当前位置:文档之家› 酰化反应原理与实例解析

酰化反应原理与实例解析

酰化反应原理与实例解析
酰化反应原理与实例解析

第四章酰化技术

本章教学设计

工作任务

通过本章的学习及本课程实训,完成以下三个方面的工作任务:

1、围绕典型产品的生产过程,完成以羧酸、羧酸酯为酰化剂制备酰胺类产品;

2、围绕典型药品生产过程,完成以酸酐、酰氯为酰化剂生产酰胺类产品;

3、围绕典型药物的生产过程,完成用羧酸法、酯交换法、酸酐法、酰氯法生产酯类产品。

学习目标

1、掌握羧酸、羧酸酯、酸酐、酰氯酰化剂的特点、适用范围、使用条件及其N-酰化、酯化中的应用;

2、掌握根据不同的被酰化物,正确选择酰化剂、反应条件的方法;

3、掌握生产中操作及注意事项;

4、掌握Friedel-Crafts酰化反应的基本原理、影响因素以及在药物合成中的应用,在生产中的应用及注意事项

5、理解Hoesch反应、Gattermann反应、Vilsmeier反应的用途、适用条件及在药物合成中的应用;

6、掌握活性亚甲基化合物α位C-酰化的原理、使用条件及在药物合成中的应用;

7、了解新型酰化剂及其在医药科研、生产中的新技术与应用

学时安排

课堂教学10学时

现场教学6学时

实训项目

项目一:对氯苯甲酰苯甲酸的制备

项目二:扑热息痛的制备

项目三:草酸二乙酯的制备

学习目标

● 掌握羧酸酰化剂、羧酸酯酰化剂的特点、适用范围、使用条件及其N-酰化中的应用; ● 掌握根据不同的被酰化物,正确选择酰化剂、反应条件的方法。 ● 掌握生产中操作及注意事项

● 了解新型酰化剂及其在医药科研、生产中的新技术与应用

第四章 酰化技术

第一节 概述

一、酰化反应 1. 概念

酰化反应就是指有机物分子中与氧、氮、碳、硫等原子相连的氢被酰基取代的反应。酰基 就是指从含氧的有机酸、无机酸或磺酸等分子中脱去羟基后所剩余的基团。 2. 反应通式

R

Z

O

R S

O

H

Z

(式中RCOZ 为酰化剂,Z 代表X,OCOR,OH,OR ˊ,NHR ″等;SH 为被酰化物,S 代表R ˊO 、R ″、Ar 等。)二、常用酰化剂及其活性

★1.常用酰化剂:羧酸、羧酸酯、酸酐、酰氯等酰化剂的活性规律:当酰化剂(RCOZ)中R 基相同时,其酰化能力随Z —的离去能力增大而增加(即酰化剂的酰化能力随离去基团的稳定性增加而增大)★常用酰化试剂的酰化能力强弱顺序:酰氯 >酸酐 > 羧酸酯 > 羧酸 > 酰胺

三、酰化反应在化学制药中的应用

永久性酰化 制备含有某些官能团的药物 保护性酰化

第二节 N-酰化

常用酰化剂:羧酸酰化剂、羧酸酯酰化剂、酸酐酰化剂与酰氯酰化剂 一、羧酸酰化剂 1、反应过程

R C NR'R''

O R C L O NR'R''

R C L

O R'R''NH

H HL

_

★2、适用对象 羧酸就是弱的酰化试剂,一般适用于酰化活性较强的胺类。 3、反应条件及催化剂 (1)反应条件

酸过量 为了加速反应,并使反应向生成酰胺的方向移动,必须使反应物之一过量,通常就是

酸过量。

脱水 可用以下方法脱水

高温熔融脱水酰化法 适用于稳定铵盐的脱水,例如苯甲酸与苯胺加热到225℃进行脱水,

可制得N-苯甲酰苯胺。

反应精馏脱水法 主要用于乙酸与芳胺的N-酰化,例如,将乙酸与苯胺加热至沸腾,用蒸馏

法先蒸出含水乙酸,然后减压蒸出多余的乙酸,即可得N-乙酰苯胺。

溶剂共沸脱水法 主要用于甲酸(沸点100.8℃)与芳胺的N-酰化反应。 (以上方法大多在较高温度下进行,因此,不适合热敏性酸或胺) (2)催化剂

强酸作催化剂 适用于活性较强的胺类的酰化

缩合剂作催化剂 适用于活性弱的胺类、热敏性的酸或胺类 常用的此类缩合剂有

★DCC (Dicyclohexylcarbodiimide,二环己基碳二亚胺) DIC (Diisopropyl Carbodiimide,二异丙基碳二亚胺)等。

DCC 就是一个良好的脱水剂,以DCC 作脱水剂用羧酸直接酰化,条件温与,收率高,在复杂结构的酰胺、半合成抗生素及多肽的合成中有较多的应用。

CH 2OCONHCH 2COOH

HO

CH 2CHCOOC 2H 5NH 2

DCC/HTF

HO

CH 2CHCOOC 2H 5

NHCOCH 2NHCOOCH 2

(83%)

r.t.

H (27)

NH

Ph 3C NH Ph 3C CH

C

O (67%)

DCC

N

S CH 3

CH 3

COOCH 2Ph

N S CH 3

CH 3

COOCH 2Ph

O

核电站工作原理

核电站工作原理 它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。 核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。 主泵如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。 稳压器又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。 蒸汽发生器它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。 安全壳用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一般是内衬钢板的预应力混凝土厚壁容器。 汽轮机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。 危急冷却系统为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。 注: 核裂变是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

歧化反应系统

一.歧化与烷基转移反应的目 利用甲苯和碳九芳烃进行歧化和烷基转移反应,生成有市场利用价值的产品苯和混合二甲苯,从而有效的避免了甲苯和碳九芳烃作为低值的副产品调入汽油或燃料油系统,提高了甲苯和碳九芳烃的有效利用率。 二. 惠州歧化-烷基转移单元简介 歧化单元采用Exxon Mobil 的Transplus 技术将在EM-1000催化剂作用下甲苯、C9及部分C10芳烃转化为二甲苯(接近平衡率)和苯的平衡混合物,同时产生少量的C 5-气体和C 10+芳烃; C9/C10芳烃分离塔处理来自二甲苯分馏部分的物料,分离出C9/C10馏份作为歧化反应进料。 ● 物料组成 现阶段进料组成C7-芳烃自芳烃抽提部分110 t/h ,C9+芳烃自二甲苯分馏部分125 t/h ,甲苯自吸附分离部分1t/h 。 ● 歧化与烷基转移反应的化学反应方程式 主化学反应 1)歧化反应 CH 3 2 + CH 3 CH 3 2)烷基转移反应 + 2CH 3 CH3 (CH3)2 CH3 CH3 副反应

1)歧化反应 CH3 CH3 CH3CH3 CH3CH3 ( ) 22 + ( ) 3 2)加氢脱烷基反应 CH 4 +H 2 + CH3 C H 25 ++ C H 6 22 H C H + +C H 7 338 2 H 26 C H + +5 2C H CH 3 CH 3 2 H 3)(CH 3 CH 3+ + C H 2CH 3CH 3 ()4 H 2 CH 3 CH 3 + H 2 + 73C H C H 38 3)环损失反应应 芳烃 + H2 → 饱和烃

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

反馈控制

反馈控制 摘要:反馈控制是控制论中的灵魂,在我们的现实生活中,反馈控制的应用也是无处不在的。小到日常生活用品,大到人的思想、行为、我们赖以生存的环境都处在反馈控制体系中。关键词:反馈控制日常生活物极必反、盛极必衰自身与反馈 一、基本概念 反馈泛指发出的事物返回发出的起始点并产生影响,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。 任何控制系统都是由施控和受控两个子系统所构成。由于干扰信息的作用,受控系统的输出状态往往会偏离目标,由此形成的偏差信息恰是反馈控制的依据。反馈控制原理描述为:施控系统把依据偏差信息调整后的输入信息转换为控制信息,控制信息作用于受控系统后产生的结果通过反馈通道被返送到原输入端,并对信息的再输入产生影响,从而减少或消除系统偏差,使受控系统的运行状态维持在一个给定(或容许)的偏差范围内,以此提高受控系统运行过程中的稳定性,实现受控系统的行为、活动、功能和结果的理想化。其中,施控系统施加控制作用,接收反馈信息;而受控系统接受控制作用,提供反馈信息。从施控系统到受控系统是传递信息的正向通道,反过来为反向通道,它们一起构成了闭环反馈控制系统。 在控制系统中我们的首要任务是保证系统的稳定性,这恰恰是反馈系统在起作用;在现实生活中,我们更是要求我们的社会能达到一种稳定和谐的局面,因此,“反馈”在我们的生活中起到的作用是我们不能忽视的。 二、反馈在日常生活中的应用 冰箱是现在家家户户都能使用到的电器之一,而我们所学到的反馈原理在这普通的生活用品中就能体现出来。我们使用冰箱制冷,由于外界温度较高,冰箱向外界释放热量,冰箱内温度会朝着我们制定的度数降低,而外壳温度会越来越高,一段时间后,当冰箱内的温 度达到所设置的度数后,冰箱会进行自动调节,让温度不再进一步地降低。这便是反馈调节。还有洗衣机,这也是我们现代人不可或缺的生活用品,我们在家里使用洗衣机时会设置一个注水量,启动机器后,水开始注入机桶,在未达到注水量前,机器会产生动力驱动水位上升,然而水位上升至设置量后,反馈调节便开始了,洗衣机停止注水工作。只要用一双发现在眼睛去看生活,我们所学习到的书本知识在现实生活中的应用无处不在。 三、自身与反馈 在反馈控制中,我们遇到的调节活动输出的反馈信息与原输入信息的关系常常分为两种:一种是反馈信息与原输出信息相同,另一种则是在二者之间存在一种相反的作用,而后者实际上是一种负反馈现象。在我们的生活中,常常会出现一些实际结果与我们预期的结果大相径庭的事,比如我们现在找工作。有的同学很优秀,成绩很好,还是学生干部,在学校的时候年年都能评优秀,在找工作的时候这些学生理所当然的很占优势,可是有的时候结果

自身氧化还原反应与歧化反应

自身氧化还原反应与歧化反应 自身氧化还原反应,是指氧化剂和还原剂都是同一物质的氧化还原反应,反应时物质里的不同元素或相同元素间发生了电子转移。 如: 均属自身氧化还原反应。 歧化反应,它指的是同一物质的分子中同一价态的同一元素间发生的氧化还原反应。同一价态的元素在发生氧化还原反应过程中发生了“化合价变化上的分歧”,有些升高,有些降低。故例3属于歧化反应;但例2不属歧化反应,因为这种自身氧化还原反应,电子的转移虽发生在同种元素之间,但并不发生在同一价态的同种元素之间;发生歧化反应的元素必须具有相应的高价态和低价态化合物,歧化反应只发生在中间价态的元素上。氟(F2)无歧化作用,因为氟元素电负性最大,无正化合价,只有负化合价。 综上所述可知:自身氧化还原反应与歧化反应均属同种物质间发生的氧化还原反应,歧化反应是自身氧化还原反应的一种,但自身氧化还原反应却不一定都是歧化反应。 离子反应知识要点 一、离子反应的概念 离子反应是指有离子参加的反应。也就是说,反应物中有离子或生成物中有离子的反应,均为离子反应。由于中学阶段涉及的问题多数是指水溶液中的变化,所以水溶液中电解质间的相互反应便成了离子反应的常见问题。但须注意的是,凡是离子化合物,就含有离子,有时固体状态的物质之间(如实验室判氨)或固体与气体之间(如碱石灰与氯化氢)发生的反应,也可以是离子反应,只是通常不书写类似这样过程的离子反应方程式。在水溶液中发生离子反应的条件即复分解反应的三个条件(有难电离、难溶及易挥发物质生成)和氧化还原反应(比如置换反应等)。 二、离子共存问题

凡是能发生反应的离子之间或在水溶液中水解相互促进的离子之间不能大量共存(注意不是完全不能共存,而是不能大量共存)。一般规律是: 1、凡相互结合生成难溶或微溶性盐的离子(熟记常见的难溶、微溶盐); 2、与H+不能大量共存的离子(生成水或弱)酸及酸式弱酸根离子: 1氧族有:OH-、S2-、HS-、SO32-、HSO3- 2氮族有:H2PO4-、HPO42-、PO43- 3卤族有:F-、ClO- 4碳族有:CH3COO-、CO32-、HCO3-、SiO32- 5含金属酸根离子:AlO2- 3、与OH-不能大量共存的离子有: NH4+和HS-、HSO3-、HCO3-、H2PO4-、HPO42-等弱酸的酸式酸根离子以及弱碱的简单阳离子(比如:Cu2+、Al3+、Fe3+、Fe2+、Mg2+等等) 4、能相互发生氧化还原反应的离子不能大量共存: 1常见还原性较强的离子有:Fe2+、S2-、I-、SO32-。 2氧化性较强的离子有:Fe3+、ClO-、MnO4-、Cr2O72-、NO3-、此外,S2O32-与H+也不能共存(发生歧化反应)。 例1:下列各组离子:①I-、ClO-、NO3-、H+ ②K+、NH4+、HCO3-、OH- 3SO32-、SO42-、Cl-、OH- ④Fe3+、Cu2+、SO42-、Cl- ⑤H+、K+、AlO2-、HSO3- ⑥Ca2+、Na+、SO42-、CO32- 在水溶液中能大量共存的是 A、① B、③ ④ C、② ⑤ D、① ④ [解题分析] 本题全面考查离子共存知识,在题给的六组离子中,第①组ClO-与H+、I-不能大量共存,第②组中NH4+与OH-、HCO3-与OH-不能大量共存,第③④组中各离子可以共存,第⑤组H+与AlO2-、HSO3-不能大量共存,第⑥组中Ca2+与CO32-甚至SO42-不能大量共存。因此,正确选项应为B。 例2:在pH=1的溶液中,可大量共存的离子组是 A、Fe3+、I-、S2-、Cl- B、Al3+、Mg2+、SO42-、Cl- C、K+、Na+、AlO2-、NO3- D、K+、Na+、SO42-、S2O32-

归中 、 歧化反应规律教学文稿

归中、歧化反应规 律

1. 含有同一元素的不同价态的两种物质发生反应,生成只含有该元素中间价态的物质的反应叫做归中反应。发生归中反应的条件是要符合中间价态理论:含有同一元素的不同价态的两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化的结果是生成该元素的中间价态。归中反应的特点是氧化产物和还原产物是同一种物质。利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价的硫)。 C+CO2=2CO SO2+2H2S=3S↓+2H2O H2SO3+2H2S=3S↓+3H2O H2S+3H2SO4(浓)=4SO2+4H2O 2Fe3++Fe=3Fe2+ 6HCl+KClO3=KCl+3Cl2↑+3H2O 5NaBr+NaBrO3+3H2SO4=3Br2+3Na2SO4+3H2O Ca(ClO)2+4HCl(浓)=2Cl2↑+CaCl2+2H2O CuO+Cu=Cu2O 2Na+Na2O2 =2Na2O 1.邻位转化规律 发生氧化还原反应时,元素的化合价升高或者降低到相邻的价态。 如:S有-2,0,+4,+6的价态,如果是0价的S参加反应,则升高到临近的+4,或降低到临近的-2。 2. 跳位转化规律

一般都满足邻位规律,但是如果遇到强氧化剂或强还原剂,则会被氧化为高价态或还原为低价态。如:-2价的S如果遇到一般的氧化剂,则被氧化到0价 【2H2S+SO2====3S↓+2H2O】(反应方式不唯一,图示为配平方法),但如果遇到强氧化剂,则可能被氧化到+6价。 含不同价态同种元素的物质在发生氧化还原反应时,该元素价态的变化一定遵循【高价+低价→中间价】的规律,不会出现交错现象。 如在反应【2Na2S+SO2====2Na2O+3S】中,Na2S中的S是-2价,它跟SO2反应后生成S为0价的S。 3.价态归中规律 不同价态的同种元素间发生氧化还原反应,其结果是两种价态只能相互靠近或最多达到相同的价态,而绝不会出现高价态变低、低价态变高的交叉现象。 其中价态归中是指高价态的化合价降低,低价态的化合价升高,但不可能低价态的元素最后升的比原来高价态化合价还高,即同种元素的不同价态反应遵循"可靠拢不相交"。 4.中间价态规律 含有同一元素的不同价态的两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化的结果是生成该元素的中间价态。 利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价的S)。 氧化还原反应中的归中反应 含有同一元素的不同价态的两种物质发生反应,生成只含有该元素中间价态的物质的反应叫做归中反应。

核电站的工作原理和结构

核电站的工作原理和结构 热堆的概念中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中

子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂 把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

歧化反应与归中反应化学方程式荟萃(汇编)

歧化反应与归中反应荟萃 歧化反应是同一元素的同一价态既升高又降低的反应。归中反应是指同一元素的不同价态一个升高一个降低到同一价态的反应。歧化反应和归中反应在非金属及其化合物的反应中比较普遍,体现氧化还原反应的价态衍变规律。 一、氢元素的歧化与归中反应 1、氢元素的归中反应:Li2NH+H2===LiH+LiNH2 2、氢元素的歧化反应:NaH+H2O===NaOH+H2↑ 二、碳元素的歧化与归中反应 1、碳元素的歧化:CaO+3C高温CaC2+CO↑ SiO2+3C高温SiC+2CO↑ 2HCHO+NaOH 催化剂 HCOONa+CH3OH 2、碳元素的归中:C+CO2高温2CO 三、氮元素的歧化与归中反应 1、氮元素的歧化:2NO2+2NaOH===NaNO3+NaNO2+H2O 3NO2+H2O===2HNO3+NO 2、氮元素的归中:NaNO2+NH4Cl △ 2 ↑+NaCl+2H2O 5NH4NO3△ 2 ↑+2HNO3+9H2O 4NH3+6NO催化剂 △ 5N2+6H2O 8NH3+6NO2催化剂 △ 7N2+12H2O NO+NO2+2NaOH===2NaNO2+H2O NH4NO3△ 2 O+2H2O 四、磷元素的歧化:11P+15CuSO4+24H2O===5Cu3P+6H3PO4+15H2SO4 五、氧元素的归中:2Na+Na2O2△ 2Na2O 六、硫元素的歧化与归中反应: 1、硫元素的歧化反应:3S+6NaOH △ 2 S+Na2SO3+3H2O 2、硫元素的归中反应:2H2S+SO2===3S+2H2O 2H2S+H2SO3===3S+3H2O S+2H2SO4△ 2 +2H2O 3H2S+H2SO4△ 4S+4H2O

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

归中 、 歧化反应规律

含有同一元素的不同价态的两种物质发生反应,生成只含有该元素中间价态的物质的反应叫做归中反应。发生归中反应的条件是要符合中间价态理论:含有同一元素的不同价态的两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化的结果是生成该元素的中间价态。归中反应的特点是氧化产物和还原产物是同一种物质。利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价的硫)。 C+CO2=2CO SO2+2H2S=3S↓+2H2O H2SO3+2H2S=3S↓+3H2O H2S+3H2SO4(浓)=4SO2+4H2O 2Fe3++Fe=3Fe2+ 6HCl+KClO3=KCl+3Cl2↑+3H2O 5NaBr+NaBrO3+3H2SO4=3Br2+3Na2SO4+3H2O Ca(ClO)2+4HCl(浓)=2Cl2↑+CaCl2+2H2O CuO+Cu=Cu2O 2Na+Na2O2 =2Na2O 1.邻位转化规律 发生氧化还原反应时,元素的化合价升高或者降低到相邻的价态。 如:S有-2,0,+4,+6的价态,如果是0价的S参加反应,则升高到临近的+4,或降低到临近的-2。 2. 跳位转化规律

一般都满足邻位规律,但是如果遇到强氧化剂或强还原剂,则会被氧化为高价态或还原为低价态。如:-2价的S如果遇到一般的氧化剂,则被氧化到0价 【2H2S+SO2====3S↓+2H2O】(反应方式不唯一,图示为配平方法),但如果遇到强氧化剂,则可能被氧化到+6价。 含不同价态同种元素的物质在发生氧化还原反应时,该元素价态的变化一定遵循【高价+低价→中间价】的规律,不会出现交错现象。 如在反应【2Na2S+SO2====2Na2O+3S】中,Na2S中的S是-2价,它跟SO2反应后生成S为0价的S。 3.价态归中规律 不同价态的同种元素间发生氧化还原反应,其结果是两种价态只能相互靠近或最多达到相同的价态,而绝不会出现高价态变低、低价态变高的交叉现象。 其中价态归中是指高价态的化合价降低,低价态的化合价升高,但不可能低价态的元素最后升的比原来高价态化合价还高,即同种元素的不同价态反应遵循"可靠拢不相交"。 4.中间价态规律 含有同一元素的不同价态的两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化的结果是生成该元素的中间价态。 利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价的S)。 氧化还原反应中的归中反应 含有同一元素的不同价态的两种物质发生反应,生成只含有该元素中间价态的物质的反应叫做归中反应。

归中 歧化反应规律

含有同一元素得不同价态得两种物质发生反应,生成只含有该元素中间价态得物质得反应叫做归中反应。发生归中反应得条件就是要符合中间价态理论:含有同一元素得不同价态得两种物质,只有当这种元素有中间价态时,才有可能发生归中反应。而且高低价态变化得结果就是生成该元素得中间价态。归中反应得特点就是氧化产物与还原产物就是同一种物质。利用中间价态理论可以解释为什么二氧化硫可用浓硫酸干燥(因为不存在+5价得硫)。 C+CO2=2CO SO2+2H2S=3S↓+2H2O H2SO3+2H2S=3S↓+3H2O H2S+3H2SO4(浓)=4SO2+4H2O 2Fe3++Fe=3Fe2+ 6HCl+KClO3=KCl+3Cl2↑+3H2O 5NaBr+NaBrO3+3H2SO4=3Br2+3Na2SO4+3H2O Ca(ClO)2+4HCl(浓)=2Cl2↑+CaCl2+2H2O CuO+Cu=Cu2O 2Na+Na2O2=2Na2O 1。邻位转化规律

发生氧化还原反应时,元素得化合价升高或者降低到相邻得价态。 如:S有-2,0,+4,+6得价态,如果就是0价得S参加反应,则升高到临近得+4,或降低到临近得-2、 2。跳位转化规律 一般都满足邻位规律,但就是如果遇到强氧化剂或强还原剂,则会被氧化为高价态或还原为低价态、如:—2价得S如果遇到一般得氧化剂,则被氧化到0价【2H2S+SO2====3S↓+2H2O】(反应方式不唯一,图示为配平方法),但如果遇到强氧化剂,则可能被氧化到+6价。 含不同价态同种元素得物质在发生氧化还原反应时,该元素价态得变化一定遵循【高价+低价→中间价】得规律,不会出现交错现象、 如在反应【2Na2S+SO2====2Na2O+3S】中,Na2S中得S就是—2价,它跟SO2反应后生成S为0价得S、 3.价态归中规律 不同价态得同种元素间发生氧化还原反应,其结果就是两种价态只能相互靠近或最多达到相同得价态,而绝不会出现高价态变低、低价态变高得交叉现象。 其中价态归中就是指高价态得化合价降低,低价态得化合价升高,但不可能低价态得元素最后升得比原来高价态化合价还高,即同种元素得不同价态反应遵循"可靠拢不相交”。 4。中间价态规律

非金属元素歧化反应的比较

非金属元素歧化反应的比较 歧化反应是一种特殊的氧化还原反应,大多数非金属元素都有歧化和归中的性质,本文对一些常见的歧化和归中反应作一些比较,说明由于非金属元素的活泼性不同,发生歧化和归中的条件是不相同的。 一,单质的歧化反应 IV A、V A、VIA、VIIA各族都有单质能发生歧化反应,但从VII A→IV A反应的条件逐渐变高,如: 1,单质在水中歧化 ⑴卤素除氟外,都能在常温下和水发生歧化反应 ①Cl2+H2O==HClO+HCl (用于自来水消毒) ②Br2+H2O==HBr+HBrO ③3I2+3H2O=HIO3+5HI ⑵其他各族的元素即使在加热时也都不能和水发生歧化反应 2,单质在NaOH溶液中歧化 ⑴卤素单质都能和常温下的NaOH溶液发生歧化反应:重要的反应有: ①用于实验室吸收多余氯气 Cl2+2NaOH==NaCl+NaClO+H2O ②工业制漂白粉的反应: 2Cl2+2Ca(OH)2= CaCl2+Ca(ClO)2+2H2O ③电解饱和食盐水制氯酸钠:3Cl2+6NaOH=NaClO3+5NaCl+3H2O ④用NaOH溶液洗涤做过碘升华实验后的试管: 3I2+6NaOH==NaIO3+5NaI+3H2O ⑵硫在加热的NaOH溶液可发生歧化 △ 3S+6NaO H==2Na2S+Na2SO3+3H2O 此反应用于H2S和SO2反应后以热NaOH溶液洗涤广口瓶 ⑶氮族中的磷要在浓的NaOH溶液中加强热才能发生歧化: 4P+3KOH(浓)+3H2O==PH3+3KH2PO2在特殊情况下,磷和CuSO4溶液可发生歧化: 11P+15CuSO4+24H2O==5Cu3P+6H3PO4+15H2SO4 ⑷碳族中的单质既不能在水中,也不能在NaOH溶液中发生歧化,只有和SiO2、 CaO在电炉中发生歧化: 3C+SiO2SiC+2CO 3C+CaO CaC2+CO 二,化合态元素的歧化反应 1,卤素的次卤酸或次卤酸盐都能在水中或NaOH溶液中发生歧化:、 3HBrO=2HBr+ HBrO3 3HIO=2HI+ HIO3 3 NaClO=2NaCl+ NaClO3 3NaBrO=2NaBr+Na BrO3 3NaIO=2NaI+Na IO3 工业上将氯酸钠在空气中灼烧生产高氯酸钠

核电站的工作原理

核电站提供了世界上大约17%的电能。一些国家或地区对核电的依赖要比其他发电方式更高。例如,根据国际原子能机构提供的数据,在法国,大约75%的电是由核电站生产的。在美国,核电站共提供了大约15%的电能,但各州利用核电的情况并不统一。全世界共有超过400座核电站,而其中有超过100座在美国。 您了解核电站的工作原理以及核能的安全性吗?在这篇文章中,我们将为您介绍核反应堆和核电站的工作原理,并带您了解核裂变的原理以及核反应堆的内部情况。 铀是地球上一种相当普通的元素,在地球形成时就存在于这个行星中了。铀原本是在恒星中形成的。年老的恒星爆炸,其尘埃聚集起来形成了地球。铀-238 (U-238) 有一个非常长的半衰期(大于45亿年),因此现在它们仍然大量存在。铀-238占地球上所有铀的99%,铀-235 约占0.7%。铀-234是由铀-238衰变形成的,它更加稀少。(铀-238经过很多阶段的阿尔法和贝塔衰变才能转变为稳定的铅同位素,而铀-234是这条反应链上的一环。) 铀-235有一个奇特的特性让它既可以用于核能发电也可以用于制造核弹。铀-235和铀-238一样都是通过辐射阿尔法射线的方式衰变。铀-235同时也在一小部分时间中进行着自发裂变。然而,铀-235是少数能够发生诱发裂变的物质之一。如果一个自由中子撞击铀-235的原子核,它的原子核将会立即吸收这个中子而变得不稳定,并马上分解。请查看核辐射揭秘以了解全部细节。 核裂变 下面的动画演示了一个中子从上部接近铀-235的原子核。一旦原子核捕捉到中子,它马上分解为两个轻一些的原子,同时释放出两个或三个新的中子(中子的个数取决于铀-235原子分解的方式)。两个新的原子释放出伽马射线并稳定到新的状态。有三件事情让这个诱发裂变过程变得有趣: 铀-235原子捕捉一个正在穿过的中子的概率非常高。在正常工作的核反应堆中(称为临界状态),每次裂变释放出的中子都会导致另一次裂变的发生。 捕捉中子并发生分解的过程非常迅速,单位为皮秒(即1x10-12秒)。 当单个原子分解时,会有巨大的能量通过热和伽马辐射的形式释放出来。裂变生成的两个原子也能够释放贝塔和伽马射线。单个裂变反应之所以能释放出能量,是因为裂变产物和中子加在一起的质量比原来的铀-235原子的质量要小。方程E=mc2决定了质量差异转化为能量的比率。 单位约为200MeV(百万电子伏特)的能量被铀-235原子通过衰变释放出来(下面的公式将这些量转化为我们常见的单位,1eV=1.602x10-12尔格,1x107尔格=1焦耳,1焦耳=1瓦秒,而1BTU(热量单位)=1055焦耳)。这些可能看上去不是很多,但是一斤铀中有大量的铀原子。事实上,一斤高浓铀被用于为核潜艇或者核动力航母提供能量,这约等于380万升汽油能提供的能量。如果考虑到一斤铀的尺寸比一个棒球还小,而380万升的汽油却能够装满边长为15米(有五层楼高)的立方体,您就能对铀-235 所蕴含的能量有个概念了。 为使铀-235的这些特性得到发挥,铀样品必须得到浓缩,这样它就含有2-3% 或者更高浓度的铀-235。3%的浓度足够用于核电站。武器中的铀含有90%或更多的铀-235。 核电站内部 建造一个核反应堆需要浓度低一些的铀。通常,铀被制作成直径相当于10美分硬币左右,长度为2.5厘米左右的燃料元件。燃料元件被安装到长燃料棒中,燃料棒被进一步组装成燃料组件。燃料组件通常被浸泡在压力容器中。容器中的水起冷却作用。为使反应堆工作,浸泡在水中的燃料组件必须处于稍微超临界的状态。这意味着,如果没有其他设备,铀最终将会过热并熔化。 为防止这种情况出现,由吸收中子的材料制成的控制棒通过升降装置插入到燃料组件中。操作员通过升降控制棒来控制核反应的程度。当操作员希望铀堆芯产生更多的热量时,可将控

相关主题
文本预览
相关文档 最新文档