当前位置:文档之家› 实验十五分子筛变压吸附提纯氮气

实验十五分子筛变压吸附提纯氮气

实验十五分子筛变压吸附提纯氮气
实验十五分子筛变压吸附提纯氮气

实验十五碳分子筛变压吸附提纯氮气利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离。吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附。一个完整的吸附分离过程通常是由吸附与解吸(脱附)循环操作构成,由于实现吸附和解吸操作的工程手段不同,过程分变压吸附和变温吸附,变压吸附是通过调节操作压力(加压吸附、减压解吸)完成吸附与解吸的操作循环,变温吸附则是通过调节温度(降温吸附,升温解吸)完成循环操作。变压吸附主要用于物理吸附过程,变温吸附主要用于化学吸附过程。本实验以空气为原料,以碳分子筛为吸附剂,通过变压吸附的方法分离空气中的氮气和氧气,达到提纯氮气的目的。

A 实验目的

(1)了解和掌握连续变压吸附过程的基本原理和流程;

(2)了解和掌握影响变压吸附效果的主要因素;

(3)了解和掌握碳分子筛变压吸附提纯氮气的基本原理;

(4)了解和掌握吸附床穿透曲线的测定方法和目的。

B 实验原理

物质在吸附剂(固体)表面的吸附必须经过两个过程:一是通过分子扩散到达固体表面,二是通过范德华力或化学键合力的作用吸附于固体表面。因此,要利用吸附实现混合物的分离,被分离组分必须在分子扩散速率或表面吸附能力上存在明显差异。

碳分子筛吸附分离空气中N2和O2就是基于两者在扩散速率上的差异。N2和O2都是非极性分子,分子直径十分接近(O2为,N2为),由于两者的物性相近,与碳分子筛表面的

结合力差异不大,因此,从热力学(吸收平衡)角度看,碳分子筛对N2和O2的吸附并无选择性,难于使两者分离。然而,从动力学角度看,由于碳分子筛是一种速率分离型吸附剂,N2和O2在碳分子筛微孔内的扩散速度存在明显差异,如:35℃时,O2的扩散速度为×106,O2的速度比N2快30倍,因此当空气与碳分子筛接触时,O2将优先吸附于碳分

C

C0

C E

子筛而从空气中分离出来,使得空气中的N 2得以提纯。由于该吸附分离过程是一个速率控制的过程,因此,吸附时间的控制(即吸附-解吸循环速率的控制)非常重要。当吸附剂用量、吸附压力、气体流速一定时,适宜吸附时间可通过测定吸附柱的穿透曲线来确定。

所谓穿透曲线就是出口流体中被吸附物质(即吸附质,本实验中为氧气)的浓度随时间的变化曲线。典型的穿透曲线如下图所示,由图可见吸附质的出口浓度变化呈S 形曲线,在曲线的下拐点(a 点)之前,吸附质的浓度基本不变(控制在要求的浓度之下),此时,出口产品是合格的。越过下拐点之后,吸附质的浓度随时间增加,到达上拐点(b 点)后趋于进口浓度,此时,床层已趋于饱和,通常将下拐点(a 点)称为穿透点,上拐点(b 点)称为饱和点。通常将吸附质出口浓度达到进口浓度的95%的点确定为饱和点,而穿透点的浓度应根据产品质量要求来定,一般略高于目标值。本实验要求N 2的浓度≥95%,即出口O 2应≤5%,因此,将穿透点定为O 2出口浓度为%~%。

为确保产品质量,在实际生产中吸附柱有效工作区应控制在穿透点之前,因此,穿透点(a 点)的确定是吸附过程研究的重要内容。利用穿透点对应的时间(t 0)可以确定吸附装置的最佳吸附操作时间和吸附剂的动态吸附量,而动态吸附容量是吸附装置设计放大的重要依据。

动态吸附容量的定义为:从吸附开始直至穿透点(a 点)的时段内,单位重量的吸附剂对吸附质的吸附量(即:吸附质的质量/吸附剂质量或体积)

00(-)

B V t

C C G W

??=

动态吸附容量

C 预习与思考

(1)碳分子筛变压吸附提纯氮气的原理什么? (2)本实验为什么采用变压吸附而非变温吸附? (3) 如何通过实验来确定本实验装置的最佳吸附时间?

(4) 吸附剂的动态吸附容量是如何确定的?必须通过实验测定哪些参数? (5) 本实验为什么不考虑吸附过程的热效应?哪些吸附过程必须考虑热效应?

D 实验装置及流程

本实验装置及流程见计算机控制界面。装置由两根可切换操作吸附柱(A 、B)构成,吸附柱尺寸为mm mm 45036?φ,吸附剂为碳分子筛,各柱碳分子筛的装填量以实验中的实际装填量为准。

来自空压机的原料空气经脱油器脱油和硅胶脱水后进入吸附柱,气流的切换通过电磁阀由计算机自动控制。在计算机控制面板上,有两个可自由设定的时间窗口 K1,K2,所代表的含义分别为:

K1—表示吸附和解吸的时间(注:吸附和解吸在两个吸附柱交替进行)。 K2—表示吸附柱充压和串连吸附操作时间。

解吸过程分为两步,首先是常压解吸,随后进行真空解吸。

气体分析:出口气体中的氧气含量通过CYES-II 型氧气分析仪测定。

E 实验步骤

1)实验准备:检查压缩机、真空泵、吸附设备和计算机控制系统之间的连接是否到

位,氧分析仪是否校正,15支取样针筒是否备齐。

2)接通压缩机电源,开启吸附装置上的电源。

3)开启真空泵上的电源开关,然后在计算机面板上启动真空泵。

4)调节压缩机出口稳压阀,使输出压力稳定在(表压)。

5)调节气体流量阀,将流量控制在3.0L/H左右。

6)将计算机面板上的时间窗口分别设定为K1=600s,K2=5s,启动设定框下方的开

始按钮,开始测定穿透曲线。

7)穿透曲线测定方法:系统运行大约30min后,观察计算机操作屏幕,当操作状态

进入K1的瞬间开始,迅速按下面板上的计时按钮,然后,每隔1分钟,用针筒在

取样口处取样分析一次(若K1=600s,取10个样),读取并记录样品氧含量(体

积百分数V%),同时记录吸附时间、压力、温度和气体流量。

取样注意事项:

?每次取样8-10ml,将针筒对准取样口,使气体自然充入针筒中。

?取样后将针筒拔下,迅速用橡皮套封住针筒的开口处,以免空气渗入影响分析结

果。

8)改变气体流量,将流量提高到6.0L/H,然后重复(6)和(7)步操作。

9)流量保持不变,调节压缩机出口气体减压阀,将气体压力升至MPa(表压),重复

第(5)到第(7)步操作。

10)停车步骤:

?先按下K1,K2设定框下方的停止操作按钮,将时间参数重新设定为K1=120s,

K2=5s,然后启动设定框下方的开始按钮,让系统运行10-15min。

?系统运行10-15min后,按下计算机面板上停止操作按钮,停止吸附操作。

?在计算机控制面板上关闭真空泵,然后关闭真空泵上的电源,最后关闭压缩机电

源。

F.实验数据处理

(1)实验数据记录

编号A吸附温度T(℃):_____ 压力P(Mpa):_____ 气体流量V(L/h):____

编号B 吸附温度T (℃):_____ 压力P (Mpa ):_____ 气体流量V (L/h ):____

编号C 吸附温度T (℃):_____ 压力P (Mpa ):_____ 气体流量V (L/h )

:____ (2)实验数据处理

a) 根据实验数据,在同一张图上标绘两种气体流量下的吸附穿透曲线。

b)若将出口氧气浓度为%的点确定为穿透点,请根据穿透曲线确定不同操作条件下穿透点出现的时间t 0,记录于下表。

c) 根据上表计算不同条件下的动态吸附容量:

W

x x t V G B N )(4.2232

00-???

=

V P T P

T V N ???=

不同条件下的动态吸附容量计算结果

G.结果及讨论

(1)在本装置中,一个完整的吸附循环包括哪些操作步骤?

(2)气体的流速对吸附剂的穿透时间和动态吸附容量有何影响?为什么?

(3)吸附压力对吸附剂的穿透时间和动态吸附容量有何影响?为什么?

(4)根据实验结果,你认为本实验装置的吸附时间应该控制在多少合适?

(5)该吸附装置在提纯氮气的同时,还具有富集氧气的作用,如果实验目的是为了获得富氧,实验装置及操作方案应作哪些改动?

H.符号说明

A-吸附柱的截面积,cm2;

C0-吸附质的进口浓度,g/L;

C B-穿透点处,吸附质的出口浓度,g/L;

G-动态吸附容量(氧气质量/吸附剂体积),g/g;

P-实际操作压力,Mpa;

P0-标准状态下的压力,Mpa;

T-实际操作温度,K;

T0-标准状态下的温度,K;

V-实际气体流量,L/min;

V N-标准状态下的气体流量,L/min;

t0-达到穿透点的时间,s;

x0-空气中氧气的体积百分数,V%;

x B-穿透点处氧气的体积百分数,V%;

W-碳分子筛吸附剂的质量,g。

各种气瓶充装操作规程

气体充装操作规程 2018.6

氩气瓶充装操作规程 为确保氩气充装安全及质量制定本规程,本规程适用于公称工作压力15MPa、充装氩气的高压无缝气瓶,不适用于其他气体的充装。 1.充装前的准备 1.1确认泵、气化器、充装卡具、阀门、管道系统完好,压力表、安全阀状态正常、灵敏可靠。 1.2待充气瓶经充装前检查,符合充装规范要求。 1.3确认气瓶公称工作压力、介质、颜色与所充装压力和介质相符,并在有效使用周期内。 1.4气瓶应留有0.05MPa以上的余气,对无余气的气瓶必须进行加热、抽真空、置换处理合格后方可充装。 2.充装 2.1用卡具连接好待充气瓶,逐只打开瓶阀和支路阀,并检查有无泄漏现象。 2.2打开泵进液阀、预冷阀和回气阀,对泵进行预冷,当预冷阀出口管余气排净出现满管液体时,启动泵。 2.3逐渐关闭预冷阀,打开泵出口阀(泵出现有节奏的敲击声,否则应重新预冷)进行充装作业。 2.4充装压力在7MPa前应逐只检查气瓶的温升情况,温升过高应终止该瓶的充装,并妥善处理。对无温升气瓶,应退出气瓶检查瓶阀,排除故障再另行充装。 2.5充装压力达到1.5MPa后严禁插入空瓶。

2.6充装中应控制充装速度,气瓶的充装流量不得大于8m3/h。 2.7充装中应注意观察气化器出口温度不得低于-30℃。 2.8气瓶充装终了压力,应符合GB/T14194-2017《压缩气体气瓶充装规定》,不得超过在规定温度下的充装压力。 氩气在不同充装温度下气瓶的最高充装压力: 2.9在到达充装终了压力时,应逐步关闭改组进气阀并微开另一组进气阀,直至全关该组进气阀,全开另一组进气阀。 2.10逐只关闭支路阀和瓶阀,从卡具上卸下气瓶。 2.11逐只检查瓶阀和瓶体有无泄漏现象,并妥善处理。 2.12充装完毕应认真填写充装记录,签名备查。 2.13充装合格的气瓶粘贴充装标签和警示标签。 2.14充装结束,应关闭泵的进液阀、回气阀,打开预冷阀排液泄压,并停止泵的运行。确认预冷阀出口管无液体和气体时,关闭预冷阀。

氮气瓶安全操作规程

氮气瓶安全操作规程及注意事项 一、安全操作规程: 1. 钢瓶应存放在阴凉、干燥、远离热源处,放置气瓶的地面必须平整,气瓶上的安全帽应旋紧,以便保护阀门勿使其偶然转动。 2. 使用前检查连接部位是否漏气,可涂上肥皂液进行检查,调整至确实不漏气后才进行操作。 3.氮气瓶使用时先开气瓶阀门,然后将减压器调节螺丝慢慢旋紧使气体流出。用毕先关气瓶阀门,放尽减压器内气体,然后将减压气调节螺丝松掉。 4. 操作时严禁敲打撞击,应注意压力表读数,定期检查阀门及管线,确保无漏气现象。 5. 更换时要确保新气瓶标记清晰完整;搬运过程中要轻拿轻放,只有当气瓶竖直放稳后方可松手脱身。 6.非实验人员严禁接触气瓶及相关阀门。 二、注意事项: 1.不可将钢瓶内的气体全部用完,一定要保留0.05M以上的残留压力(减压阀表压)。 2.使用时,要把钢瓶牢牢固定,以免摇动或翻到。 3.开关气门阀要慢慢地操作,切不可过急地或强行用力把它拧开。

氧气瓶安全操作规程 一、氧气瓶一定要避免受热,也不能受阳光直接曝晒,氧气瓶应远离高温、明火、熔融金属飞溅物和可燃易爆物质等,安全间距5米以上。 二、在操作过程中,如果发生氧气瓶压力低于可燃气体压力,则可燃气体回倒入氧气系统引起燃烧和爆炸。所以氧气瓶中的氧气不允许全部用完,至少应留 0.1-0.2Mpa剩余压力。 三、氧气瓶应尽可能垂直立放,并设有支架固定,一般不允许水平放置,因为水平防止回把瓶中的腐蚀锈末带入减压器,使减压器受到损坏。 四、氧气瓶和乙炔瓶采用时,两个减压器不能互相对峙,以免气流射出冲击对方,造成事故。 五、氧气瓶操作工人绝对不能用沾有各种油脂或油污的工作服、手套和工具等去接触气瓶及其附件,最好备用专用工具,以免引起燃烧。 六、禁止将压缩纯氧用做改善空气或通风换气,亦不得用来代替压缩空气吹扫工作服上的尘屑,吹除乙炔管道的堵塞物,或作为气动工具的动力源等。 七、并联使用氧气瓶时,在氧气汇流输出的总阀上应装设单向阀。 八、开启瓶阀和减压器应缓慢,与电焊同一工作地点使用的氧气瓶,瓶底应垫绝缘物,以防氧气瓶带电。 九、冬天氧气瓶出口处如有冻结现象,严格使用明火热或用红铁烘烤,以免氧气突然大量冲出造成事故。氧气瓶进出处的冻结现象,是由于氧气流动吸热造成的,最好是使用热的空气流或蒸汽流化冻,或温水化冻。

如何提高变压吸附装置产品回收率的经验总结

如何提高变压吸附装置产品回收率的经验总结 摘要本文介绍了提高产品回收率的几种办法,通过这些办法和措施,使装置的回收率大幅提高,减少了原料气的消耗,降低了产品成本提高了变压吸附装置运行效率。 关键词回收率变压吸附吸附剂程控阀 一、前言 变压吸附(Pressure Swing Adsorption.简称PSA)是吸附分离技术中的一项用于分离气体混合物新型技术,其基本原理是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性,通过周期性的压力变换过程实现气体的分离或提纯。它有以下特点:⑴产品纯度高。⑵操作简便、能耗低:一般可在室温和不高的压力下工作,床层再生不需外加热源,操作弹性大。⑶工艺简单、维护简便:不需预先处理,即可一步除去杂质。⑷吸附剂寿命长:吸附剂使用期限为半永久性。由此可见变压吸附分离法,有着不可比拟的优点,但是存在产品回收率低的缺憾,对于如何提高产品回收率,无论是在变压吸附的设计还是在实际的生产操作中均成为人们攻关的主要方向。 二、在提高装置产品回收率上的几点经验总结 装置回收率的提高,等于减少了原料气的消耗,降低了产品成本。我们在实际生产中根据运行经验总结了以下几种措施,用于提高装置的产品回收率。 2.1、程控阀问题 程控阀是变压吸附装置专用阀门,它的完好性是提高回收率的重要保障。阀门的内漏和外泄漏会影响再生效果,导致产品回收率降低。阀门在用材、安装和日常维护中要注意以下几点。 由于变压吸附工艺的特殊性,普通阀门难以保障装置长期稳定、可靠运行,对程控阀有以下要求:1、所用介质一般为高纯度的气体,所以密封性能要好,要达到零泄漏2、要求寿命长,做到经受长期频繁动作而保持不泄漏,能运用于易燃、易爆、有毒等特殊气体环境。3、根据工艺要求,做到易实现调节功能和阀位状态现场指示及远传等功能。4、具备有双向耐压性和抗高速气流冲刷性能,阀门的开关速度要快,随阀门的通经不同其启闭时间应控制在3秒以内。 变压吸附装置中,程控阀组是主要的运动部件,如果出现泄漏,会对产品的回收率造成重大影响。在安装维护中做到以下几点:1、阀门方向不要装错,物料流向要按照“高进低出”的原则,或按阀体上的箭头方向安装。2、气动截止阀一般只允许安装在水平管道上,即气动执行机构在阀体和管道的上方。3、要注意介质温度变化,阀门应在允许的温度和压差下使用,温度过高或过低,会使密封元件在高温时老化或在低温时硬化变脆;压差过高,则会损坏密封材料或无法关闭阀门,导致阀门泄漏或动作失灵。4、程控阀填料函、阀杆外露部分及阀门的外表面要保持清洁干净,要注意防锈及润滑,以延长阀门使用寿命。 2.2、对吸附剂进行改进改良 良好的吸附性能是吸附分离过程的基本条件,选择吸附剂时要考虑两点:第一,要解决吸

二氧化碳气瓶充装操作规程标准范本

操作规程编号:LX-FS-A43565 二氧化碳气瓶充装操作规程标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

二氧化碳气瓶充装操作规程标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、充装前检查设备、管道状况:检查储罐液体低于0.3m3时不得充装;检查压力表、阀门、充装夹具、台秤,如有异常现象立即处理保持安全完好状态方能充装。 2、充装前必须检查确认气瓶是经过检查合格或妥善处理了的,并排空瓶内余压。 3、开启液体泵上回流阀,平稳开启泵上进液阀,让泵进液预冷三至五分钟。用卡子连接代替螺纹连接时,仔佃检查确认瓶阀出口螺纹型式是外螺纹(右旋),夹好气瓶后对气瓶进行称重,打开充装排

氮气安全操作规程

I If 编号:SM-ZD-94640 氮气安全操作规程 Through the p rocess agreeme nt to achieve a uni fied action p olicy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly. 编制: 审核: 批准: 本文档下载后可任意修改

氮气安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 (1)氮气管道检修或停送气必须向调度室申请,经批准后方可进行。 (2)氮气管线中所设安全阀、压力表、放散阀、疏水阀 必须齐全完好。 (3)操作阀门时,操作人员严禁将身体各部位正对阀门手 轮且用力不可过猛。 (4)检查氮气管道泄漏及氮气放散时,人员应站在上风 侧,必要时佩戴防毒面具。 (5)严禁氮气管道与煤气管道连接。如果使用氮气吹扫煤 气管道,吹扫完毕后应立即断开氮气管道。动火作业前,应彻底落实氮气管道和煤气管道是否有连接之处,并办理动火作业票。 (6)氮气使用注意事项 ①进入充装氮气的设备、管道和容器内部检修作业时, 应办理有限空间作业票,并切断气源、堵好盲板,执行停机、停电挂牌制度,并用空气置换内部气体,对设备内部进行通

风处理,检验合格经确认后(氧含量达到19%.5 —22%),方可准许工作人员并在有人监护下进入。 ②氮气管道不得敷设在通行地沟内,氮气的放散安全间 距不得少于10米。 ③使用氮气的现场或操作室需有良好的通风换气设施。 ④使用氮气时,应有防止人员窒息的防范措施。 ⑤在氮气浓度高的环境中作业时,必须佩带氧气呼吸器, 并有人负责监护,应对氮气阀门严加管理,防止误操作。 ⑥进入氮气危险区域点巡检,需按照规定携带氧气报警 器,及时监测氧气含量。 ⑦提升安全防范意识,随时警惕,查找泄漏隐患并及时 整改治理。 ⑧严禁使用氮气、压缩空气(内含氮气)吹扫人员或身 体衣物。 ⑨严禁使用氮气打扫设备及地面卫生。 ⑩氮气管线、储气罐、氮气取用连接点应有统一、明显 的标识。报废的氮气系统应及时拆除,停用的氮气系统应及时移开,不能移开的应进行有效隔离,使用末端必须封堵,并设置安全标识。

一氧化碳变换反应工艺流程

一氧化碳变换反应工艺流程 一氧化碳变换流程有许多种,包括常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高-低变串联变换工艺等等。一氧化碳变换工艺流程的设计和选择,首先应依据原料气中的一氧化碳含量高低来加以确定。一氧化碳含量很高,宜采用中温变换工艺,这是由于中变催化剂操作温度范围较宽,使用寿命长而且价廉易得。当一氧化碳含量大于15%时,应考虑将变换炉分为二段或多段,以使操作温度接近最佳温度。其次是依据进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。最后还要将一氧化碳变换和残余一氧化碳的脱除方法结合考虑,若后工序要求残余一氧化碳含量低,则需采用中变串低变的工艺。 一、高变串低变工艺 当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为10%~13%(体积分数),只需采用一段高变和一段低变的串联流程,就能将CO含量降低至0.3%,图2-1是该流程示意图。 图2-1一氧化碳高变-低变工艺流程图 1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转化工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至370℃左右进入高变炉2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器4回收热量后进入低变炉5。低变炉绝热温升为15~20℃,此时出低变炉的低变气

中一氧化碳含量在0.3%~0.5%。为了提高传热效果,在饱和器6中喷入少量软水,使低变气达到饱和状态,提高在贫液再沸器7中的传热系数。 二、多段中变工艺 以煤为原料的中小型合成氨厂制得的半水煤气中含有较多的一氧化碳气体,需采用多段中变流程。而且由于来自脱硫系统的半水煤气温度较低,水蒸气含量较少。气体在进入中变炉之前设有原料气预热及增湿装置。另外,由于中温变换的反应放热多,应充分考虑反应热的转移和余热回收利用等问题。图2-2为目前中小型合成氨厂应用较多的多段中温变换工艺。 半水煤气首先进入饱和热水塔1,在饱和塔内气体与塔顶喷淋下来的 130~140℃的热水逆流接触,使半水煤气提温增湿。出饱和塔的气体进入气水分离器2分离夹带的液滴,并与电炉5来的300~350℃的过热蒸汽混合,使半水煤气中的汽气比达到工艺条件的要求,然后进入主热交换器3和中间换热器4,使气体温度升至380℃进入变换炉,经第一段催化床层反应后气体温度升至 480~500℃,经蒸汽过热器、中间换热器与蒸汽和半水煤气换热降温后进入第二段催化床层反应。反应后的高温气体用冷凝水冷激降温后,进入第三段催化剂床层反应。气体离开变换炉的温度为400℃左右,变换气依次经过主热交换器、第一水加热器、热水塔、第二热水塔、第二水加热器回收热量,再经变换气冷却器9降至常温后 图2-2 一氧化碳多段中温变换工艺流程 1-饱和热水塔2-气水分离器3-主热交换器4-中间换热器5-电炉6-中变炉7-水加热器

高纯度一氧化碳的生产

高纯度一氧化碳的生产工艺 一氧化碳是C1化学的基础原料,主要用于合成甲醇、甲醛、脂肪酸、脂肪酐、光气、异氰酸酯、碳酸二甲酯以及各种金属羰基化合物。用于化工合成的高纯度一氧化碳可以从含有一氧化碳的天然气和石油转化的合成气、水煤气、半水煤气以及钢铁厂、电石厂和黄磷厂的尾气中纯化分离;亦可以甲醇为原料,通过催化裂解、变压吸附等工艺制取,同时副产氢气。 一、一氧化碳的生产工艺 1 煤炭和天然气法 该方法以自然资源煤炭、天然气等为原料通过气化、羰基化等工艺过程来合成一氧化碳,然后根据生产中对一氧化碳的纯度要求进行分离、提纯,得到各种含量的一氧化碳。该工艺目前广泛应用于甲醇、醋酸等脂肪族化合物以及其衍生物的生产。 2 甲醇裂解制一氧化碳 (1)工艺原理甲醇在专用催化剂作用和280℃下发生催化裂解,得到一氧化碳、二氧化碳和氢气等混合气体,经过变压吸附工艺(PSA)分离后可得到高纯度一氧化碳和氢气。反应式为: CH3OH →CO+2H2 -90.7KJ/mol (2)工艺流程甲醇经预热、汽化、过热后在专用催化剂上进行裂解反应,裂解气经冷却、冷凝后其组成为H2 ~66%,CO2 -4.5%,CO ~31.8%,该裂解气进行压缩后在PSA-I吸附塔上脱碳后得到含氢气、一氧化碳的净化气体,然后在PSA-II吸附塔上分别得到含量≥98%的一氧化碳,并副产氢气。根据下游产品对一氧化碳纯度的需要,可以通过进一步的变压吸附操作,将一氧化碳的纯度提高至99.99%。工艺流程可表示如下: 二、一氧化碳的提纯工艺 无论是用甲醇裂解工艺生产一氧化碳,还是以黄磷尾气、转炉气、高炉气等为原料分离、纯化一氧化碳,其原料气都是若干种气体的混合物,都必须经过提纯后才可以得到各种纯度的一氧化碳以满足下游产品的生产需要。 一氧化碳虽然是C1化学的基础原料气,具有广泛的用途,但提纯方法不多,以往国内采用精馏法或COSORB法提纯CO。但这两种方法的预处理系统复杂,设备多,投资大,操作成本高,效果不理想。 采用变压吸附工艺分离一氧化碳是近年来国际上的新兴技术。该工艺产品设计规模灵活,可在10~10000Nm3/h范围内灵活调节;产品纯度高,正常设计值≥98.5%,通过调整最高可达99.99%;装置投资少,操作方便,能耗低。 变压吸附分离一氧化碳工艺流程图如下: 三、变压吸附技术提纯一氧化碳 1变压吸附 变压吸附(Pressure swing adsorption,PSA)工艺是近十几年来飞速发展的一种非低温法气体分离和提纯技术,与传统的气体分离工艺相比,具有投资小、能耗低、工艺简单、自动化程度高、操作方便可靠、产品质量高等优点,已在化工、石油炼制、冶金、采矿、电子、食品、科研、航天、医药、环保等方面得到了广泛的应用。 (1)原理变压吸附技术(Pressure Swing Adsorption 简称PSA)是利用气体各组分在吸附剂上吸附特性的差异以及吸附量随压力变化的原理,通过周期性的压力变化实现气体的分离。吸附剂对不同气体的吸附特性是不同的。利用吸附剂对混合气中各种组分吸附能力的不同,通过选择合适的吸附剂就可以达到对混合气进行分离提纯的目的。同一吸附剂对同种气体的吸附量,还随吸附压力和温度的变化而变化:压力越高,吸附量越大;温度越高,吸附量越

变压吸附原理及应用

变压吸附气体分离技术 目录 第一节气体吸附分离的基础知识 (2) 一、吸附的定义 (2) 二、吸附剂 (3) 三、吸附平衡和等温吸附线—吸附的热力学基础 (6) 四、吸附过程中的物质传递 (10) 五、固定床吸附流出曲线 (12) 第二节变压吸附的工作原理 (14) 一、吸附剂的再生方法 (14) 二、变压吸附工作基本步骤 (16) 三、吸附剂的选择 (17) 第三节变压吸附技术的应用及实施方法 (20) 一、回收和精制氢 (20) 二、从空气中制取富氧 (24) 三、回收和制取纯二氧化碳 (25) 四、从空气中制氮 (26) 五、回收和提纯一氧化碳 (28) 六、从变换气中脱出二氧化碳 (31) 附Ⅰ变压吸附工艺步骤中常用字符代号说明 (32) 附Ⅱ回收率的计算方法 (32)

第一节气体吸附分离的基础知识 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面的原子的剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的压力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais) 吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本文以下叙述的除了注明之外均为气体的物理吸附。

CO-H2分离变压吸附工艺方案

PSA净化项目 初步方案 附件1 装置设计要求 1.1 技术条件及规格 1.1.1 原料气条件 CO 理论含量为30.5%(此时H 含量为68.31%,其它组份的百分比同上表)。 2 流量:79200Nm3/h(CO含量为30.5%即理论含量时,装置所需的原料气量)压力:3.2 MPag 温度:40℃ 1.1.2 CO产品气 压力:0.005~0.02 MPag 温度:40℃ 产品气 1.1.3 H 2 压力:3.0MPag 温度:40℃ 1.2 装置工艺流程与物料平衡

图1 变压吸附提纯CO/H 2 流程框图 物流说明:1-原料气,2-CO产品气,3-氢气产品气, 4-PSA-CO吸附尾气,5-解吸废气,6-CO置换气 附件3 装置工艺流程描述 3.1工艺流程简述 本设计方案拟采用变压吸附(PSA)气体分离技术从原料气中分离提纯CO 和H 2 。整个工艺过程分为三个工序,即原料气预处理工序、变压吸附提纯CO工 序(PSA-CO)、变压吸附提纯氢气工序(PSA-H 2 )。 经过低温甲醇洗脱硫脱碳后的原料气,首先通过预处理将其中的重组分杂质 脱除,然后送入PSA-CO工序分离提纯得到CO产品气,PSA-CO吸附尾气送入PSA-H 2 工序,在PSA-H 2工序得到H 2 产品气。 流程框图见图1。 3.1.1预处理工序 经过低温甲醇洗脱硫脱碳后的原料气首先进入预处理工序。 预处理工序的目的是将经过低温甲醇洗后的原料气中的甲醇等重组分杂质脱除,保护PSA-CO工序吸附剂。 3.1.2变压吸附提纯CO工序(PSA-CO) PSA-CO工序的作用是使CO进一步与其它组份如H 2、N 2 等杂质组份分离,得 到CO产品。来自预处理工序的原料气,进入PSA-CO吸附塔,吸附尾气从塔顶流入PSA-H 2 工序。经过一定循环步骤后,吸附塔内合格的CO通过逆向放压和抽真空方式排出吸附塔,进入CO产品气缓冲罐。 为了保证CO产品的连续性,PSA-CO装置由18个吸附塔组成,任何时刻均有

实验十五 碳分子筛变压吸附提纯氮气

实验十五碳分子筛变压吸附提纯氮气 利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离。吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附。一个完整的吸附分离过程通常是由吸附与解吸(脱附)循环操作构成,由于实现吸附和解吸操作的工程手段不同,过程分变压吸附和变温吸附,变压吸附是通过调节操作压力(加压吸附、减压解吸)完成吸附与解吸的操作循环,变温吸附则是通过调节温度(降温吸附,升温解吸)完成循环操作。变压吸附主要用于物理吸附过程,变温吸附主要用于化学吸附过程。本实验以空气为原料,以碳分子筛为吸附剂,通过变压吸附的方法分离空气中的氮气和氧气,达到提纯氮气的目的。 A 实验目的 (1)了解和掌握连续变压吸附过程的基本原理和流程; (2)了解和掌握影响变压吸附效果的主要因素; (3)了解和掌握碳分子筛变压吸附提纯氮气的基本原理; (4)了解和掌握吸附床穿透曲线的测定方法和目的。 B 实验原理 物质在吸附剂(固体)表面的吸附必须经过两个过程:一是通过分子扩散到达固体表面,二是通过范德华力或化学键合力的作用吸附于固体表面。因此,要利用吸附实现混合物的分离,被分离组分必须在分子扩散速率或表面吸附能力上存在明显差异。 碳分子筛吸附分离空气中N2和O2就是基于两者在扩散速率上的差异。N2和O2都是非极性分子,分子直径十分接近(O2为0.28nm,N2为0.3nm),由于两者的物性相近,与碳分子筛表面的结合力差异不大,因此,从热力学(吸收平衡)角度看,碳分子筛对N2和O2的吸附并无选择性,难于使 两者分离。然而,从动力学角度看,由于碳分子筛是一种速率分离型吸附剂,N2和O2在碳分子筛微孔内的扩散速度存在明显差异,如:35℃时,O2的扩散速度为2.0×106,O2的速度比N2快30倍,因此当空气与碳分子筛接触时,O2将优先吸附于碳分子筛而从空气中分离出来,使得空气中的N2得以提纯。由于该吸附分离过程是一个速率控制的过程,因此,吸附时间的控制(即吸附-解吸循环速率的控制)非常重要。当吸附剂用量、吸附压力、气体流速一定时,适宜吸附时间可通过测定吸附柱的穿透 流 出 液 浓 度 C 恒温固定床吸附器的穿透曲线 C B C0 C E t

气体充装站操作规程

工业气体充装站操作规程

氧气瓶充装操作规程 1、操作人员必须受过专门的培训,经上级主管部门培训,考试合格,取得资格证后,方允许独立操作。 2.充装前的检查及处理 2.1空瓶必须经气瓶管理人员逐只检查登记后,方可进行充装。 2.2操作者发现有下列情况之一者,禁止充装: 2.2.1钢印标记、颜色标记不符合规定,对瓶内介质未确认的; 2.2.2附件损坏、不全或不符合规定的; 2.2.3瓶内无剩余压力; 2.2.4超过检验期限的; 2.2.5经外观检查,存在明显损伤,需进一步检验的; 2.2.6首次充装或定期检验后的首次充装,未经置换和真空干燥处理的。 3、氧气充装前的检查 3.1充气前必须检查确认气瓶是经过检查合格或妥善处理了的。 3.2充瓶时开闭高压阀门应缓慢,人不得正对阀门操作,以免发生危险。 3.3开启阀门应缓缓操作,并注意监听瓶内有无异常音响。 3.4在充装过程中,应随时检查气瓶各处的密封情况,发现

异常应及时妥善处理。 3.5按照气体通过瓶阀的声音及瓶体温度,检查气体是否进入瓶内。气态二氧化碳充瓶时,瓶体温度不得超过40℃,否则立即停车检查。 3.6发现气瓶没有进气时,应查明原因,离开充气台进行修理。 3.7严禁瓶内存水,钢瓶中的氩气压力在20℃时应为15±0.5MPa。混合气的充装压力为13±1MPa。 3.8氧气瓶充装操作规程 3.8.1、检查所有的充装卡具接头是否良好。 3.8.2、检查压力表指针是否在零位,是否在有效期之内。 3.8.3、检查充装回气阀是否关闭。 3.8.4、将气瓶及充装卡具连接牢固后,挂好安全链,打开各气瓶瓶阀,观察是否漏气。 3.8.5、当充装管道压力达到3MPa时,缓慢打开己准备好的充气排连接总阀。 3.8.6、当总阀开启开始充装时,应做好如下工作: 3.8.6.1检查充气的支管阀是否完全打开。 3.8.6.2管路各连接处有无泄漏。 3.8.6.3充装排压力上升情况是否及主管道上的压力一致。 3.8.6.4当充装压力升到处7MPa和10Mpa时,应分别检查一次瓶体的温度状况。

氮气安全操作规程正式样本

文件编号:TP-AR-L5937 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 氮气安全操作规程正式 样本

氮气安全操作规程正式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)氮气管道检修或停送气必须向调度室申请, 经批准后方可进行。 (2) 氮气管线中所设安全阀、压力表、放散 阀、疏水阀必须齐全完好。 (3)操作阀门时,操作人员严禁将身体各部位正 对阀门手轮且用力不可过猛。 (4) 检查氮气管道泄漏及氮气放散时,人员应 站在上风侧,必要时佩戴防毒面具。 (5)严禁氮气管道与煤气管道连接。如果使用氮 气吹扫煤气管道,吹扫完毕后应立即断开氮气管道。 动火作业前,应彻底落实氮气管道和煤气管道是否有

连接之处,并办理动火作业票。 (6)氮气使用注意事项 ①进入充装氮气的设备、管道和容器内部检修作业时,应办理有限空间作业票,并切断气源、堵好盲板,执行停机、停电挂牌制度,并用空气置换内部气体,对设备内部进行通风处理,检验合格经确认后(氧含量达到19%.5—22%),方可准许工作人员并在有人监护下进入。 ②氮气管道不得敷设在通行地沟内,氮气的放散安全间距不得少于10米。 ③使用氮气的现场或操作室需有良好的通风换气设施。 ④使用氮气时,应有防止人员窒息的防范措施。 ⑤在氮气浓度高的环境中作业时,必须佩带氧气呼吸器,并有人负责监护,应对氮气阀门严加管理,

变压吸附提纯一氧化碳工艺系统的优化运行_杨军红

收稿日期:2012-07-23;收到修改稿日期:2012-11-30。作者简介:杨军红,男,1970年1月出生,高级工程师,工程硕士,2006年毕业于华东理工大学化学工程专业,现任兖矿鲁南化工有限公司副总工程师。联系电话:0632-2362016;E -mail : yjh66666@126.com 。 兖矿鲁南化工有限公司变压吸附系统主要是为年产10万吨醋酐装置提供高浓度CO 产品气的配套系统,设计处理气量15000m 3/h 。该系统采用成都天立化工科技有限公司自主研发的发明专利技术———无动力吹扫解吸变压吸附脱碳工艺,改变操作条件可控制产品气CO 的纯度。整套系统正常生产后,通过不断优化改造,使变压吸附技术的优点得到了充分的发挥。 该醋酐装置变压吸附系统是将甲醇净化工段来的原料气温度40℃,表压力2.2MPa ,气体体积组成:CO 54.27%、CO 22.83%、H 242.09%、H 2S+COS 0.1×10-6、N 20.65%、CH 4+Ar 0.16%,经过粗脱碳工 序和精脱碳工序物理脱除CO 2,一氧化碳提纯工序分离制得合格CO (纯度不低于98.5%),最后经过压缩机加压到4.7MPa ,送往醋酐分厂,并将富产纯度不低于92%的H 2送往甲醇合成工段。 1变压吸附系统简介1.1变压吸附系统 变压吸附系统由粗脱段、精脱段、提纯段组成。 粗脱段采用吸附塔19台,3塔同时吸附,12次连续均压带吹扫,即19-3-12工艺流程;程控阀共297台,装填2种吸附剂:下层是少量的活性氧化铝,脱除少量的水;上层装硅胶脱除CO 2,控制 CO 2含量不高于0.2%。 精脱段采用吸附塔15台,4塔同时吸附,6次连续均压带4次吹扫,即15-4-6工艺流程;程控阀共219台,装填吸附剂为硅胶,进一步控制CO 2 含量不高于0.0150%。 提纯段采用吸附塔18台,3塔同时吸附,12次连续均压带顺放吹扫,即18-3-12工艺流程;程控阀共246台,装填吸附剂为分子筛,用于提纯 CO (纯度不低于98.5%)。 1.2辅助液压油系统 液压油泵系统作用是为变压吸附系统中液压程控阀的启闭提供动力(工作压力4.8~5.3MPa )。由4个主油箱、1个副油箱、8台功率为25kW 的齿轮油泵以及61台为稳定油压、减小油路系统压力波动的蓄能器组成。 2变压吸附系统运行情况 2010年6月,水煤气变压吸附一氧化碳提纯 系统建成投产,一次开车成功。该系统运行初期除遇到因设备原因如电磁阀、程控阀故障等,使得吸附塔串压,影响系统稳定运行及产品气质量。除此之外还遇到了一些工艺技术设计问题,经过不断技术改造和优化,使系统达到了设计要求。目前整套系统运行状况良好。 3变压吸附系统的工艺优化3.1放空气回收利用 变压吸附系统原设计粗脱段、净化段吹扫气 变压吸附提纯一氧化碳工艺系统的优化运行 杨军红,肖红玲,李小倍 (兖矿鲁南化工有限公司,山东滕州277527) 摘要:介绍醋酐装置水煤气变压吸附提纯一氧化碳工艺系统,分析系统运行中出现的问题,提出具体的优化改造措施,改造后使整个系统实现了安全、稳定、长周期效益运行。 关键词:变压吸附 一氧化碳 优化改造 2013年4月第36卷第2 期 Large Scale Nitrogenous Fertilizer Industry Apr.2013Vol.36No.2

氧气充装站安全技术操作规程完整

气瓶充装安全技术操作规程 1、充装前的检查 气瓶在充装之前,必须经过认真仔细的检查,以防止一切不符合要求和规定的气瓶投入充装,排除不安全因素,保证气瓶在充装和使用过程中的安全。 ①气瓶是否由持有制造许可证的单位制造的,气瓶是否属于制造单位或有关主管安全监察部门宣布报废或规定停用或需要复检的产品。 ②气瓶改装是否符合要求。 ③气瓶原始标志是否符合标准和规定,铅印字迹是否清晰可见。气瓶的铅印标记上的容应包括:气瓶制造单位名称或代号;气瓶编号;水压试验压力;公称工作压力;实际质量;实际容积;瓶体设计壁厚;制造单位检验标记和制造年月;监督检验标记;寒冷地区用气瓶标记。 ④气瓶是否在规定的定期检验有效期限。 ⑤气瓶上标出的公称工作压力是否符合欲装气体规定的充装压力。气瓶的公称工作压力规定如下:气体在基准温度下(20℃)的充装压力(盛装压缩气体的气瓶);按规定的充装系数充装,温度为60℃时介质压力(液化气体);限定充装量下,温度为60℃时瓶乙炔气的压力(溶解乙炔)。 ⑥气瓶的颜色、字样是否符合《气瓶颜色标记》的规定。 ⑦气瓶附件是否齐全,并符合技术要求。 ⑧气瓶有无剩余压力,剩余气体与欲装气体是否相符合。

⑨盛装氧气或强氧化性气体的气瓶的瓶阀和瓶体是否沾有油脂。 ⑩首次充气的气瓶是否经过置换或真空处理。 ⑩瓶体有无裂纹、严重锈蚀、明显变形、机械损伤等缺陷。 2、气瓶的充装量 气瓶的充装量是指气瓶在单位容积允许充装的气体或液化气体的最大质量,所以也称最大充装量或安全充装量。各类气瓶的充装量应该根据气瓶的许用压力和最高使用温度确定。其原则是保证所装气体或液化气体在最高使用温度下,其压力不超过气瓶的许用压力。 气瓶许用压力是为保证气瓶安全,允许瓶达到的最高压力。我国规定:高压气瓶的许用压力等于气瓶的公称工作压力;永久气体气瓶的许用压力为公称工作压力的1.2倍或水压试验压力的0.8倍。 气瓶的最高使用温度是指气瓶在充装气体以后可能达到的最高温度。根据我国《气瓶安全监察规程》规定,国使用的气瓶,最高使用温度为60℃。 永久气体(压缩气体)气瓶的充装量与液化气体不同,它是指在最终充装温度下的充装压力。 3、液化气体的充装 ①实行充装复检制度,严禁过量充装。 ②称量衡器应保持准确。 ③严禁从液化石油气槽车直接向气瓶灌装。 ④充装后逐只检查,发现有泄漏或其他异常现象应妥善处理。 ⑤认真填写充装记录。

液化气体罐车充装操作规程

液化气体槽车装卸操作规程 2012.2

文件名称:液化气体槽车装卸操作规程文件编号: 版本/改次: 实施日期: 编写: 审核: 批准:

目录 1. 目的 2. 适用范围 3. 职责 4. 充装前必须检查下列事项: 5.充装前检查,发现下列情况之一的,不得充装: 6.充装作业操作规程 6.1基本要求 6.2液体CO2汽车槽车装卸车规程 6.3液氧、液氩汽车槽车装卸规程 7.液化气体槽车置换操作规程 8. 安全操作注意事项 9. 低温液体充装的防护和救护 液化气体槽车装卸操作规程

1. 目的 为了安全、正确地对液体槽车进行置换、充装特制定本规程。 2. 适用范围 本规程适用于对液体槽车的充装工作。 3. 职责 3.1 岗位值班长、充装员、复秤员、安全员、资料员负责液体槽车充装前的检查、充装、计量、安全检查和充装质量控制,对充入槽车中的产品质量、充装重量负责,对低温灌区的设备使用负责; 3.2操作员接到相关负责人员的指令,低温液体运输车驾驶员应向操作人员提供经营部开具的提货手续,驾驶员出示槽车空车过磅单并审核(重量、车牌等),登记车牌号和驾驶员姓名后,方可进行下一步工作。 3.3 槽车充液前后,操作人员填写分析单送化验室,对产品质量进行分析,要求化验室出具分析报告单。 3.4真实、及时、全面做好充装过程的全部记录资料,并妥善保管。 4.充装前必须检查下列事项: 4.1 汽车槽车的使用单位是否按规定办理汽车槽车使用证。 4.2 汽车驾驶是否具有机动驾驶执照和汽车槽车准驾证。 4.3 汽车槽车押运员是否具有押运员证。 4.4 汽车槽车是否具有危险品准运证。 4.5 汽车槽车是否在检验期内。 4.6 槽车的液面计指示刻度与容积的对应关系表,在不同温度下,介质密度、压力、体积对照表是否符合相关规定。 4.7 汽车运行情况是否良好,并检查其记录。 4.8 汽车槽车装卸是否出现过异常,并检查其记录。 检查合格后,按《介质分析和余压检测操作规程》检查罐内余压符合要求并通知化验人员对槽车余气成分取样分析,确认合格后方可进行充装。 5.充装前检查,发现下列情况之一的,不得充装: 5.1 汽车槽车使用证或准运证已超过有效期。 5.2 汽车槽车未按规定进行定期检验。 5.3 汽车槽车漆色或标志不符合有关规定。 5.4 槽车未携带防护用具、服装、专用检修工具备品、备件。 5.5 随车必带的文件和资料不符合有关规定或与实物不符。 5.6 首次投入使用或检修后首次使用的汽车槽车,不能提供置换合格分析报告单 或证明文件的。 5.7 槽车余压不符合以下要求:二氧化碳槽车不低于1.5Mpa,液氧槽车不低于 0.1 Mpa ,液氩槽车不低于0.1Mpa。槽车内余气成分分析不合格者。 5.8 槽车罐体(筒体、封头、人孔盖、凸缘、螺栓)或安全附件(爆破片装置、 紧急切断装置、导静电装置、安全阀、压力表、液面计、温度计)、阀门等有任何异常。 5.9 充装站内压力表超过检验期的。

氮气安全操作规程

编号:CZ-GC-04691 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 氮气安全操作规程 Nitrogen safety operation procedures

氮气安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 (1)氮气管道检修或停送气必须向调度室申请,经批准后方可进行。 (2)氮气管线中所设安全阀、压力表、放散阀、疏水阀必须齐全完好。 (3)操作阀门时,操作人员严禁将身体各部位正对阀门手轮且用力不可过猛。 (4)检查氮气管道泄漏及氮气放散时,人员应站在上风侧,必要时佩戴防毒面具。 (5)严禁氮气管道与煤气管道连接。如果使用氮气吹扫煤气管道,吹扫完毕后应立即断开氮气管道。动火作业前,应彻底落实氮气管道和煤气管道是否有连接之处,并办理动火作业票。 (6)氮气使用注意事项 ①进入充装氮气的设备、管道和容器内部检修作业时,应办理

有限空间作业票,并切断气源、堵好盲板,执行停机、停电挂牌制度,并用空气置换内部气体,对设备内部进行通风处理,检验合格经确认后(氧含量达到19%.5—22%),方可准许工作人员并在有人监护下进入。 ②氮气管道不得敷设在通行地沟内,氮气的放散安全间距不得少于10米。 ③使用氮气的现场或操作室需有良好的通风换气设施。 ④使用氮气时,应有防止人员窒息的防范措施。 ⑤在氮气浓度高的环境中作业时,必须佩带氧气呼吸器,并有人负责监护,应对氮气阀门严加管理,防止误操作。 ⑥进入氮气危险区域点巡检,需按照规定携带氧气报警器,及时监测氧气含量。 ⑦提升安全防范意识,随时警惕,查找泄漏隐患并及时整改治理。 ⑧严禁使用氮气、压缩空气(内含氮气)吹扫人员或身体衣物。 ⑨严禁使用氮气打扫设备及地面卫生。

一氧化碳变换的主要设备及操作控制

一氧化碳变换的主要设备及操作控制 摘要:本文根据作者自己的工作经验,结合实际,对一氧化碳变换的知识进行阐述,并探讨了一氧化碳变换的主要设备和变换过程中的操作要点。 关键词:化工;一氧化碳变换;设备;操作要点 1.一氧化碳变换的主要设备 1.1变换炉 变换炉随工艺流程不同而异,但都应满足以下要求:变换炉的处理气量尽可能大;气流阻力小;气流在炉内分布均匀;热损失小,温度易控制;结构简单,便于制造和维修,并能实现最适宜温度的分布。变换炉主要有绝热型和冷管型,最广泛的是绝热型。现介绍生产中常用的两种不同结构的绝热型变换炉。 (1)中间间接冷却式变换炉 中间间接冷却式变换炉结构的外壳是由钢板制成的圆筒体,内壁砌有耐混凝土衬里,再砌一层硅薄土砖和一层轻质黏土砖,以降低炉壁温度和防止热损失。内用钢板隔成上、下两段,每层催化剂靠支架支撑,支架上铺篦子板,钢丝网及耐火球,上部再装一层耐火球。为了测量炉内各处温度,炉壁多处装有热电偶,炉体上还配置了入孔与装卸催化剂口。 (2)轴径向变换炉 半水煤气和蒸汽由进气口进入,经过分布器后,70%的气体从壳体外集气器进入,径向通过催化剂,30%气体从底部轴向进入催化剂层,两股气体反应后一起进入中心内集气器而出反应器,底部用Al2 O3球并用钢丝网固定。外集气器上开孔面积为0.5%,气流速率为6. 7m/s,中心内集气器开孔面积为1.5%,气流速率为22m/ s,大大高于传统轴向线速0. 5m/s。因此,要求使用强度较高的小颗粒催化剂。轴径向变换炉的优点是催化剂床层阻力小,催化剂不易烧结失活,是目前广泛推广的一项新技术。 1.2饱和热水塔 饱和塔的作用是提高原料气的温度,增加其水蒸气含量,以节省补充蒸汽量。热水塔的作用主要是回收变换气中的蒸汽和湿热,提高热水温度,以供饱和塔使用。工业上将饱和塔和热水塔组成一套装置的目的是使上塔底部的热水可自动流入下塔,省去一台热水泵。 目前饱和塔用新型垂直筛板塔,可提高传质效率20%左右,气体处理量可提高50%以上,具有低压降,抗结垢抗堵塞能力强的特点。

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

相关主题
文本预览
相关文档 最新文档