操作如正反转、点动等运行。变频器面板的介绍及按键功能说明详见本书任务1.4变频器的调试,具体参数号和相应功能参照系统手册。 二.基本操作面板修改设置参数的方法 MM440在缺省设置时,用BOP控制电动机的功能是被禁止的。如果要用BOP 进行控制,参数P0700应设置为1,参数P1000 也应设置为1。用基本操作面板(BOP)可以修改任何一个参数。修改参数的数值时,BOP有时会显示“busy”,表明变频器正忙于处理优先级更高的任务。下面就以设置P1000=1的过程为例,来介绍通过基本操作面板(BOP)修改设置参数的流程,见表2-1。 表2-1 基本操作面板(BOP)修改设置参数流程 键,访问参数 键,直到显示 键,直到显示

键,显示当前值 键,达到所要求的值 键,存储当前设置 键,显示 键,显示频率 任务训练 : 一、训练内容 通过变频器操作面板对电动机的启动、正反转、点动、调速控制。 二、训练工具、材料和设备 西门子MM440变频器、小型三相异步电动机、电气控制柜、电工工具(1套)、连接导线若干等。 三、操作方法和步骤 1.按要求接线 系统接线如图2-1所示,检查电路正确无误后, 合上主电源开关QS 。 图2-1 变频调速系统电气图 2.参数设置 (1)设定P0010=30和P0970=1,按下P 键,开始复位,复位过程大约3min ,这样就可保证变频器的参数回复到工厂默认值。 (2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。电动机参数设置见表2-2。电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。 表2-2 电动机参数设置

计算机控制实验报告4(电机调速实验)

班级:座号:姓名成绩: 课程名称:计算机控制技术实验项目:电机调速实验 实验预习报告(上课前完成) 一、实验目的 1.了解直流电机调速系统的特点。 2.研究采样周期T对系统特性的影响。 3.研究电机调速系统PID控制器的参数的整定方法。 二、实验仪器 1.EL-AT-II型计算机控制系统实验箱一台 2.PC计算机一台 3.直流电机控制实验对象一台 三、控制的基本原理 1.系统结构图示于图8-1。 图8-1 系统结构图 图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e-TS)/s Gp(s)=1/(Ts+1) 2.系统的基本工作原理 整个电机调速系统由两大部分组成,第一部分由计算机和A/D&D/A卡组成,主要完成速度采集、PID运算、产生控制电枢电压的控制电压,第二部分由传感器信号整形,控制电压功率放大等组成。电机速度控制的基本原理是:通过D/A输出-2.5v~+2.5v的电压控制7812的输出,以达到控制直流电机电枢电压的目的。速度采集由一对红外发射、接收管完成,接收管输出脉冲的间隔反应了电机的转速。

第二部分电路原理图 3.PID递推算法: 如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:Uk=Kpek+Kiek2+Kd(ek-ek-1) 其ek2是误差累积和。 四、实验内容: 1、设定电机的速度在一恒定值。 2、调整P、I、D各参数观察对其有何影响。 五、实验步骤 1.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 3. 20芯的扁平电缆连接实验箱和炉温控制对象,检查无误后,接通实验箱电源。 开环控制 4.选中[实验课题→电机调速实验→开环控制实验]菜单项,鼠标单击将弹出参数设置窗口。在参数设置窗口设置给定电压,及电机控制对象的给定转速,点击确认在观察窗口观

电脑产品可靠性试验作业指导书

作 业 指 导 书 WORK INSTRUCTION 文件名称: Doc. Name Fujitsu 产品可靠性试验作业指 导书 Fujitsu’s Product Reliability Test WI 文件编号: Doc. No. WI/750/050 拟制部门: RTC 版 号: A/0

5.1 试验后,产品的外观和功能应正常,样品应无异音. 5.2 试验前、后,样品的灵敏度变化须小于3dB. 6 参考文件 《Fujitsu可靠性试验项目》客户数据 7 记录保存年限 《RTC试验报告》750PR002 3年 二. 低温(带操作)试验 1 目的 评价产品在低温条件下使用和贮存的可靠性. 2 适用范围 适用于中名(东莞)电子有限公司生产的Fujitsu计算机音箱产品. 3 试验设备 冰箱、噪音发生器. 4 试验步骤 4.1 环境条件:温度:15℃~30℃,相对湿度:35%~80%. 4.2 取1对(或以上)无包装的合格样品. 4.3 将样品(工作状态下)放入冰箱内(温度:0°C),8小时后,取出样品,在室温下放置1小时. 4.4 试验后,检查样品的外观和功能. 5 质量要求 5.1 试验后,产品的外观和功能应正常,样品应无异音. 5.2 试验前、后,样品的灵敏度变化须小于3dB. 6 参考文件 《Fujitsu可靠性试验项目》客户数据 7 记录保存年限 《RTC试验报告》750PR002 3年 三. 高温高湿(带操作)试验 1 目的 评价产品在高温高湿条件下使用和贮存的可靠性,并确认胶脚(c ushion)是否影响涂装面(产品如有胶脚(c ushion)贴在涂装面上时). 2 适用范围 适用于中名(东莞)电子有限公司生产的Fujitsu计算机音箱产品. 3 试验设备 恒湿恒湿试验箱、噪音发生器 4 试验步骤 4.1 环境条件:温度:15℃~30℃,相对湿度:35%~80%. 4.2 取1对(或以上)无包装的合格样品.

交直流调速实验指导书

交直流调速实验指导书 王兵编写 肖伸平审核 湖南工业大学电气与信息工程学院 2008年8月

目录 实验一晶闸管直流调速系统各主要单元的调试1实验二电压单闭环不可逆直流调速系统调试4实验三带电流截止负反馈的转速单闭环直流调速系统调试8实验四电压、电流双闭环不可逆直流调速系统调试12实验五转速、电流双闭环不可逆直流调速系统调试16实验六模拟式直流调速装置514C实验21实验七数字式直流调速装置6RA70实验23实验八交流调速装置MM420实验27实验九矢量控制交流调速装置(CUVC)单机实验32十附件35 THWPGZ-2型网络型高级维修电工技能实训智能考核装置简介35

实验一晶闸管直流调速系统各主要单元的调试 一、实验目的 (1) 熟悉直流调速系统各主要单元部件的工作原理。 (2) 掌握直流调速系统各主要单元部件的调试步骤和方法。 二、实验所需挂件及附件 三、实验内容 (1)调节器Ⅰ的调试 (2)调节器Ⅱ的调试 (3)反号器的调试 (4)零电平检测的调试 (5)转矩极性鉴别的调试 (6)逻辑控制的调试 四、实验方法 (1)“调节器Ⅰ”的调试 ①调零 将PMT-04中“调节器Ⅰ”所有输入端接地,再将比例增益调节电位器RP1顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅰ“7”端的输出,使调节器的输出电压尽可能接近于零。 ②调整输出正、负限幅值 把“5”、“6” 两端短接线去掉,此时调节器Ⅰ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅰ的“3”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。 ③测定输入输出特性 再将反馈网络中的电容短接(将“5”、“6”端短接),使调节器Ⅰ为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压,测出相应的输出电压,直至输出限幅,并画出曲线。

机车电传动及控制实验指导书190070

机车电传动及控制实验指导书 2006、12-27

交流调速SPWM变频电路及电压频率控制输出特性 「、实验目的 1、了解单相全桥逆变电路的工作原理及正弦波脉宽调制(SPWM调频、调压的工作原理 2、了解单相异步电动机变频调速的原理及异步电动机变频调速的基本参数、V/F曲线 3、掌握三相异步电动机交流调速(SPWM的基本原理和实现方法 1、实验设备 1、电力电子实验台(主机) 2、RTDJ41单相电容运转电动机(挂箱) 3、RTDJ10可调电阻器(挂箱) 4、RTDL17单相异步电动机SPW变频调节箱(挂箱) 5、RTDL14-2A三相异步电机变频调速系统(挂箱) 6、R TDJ37线绕式异步电机转子专用箱; 7、RTDJ36三相线绕式异步电机(△接法); 8、测试转接盒; 9、根据自己的方案需要的实验设备。 10、双踪示波器 11 、万用表 三、实验原理 3E -弋 *

图2、三相SPWM 变频调速 图1和图2所示分别为单相和三相 SPWI 变频调速的主电路。单相异步电动机变频调速原理与三 相异步电动机基本相同,下面以三相异步电动机的调速原理来说明,由电机学可知,电机的转速表 达式为: 60 f , n - (1 一 s ) = n 。(1 一 s ) P 其中fi 为定子供电频率;P 为电机的磁极对数;S 为转差率,由上式可知改变定子供电频率 fl 可以改变电机的同步转速,从而实现了在转差率 S 保持不变情况下的转速调节,为了保持电机的最 大转矩不变,必须维持电机气隙磁通恒定,因而要求定子供电电压也随频率作相应调整。即 E^4.44f 1N 1K N1 ESN E 图3、异步电动机变频调速的控制特性 四、实验内容 1、 构建交流调速SPW M :频电路,研究SPW 碉制的发生原理,测定与SPW 碉制有关的各种波形; 2、 研究比较在不同的 U/f 1比值下系统的特性。 五、实验方法 1按下实验台主电源电路面板上的启动按钮,打开 RTDL17挂箱的电源开关,通过频率设定按钮 在忽略定子阻抗压降的情况下, E 1 U 1,所以 其中, 1 c = 4.44N 1K N 为常数。 为使气隙磁通恒定,在改变定子频率的同时必须同时改变电压 似的恒磁通调速。 U ,即5二const 。从而实现近 f 1 在额定频率以上调速时, 定子电压不可能再与频率成正比地升高, 只能保持在额定值,即U=U N , 此时气隙磁通0随着频率f 1的升高反而比例下降,这一段可看作近似恒功率调速。 U 1 f 1N f 1

实验(1)PWM电机调速实验报告

PWM电机调速 班级:09应电(5)班 姓名: 学号:0906020122 指导老师 时间:2011年10月20日

目录 一、实验名称 (2) 二、实验设计的目的和要求 (2) 三、预习要求 (2) 四、电路原理图 (4) 五、电路工作原理 (4) 六、 PCB图 (5) 七、实验结果 (6) · 八、实验中出现的问题以及解决方法 (13) 九、实验心得 (13) 十、参考文献 (14) 十一、元件清单 (14)

一、实验名称:PWM电机调速 二、实验设计的目的和要求 1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽; 2)掌握脉宽调制PWM控制模式; 3)掌握电子系统的一般设计方法; 4)培养综合应用所学知识来指导实践的能力; 5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。 三、预习要求 3.1关于LM339器件的特点和一些参数 图3-1 LM339管脚分配图 1)电压失调小,一般是2mV; 2)共模范围非常大,为0v到电源电压减1.5v; 3)他对比较信号源的内阻限制很宽; 4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 5)输出端电位可灵活方便地选用; 6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形 1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波 图3-2 锯齿波 2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽 图3-3 脉冲波(pwm) 3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的 4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护

可靠性试验管理规范(含表格)

可靠性试验管理规范 (IATF16949-2016/ISO9001-2015) 1.0目的: 为规范可靠性试验作业流程,保证出货产品的质量满足客户的需求,特制定本检查指引。 2.0适用范围: 适用制造中心生产的所有机顶盒试验及其他客户所要求试验的产品。 3.0名词定义: 无 4.0职责: 品保课负责落实本指引规定相关事宜,各相关部门配合执行。 5.0作业内容: 5.1 试验要求与标准不同客户的产品要求与标准都有差别,具体选择参照不同客户的要求与标准执行。 5.2 试验项目: 5.2.1高温老化试验: 试验员对量产的机顶盒进行高温老化试验,具体操作与标准请参照《高温老化作业指导书》执行;并将结果记录与【高温老化报表】中。如在老化过程中出现不良现象需及时反馈到QE和工程人员分析并记录与【可靠性试验不合格分析改善报告】。 5.2.2 高低压开关冲击试验:

1)试验前,将接触调压器电源根据试验要求进行电压调整; 2)每个产品根据机型电压范围,在90V、135V、260V各电压段每4分钟切换一次电压,通电3分钟,再断电1分钟,冲击时间至少1小时。具体操作与标准请参照《高低压开关状态试验作业指导书》执行,并将试验结果记录在【高低压开关状态试验报表】中。如在试验过程中出现不良现象需及时反馈到QE和程人员分析并记录与【可靠性试验不合格分析改善报告】。 3)每天对高低压冲击仪器的输出高、中、低电压用万用表进行电压点检,并将点检结果记录在【高低压冲击电压点检表】。 5.2.3 模拟运输振动试验: 将QA抽检后的产品按每天订单量的2%进行振动试验,具体操作与标准请参照《模拟运输振动作业指导书》执行,并将试验结果记录在【模拟运输振动测试报表】中。如在测试过程中出现不良现象需及时反馈到QE和工程人员分析并记录与【可靠性试验不合格分析改善报告】 5.2.4 恒温恒湿试验: 将QA抽检后的产品按每个订单量抽取5台进行高、低温试验,具体操作与标准请参照《恒温恒湿作业指导书》执行,并将试验结果记录在【恒温恒湿测试报表】中。如在测试过程中出现不良现象需及时反馈到QE和工程人员分析并记录与【可靠性试验不合格分析改善报告】 5.2.5 跌落试验: 将QA抽检报的产品均需做一角三梭六面跌落试验,跌落试验的数量至少为1箱,具体操作与标准请参照【跌落试验作业指导书】执行,并将试验结果记录在【跌落测试报告】中。如在测试后出现不良现象需及时反馈到QE和工程人员

MM420变频器实验指导书

实验一 MM420变频器的快速调试 一、实验目的 1.掌握MM420变频器基本参数输入的方法。 2.掌握MM420变频器参数恢复为出厂默认值的方法。 3.掌握快速调试的内容及方法。 4. 设置电动机参数 三、实验内容 1.变频器基本操作面板 变频器基本操作面板(BOP )如图1所示。BOP 可以显 示参数的序号和数值,报警和故障信息,以及设定值和 实际值。基本操作面板BOP 上的按钮功能如表1所示: 表1基本操作面板BOP 上的按钮功能图1变频器基本操作面板(BOP ) 起动变 频器 停止变频器 改变电动机的转动方向 电动机点动

2.用基本操作面板(BOP )更改参数的数值 MM420变频器参数有两种,p 参数是可以更改的, R 参数是只读的,有的R 参数是在变频器上可以读出。有的是2进制的形式。在电脑上用软件可以读出。下面说明如何改变P0003“访问级”的数值。操作步骤见表2-1。 表2-1 修改访问级参数P0003的步骤 操作步骤 显示结果 1.按 访问参数 2. 按 键,直到显示出 P0003 3.按 键,进入参数访问级 4. 或键,达到所要求的数值(例如:3) 5. 键,确认并存储参数的数值

为了快速修改参数的数值,可以一个个地单独修改显示出的每个数字,操作步骤如下: 当已处于某一参数数值的访问级(参看“用BOP 修改参数”)。 (1)按(功能键),最右边的一个数字闪烁。 (2)按/,修改这位数字的数值。 (3)再按(功能键),相邻的下一位数字闪烁。 (4)执行2 至4 步 直到显示出所要求的数值。 (5)按,退出参数数值的访问级。 4.恢复变频器工厂默认值。设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约为3min,这样就保证了变频器的参数恢复到工厂默认值。 5.快速调试(P0010=1) 利用快速调试功能使变频器与实际使用的电动机参数相匹配,并对重要的技术参数进行设定。 在快速调试的各个步骤都完成以后,应选定P3900,如果它置1,将执行必要的电动机计算,并使其他所有的参数(P0010=1 不包括在内)恢复为出厂默认设置值。 只有在快速调试方式下才进行这一操作。快速调试的操作步骤如表2-2所示。 表2-2 快速调试步骤 根据电动机铭牌键入的电动机的额 定电压(V) 根据电动机铭牌键入的电动机额定 电流(A)

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

可靠性测试规范

手机可靠性测试规范 1. 目的 此可靠性测试检验规范的目的是尽可能地挖掘由设计,制造或机构部件所引发的机构部分潜在性问题,在正式生产之前寻找改善方法并解决上述问题点,为正式生产在产品质量上做必要的报证。 2. 范围 本规范仅适用于CECT通信科技有限责任公司手机电气特性测试。 3. 定义 UUT (Unit Under Test) 被测试手机 EVT (Engineering Verification Test) 工程验证测试 DVT (Design Verification Test) 设计验证测试 PVT (Product Verification Test) 生产验证测试 4. 引用文件 GB/T2423.17-2001 盐雾测试方法 GB/T 2423.1-2001 电工电子产品环境试验(试验Ab:低温) GB/T 2423.2-1995 电工电子产品环境试验(试验Bb:高温) GB/T 2423.3-1993 电工电子产品环境试验(试验Ca:恒定湿热) GB/T 2423.8-1995 电工电子产品环境试验(自由跌落) GB/T 2423.11-1997 电工电子产品环境试验(试验Fd: 宽频带随机振动) GB 3873-83 通信设备产品包装通用技术条件 《手机成品检验标准》XXX公司作业指导书 5. 测试样品需求数 总的样品需求为12pcs。 6. 测试项目及要求 6.1 初始化测试 在实验前都首先需要进行初始化测试,以保证UUT没有存在外观上的不良。如果碰到功能上的不良则需要先记录然后开始试验。在实验后也要进行初始化测试,检验经过实验是否造成不良。具体测试请参见《手机成品检验标准》。 6.2 机械应力测试 6.2.1 正弦振动测试 测试样品: 2 台

调速器试验指导书DOC

调速器试验指导书 目录 1概述1 2依据标准1 3调速系统模型及基本参数2 4测试仪器3 5试验准备3 6试验内容及方法4 6.1静态试验4 6.1.1试验条件 (4) 6.1.2控制方式切换试验 (4) 6.1.3机频断线模拟试验 (5) 6.1.4静特性试验 (5) 6.1.5永态转差系数bp校验 (6) 6.1.6人工频率死区校验 (8) 6.1.7PID调节参数(bt、Td)的校验 (9) 6.1.8PID调节参数(Tn)的校验 (10) 6.1.9接力器最短关闭与开启时间测定 (11) 6.1.10接力器反应时间常数Ty测定 (12) 6.2空载试验13 6.3负载试验14 6.3.1试验条件 (14) 6.3.2一次调频响应时间测试 (14) 6.3.3一次调频动作死区测试 (15) 6.3.4跟踪网频试验 (16) 6.3.5甩负荷试验 (17) 7试验组织与分工17 8试验安全措施及安全注意事项18 9试验计划时间及参加人员19

1概述 为保证电网及发电机组安全运行,使并网运行机组随时适应电网负荷和频率的变化,提高电能质量及电网频率的控制水平,就必须充分发挥发电机组一次调频能力,依照《南方区域电厂并网运行管理若干指导意见》和《****发电机组一次调频运行管理规定(试行)》(以下简称为《规定》)的要求,并根据《DL/T496-2001水轮机电液调节系统及装置调整试验导则》等相关标准,通过对****1号机组进行一次调频试验,检验机组一次调频功能,并在确保机组安全稳定运行的前提下,优化一次调频运行参数,以满足系统对其一次调频性能的要求,同时进行参数辨识研究试验,建立与实际调节系统相吻合的仿真模型,满足电力系统稳定计算的要求。 通过现场试验达到《规定》中所要求的一次调频试验机组应该达到的技术指标如下:1)机组一次调频的频率死区控制在±0.034Hz以内; 2)机组的永态转差率一般为3%~4%; 3)水电机组参与一次调频的负荷调整幅度不应加以限制; 4)AGC与一次调频能够协调工作,不相矛盾; 5)机组调速器转速死区小于0.04%; 6)响应行为: ①本电站属于额定水头在50米及以上的水电机组,按规定其一次调频负荷响应滞后时间应小于3s; ②当电网频率变化超过机组一次调频死区时,机组一次调频的负荷调整幅度应在45s 内达到一次调频的最大负荷调整幅度的70%; ③在电网频率变化超过机组一次调频死区时开始的60秒内,机组实际出力与机组响应目标偏差的平均值应在理论计算的调整幅度±3%以内。 2依据标准 2.1《水轮机电液调节系统及装置调整试验导则》(DL/T496-2001) 2.2《水轮机电液调节系统及装置技术规程》(DL/T563-2004) 2.3《水轮机调速器与油压装置技术条件》(GB/T 9652.1-2007) 2.4《水轮机调速器与油压装置试验验收规程》(GB/T 9652.2-2007) 2.5《中国南方电网同步发电机原动机及调节系统参数测试与建模导则》(Q/CSG 11402-2009) 3调速系统模型及基本参数 1)PID调节器 图1 PID调节器仿真模型 2)机械液压系统模型

可编程控制器实验指导书

可编程序控制器实验系统 实验指导书 华中科技大学文华学院机电一体化实验室

目录 实验一三相异步电动机启停控制实验 (1) 实验二PLC控制三相异步电动机正反转实验 (4) 实验三PLC控制三相异步电动机变频调速实验 (8) 实验四PLC顺控程序设计及调试实验 (15) 实验五PC与PLC串行通信程序设计与调试实验 (18)

实验一 三相异步电动机启停控制实验 一、实验目的 1.进一步学习和掌握接触器以及其它保护电器的结构、工作原理和使用方法; 2.通过三相异步电动机的启、停控制电路的实验,进一步学习和掌握接触器控制电路的结构和工作原理。 二、实验原理 图1.1为三相异步电动机的继电器-接触器基本启停控制电路,左边部分为主回路,右边部分为控制回路。 M 3~ ~380V QG FU KM FR L KM KM 图1.1 三相异步电动机直接启停控制电路 图中: QG ——刀开关,电源开关; FU ——熔断器,电路的基本保护之一,短路保护; FR ——热继电器,电路的基本保护之二,过载保护; KM ——接触器,是三相异步电动机起停控制的主要电器,控制回路控制线圈的得电或失电,从而控制主触头闭合或断开,使电动机接通电源运行或断开电源停止。 SB1——启动按钮; SB2——停止按钮。

电路的基本工作原理:首先合上刀开关QG ,再按下启动按钮SB1,KM线圈得电并自锁,主触头闭合,电动机接通电源运行。按下停止按钮SB2,KM线圈失电,主触头断开,电动机断电停止。 三、实验步骤 实验电路如图1.2所示。图中QF5为断路器,它集刀开关、熔断器和热继电器的功能于一体,在电路中起电源开关、短路保护、过载保护以及欠压保护的作用。电路中控制的交流电动机M为主轴电动机,因此,电动机运行时,主轴旋转。 1.在操作面板上找到交流电源、交流电机、接触器KM5以及操作按钮“启动”、“停止”所对应的接线端子; 2.在未通电的情况下,按图1.2完成控制电路的接线(为了安全起见,虚线外的连线已接好); 图1.2 三相异步电动机直接启停控制电路接线图 3.经老师检查认可后进行下面操作; 4.合上电源开关,观察电动机和接触器的工作状态; 5.按下操作控制面板上“启动”按钮,观察接触器和电动机的工作状态;

控制步进电机调速系统实验报告

华北科技学院计算机系综合性实验 实验报告 课程名称微机原理及应用 实验学期 2011 至 2012 学年第二学期学生所在系部电子信息工程学院 年级 2009 专业班级 学生姓名学号 任课教师 实验成绩 计算机系制

《微机原理及应用》课程综合性实验报告 开课实验室:计算机接口实验室2012年5月29日 实验题目微机控制步进电机调速系统 一、实验目的 1、了解计算机控制步进电机原理 2、掌握步进电机正转反转设置方法 3、掌握步进电机调速工作原理及程序控制原理 二、设备与环境 TPC-2003A 微机。 Vc++编译器。 三、实验内容 硬件接线图参考实验指导书。 软件编程在TPC-2003A自带的VC++编译环境下使用。 在通用VC++下编程,需要拷贝相关的库文件。 用汇编语言编写控制程序需注明原理。 四、实验结果及分析 1、实验步骤 1、按如下实验原理图连接线路,利用8255输出脉冲序列,开关K0~K6控制步进电机转速,K7控制步进电机转向。8255 CS接288H~28FH。PC0~PC3接BA~BD;PA口接逻辑电平开关。 2、编程:当K0~K6中某一开关为“1”(向上拨)时步进电机启动。K7向上拨电机正转,向下拨电机反转。 实验原理图

2.实验结果 按照实验步骤连接实验电路,检查无误后运行程序。可以看到,当开关k0到k6依次为高电平时,电机转速越来越慢,k0闭合时速度最快,k6闭合时速度最慢,当k0到k6的低位有闭合时,步进电机按最低位的转速运行,因为程序中的查询方式是从k0-k6,即在程序的优先级别中k0的级别是最高的而k7的优先级别是最低的。k7控制电机的正转与反转。 3.实验分析 (1)步进电机的工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。驱动 电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 如图(b)所示:本实验使用的步进电机用直流+5V 电压,每相电流为0.16A,电机线圈 由四相组成:即: φ1(BA) φ2(BB) Φ3(BC) Φ4(BD) 驱动方式为二相激磁方式,各线圈通电顺序如下表所示。图(b) 表中首先向φ1 线圈-φ2 线圈输入驱动电流,接着φ2-φ3,φ3-φ4,φ4-φ1,又返回到φ1-φ2,按这种顺序切换,电机轴按顺时针方向旋转。 实验可通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度。

《电力拖动自动控制系统》实验指导书(自编)

《电力拖动自动控制系统》 实验指导书 张寿明 昆明理工大学信自学院自动化系 2012年9月

目录 实验须知 实验一双闭环不可逆直流调速系统调试 实验二双闭环不可逆直流调速系统的静特性研究 实验三双闭环不可逆直流调速系统的动特性研究 实验四逻辑无环流可逆直流调速系统实验 实验五矢量坐标变换仿真 实验六转差频率控制的交流异步电动机矢量控制系统仿真实验七无速度传感器的矢量控制系统仿真 附录1双闭环不可逆直流调速系统原理图及所需挂件 附录2逻辑无环流直流可逆调速系统原理图及所需挂件

实验须知 实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生必须认真对待实验课,要求做到: 一、实验前预习,要求: 1、了解所有实验系统的工作原理 2、明确实验目的,各项实验内容、步骤和做法 3、拟定实验操作步骤,画出实验记录表格等。 二、实验中认真、要求: 1、熟知所有设备,认真按实验要求,有步骤地进行各项内容的实验。 2、测试前,必须熟悉仪器、仪表的使用,注意量程。 3、认真记录测试数据和波形。 4、不许带电操作,每次更换线路时,必须断点进行操作,通电前,必 须经指导老师检查,方可合闸。 5、同组同学,必须相互配合,共同完成实验任务。 三、实验后认真写实验报告 1、整理各项实验数据,列成表格,按要求绘制有关曲线,进行分析比 较。 2、记录和分析实验中的各种现象。 四、实验装置 自动控制系统实验全部在DJDK-Ⅱ型装置上进行。详见“DJDK-Ⅱ实验装置简介”。

MM440变频器实训指导书

目录 概述 (2) 实验一变频功能参数设置与操作 (4) 实验二变频器报警与保护功能 (7) 实验三外部端子基本调速 (9) 实验四操作面板(BOP)基本调速 (12) 实验五 PLC控制电机正反转 (14) 实验六 PLC控制多段调速 (15) 实验七 PLC控制模拟量调速 (17) 实验八 PLC与触摸屏通讯控制 (20) 实验九 PLC、变频器和触摸屏的通讯实训 (26) 实验十 PLC、变频器和触摸屏综合实训 (29)

概述 一.简介 MICROMASTER 440是用于控制三相交流电动机速度的变频器系列。本系列有多种型号,额定功率围从120W到200KW(恒定转矩(CT)控制方式),或者可达250KW(可变转矩(VT)控制方式),供用户选用。 本变频器由微处理器控制,并采用具有很高现代先进技术水平的绝缘栅双极型晶体管(IGBT)作为功率输出器件。因此,它们具有很高的运行可靠性和功能的多样性。其脉冲宽度调制的开关频率是可选的,因而降低了因而降低了电动机运行的噪声。全面而完善的保护功能为变频器和电动机提供了良好的保护。 MICROMASTER 440具有缺省的工厂设置参数,它是给数量众多的简单的电动机控制系统供电的理想变频驱动装置。由于MICROMASTER 440具有全面而完善的控制功能,在设置相关参数以后,它也可用于更高级的 电动机控制系统 MICROMASTER 440即可用于单机驱动系统,也可集成到‘自动化系统’中。 二.特点 主要特性 ·易于安装,参数设置和调试 ·易于调试 ·牢固的EMC设计 ·可由IT(中型点不接地)电源供电 ·对控制信号的响应是快速和可重复的 ·参数设置的围很广,确保它可对广泛的应用对象进行配置 ·电缆连接简便 ·具有多个继电器输出 ·具有多个模拟量输出(0-20mA) ·6个带隔离的数字输入,并可切换为NPN/PNP接线 ·2个模拟量输入: AIN1:0-10V,0-20mA,-10-10V AIN1:0-10V,0-20mA ·2个模拟输入可以作为第7和第8个数字输入 ·BiCo(二进制互联连接)技术 ·模块化设计,配置非常灵活 ·脉宽调制的频率高,因而电动机运行的噪声低

相关主题
文本预览
相关文档 最新文档