当前位置:文档之家› 转体斜拉桥斜拉索主要施工方法

转体斜拉桥斜拉索主要施工方法

转体斜拉桥斜拉索主要施工方法
转体斜拉桥斜拉索主要施工方法

转体斜拉桥斜拉索主要施工方法

1.1施工准备

1.1.1成品索的检验

斜拉索出厂前按设计要求,对斜拉索有关性能进行检验。

斜拉索到达现场后,查验并索取每根成品索的质量保证书(质量保证书含本批交货的数量、质量及各种检验结果);如果进行了非常规试验,需提供检验报告。

1.1.2索导管的处理

斜拉索锚头外径与索套管的内径相差很小,挂索时极易产生位置偏差,从而造成锚头外螺牙和斜拉索PE保护套的损伤,因此斜拉索挂设前应对塔、梁端的索套管进行全面的检查,对索套管内的焊渣、毛刺等进行打平磨光。

1.2 斜拉索上桥和桥面水平运输

根据斜拉索安装计划,斜拉索制造厂将验收后待交付的斜拉索陆路运输运至适当位置。斜拉索采用汽车吊提升上桥面置于卧式放索机上,吊装时为了避免对斜拉索外包PE的伤害,采用大直径纤维绳、或直接使用10t软吊带进行吊装。

1.3 斜拉索的塔端挂设及桥面展开

7~8#索长度比较短,塔端挂设完成后斜拉索已基本展开,

直接采用塔吊提升剩余斜拉索即可完成桥面展开。1~6#索稍长,需采用以下步骤进行桥面展索。

1)7~8#索的塔端挂设方法(硬牵引)

具体步骤:

具体步骤:

第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。

第二步:在塔端锚头处安装内衬套和张拉杆以及在合适位置安装索夹,连接塔吊。

第三步:塔内下放牵引绳,将其与张拉端头连接。

第四步:塔内牵引绳与塔吊做到同步起吊,塔吊提供主动力,同时与塔内牵引绳协助调整张拉杆及斜拉索前端角度,塔内进行临时锚固,将螺母至少拧上三牙以上,塔吊松钩,拆除连接夹具。

2)1~6#索的塔端挂设及桥面展开(软牵引)

具体步骤如下:

第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。

第二步:在塔端锚头处安装软牵引装置以及在合适位置安装索夹,连接塔吊。

第三步:塔内下放牵引绳,将其与张拉端头连接。

第四步:塔内牵引绳与塔吊做到同步起吊,塔吊提供主动力,同时与塔内牵引绳协助调整张拉杆及斜拉索前端角度,塔内进行临时锚固,塔吊松钩,拆除连接夹具。

第五步:在斜拉索后部安装夹具,塔吊挂钩,启动塔吊提升斜拉索后部,完成斜拉索桥面完全展开,移走卧式放索机、导向滚轮。

第六步:将梁端锚头置于锚头小车上,并与桥面牵引卷扬机的钢丝绳连接,卷扬机牵引梁端锚头前行,同时塔吊缓慢下放斜拉索,并将其置于托索小车上,完成斜拉索的桥面展开。

斜拉索塔端挂设桥面起吊塔端锚头

斜拉索桥面展索

1.4斜拉索的梁端挂设

根据斜拉索的锚固牵引力不同,斜拉索的梁端牵引主要采用桥面卷扬机牵引,配以汽车吊提升锚头完成梁端锚固斜拉索,考虑到抱箍摩擦会对斜拉索外护层的破坏,梁端卷扬机牵引最大牵引力控制在10t以内:7~8#索的锚固牵引力较小,同时在塔端锚头连接了柔性拉杆,因此,该类索只需采用桥面卷扬机并辅以手拉葫芦即可完成梁端挂设。1~6#索锚

固牵引力较大,但在塔端锚头处连接软牵引后,梁端锚固牵引力随之有所减小,保证索力在10t以内,卷扬机牵引也满足斜拉索梁端挂设。

1)7~8#索梁端挂设方法

第一步:在梁端锚头合适位置安装索夹和吊带,塔吊挂钩,提升斜拉索固定端。

第二步:梁端锚头处连接桥面卷扬机钢丝绳,桥面卷扬机牵引梁端锚头至索套管口处,卷扬机滑车组牵引至索导管口,调整角度,用手拉葫芦辅助进入梁端索导管。

第三步:锚头入梁端索套管后,螺母拧至1/2锚杯处锚固,完成斜拉索的梁端挂设。

2)1~6#索梁端挂设方法

第一步:在梁端锚头后3~5m适当位置处安装索夹,索夹上安装20T滑车组,汽车吊挂钩,提升斜拉索索夹,使锚头离开桥面,达到一定高度;

第二步:卷扬机牵引,汽车吊根据锚头及索导管角度进行高低调节,使锚头能进入索导管内,同时用3吨葫芦协调锚头顺利进入;

第三步:锚头入梁端索套管后,螺母拧至1/2锚杯处锚固,完成斜拉索的梁端挂设。

梁端索夹和滑轮组安装

葫芦协调入洞梁端锚头入洞

转体斜拉桥斜拉索主要施工方法

转体斜拉桥斜拉索主要施工方法 1.1施工准备 1.1.1成品索的检验 斜拉索出厂前按设计要求,对斜拉索有关性能进行检验。 斜拉索到达现场后,查验并索取每根成品索的质量保证书(质量保证书含本批交货的数量、质量及各种检验结果);如果进行了非常规试验,需提供检验报告。 1.1.2索导管的处理 斜拉索锚头外径与索套管的内径相差很小,挂索时极易产生位置偏差,从而造成锚头外螺牙和斜拉索PE保护套的损伤,因此斜拉索挂设前应对塔、梁端的索套管进行全面的检查,对索套管内的焊渣、毛刺等进行打平磨光。 1.2 斜拉索上桥和桥面水平运输 根据斜拉索安装计划,斜拉索制造厂将验收后待交付的斜拉索陆路运输运至适当位置。斜拉索采用汽车吊提升上桥面置于卧式放索机上,吊装时为了避免对斜拉索外包PE的伤害,采用大直径纤维绳、或直接使用10t软吊带进行吊装。 1.3 斜拉索的塔端挂设及桥面展开 7~8#索长度比较短,塔端挂设完成后斜拉索已基本展开,

直接采用塔吊提升剩余斜拉索即可完成桥面展开。1~6#索稍长,需采用以下步骤进行桥面展索。 1)7~8#索的塔端挂设方法(硬牵引) 具体步骤: 具体步骤: 第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。 第二步:在塔端锚头处安装内衬套和张拉杆以及在合适位置安装索夹,连接塔吊。 第三步:塔内下放牵引绳,将其与张拉端头连接。 第四步:塔内牵引绳与塔吊做到同步起吊,塔吊提供主动力,同时与塔内牵引绳协助调整张拉杆及斜拉索前端角度,塔内进行临时锚固,将螺母至少拧上三牙以上,塔吊松钩,拆除连接夹具。 2)1~6#索的塔端挂设及桥面展开(软牵引) 具体步骤如下: 第一步:塔吊提升锚头,同时转动放索机,放松斜拉索,当塔吊将塔端锚头提升一定高度后,缓慢落钩将塔端锚头置于锚头小车上。 第二步:在塔端锚头处安装软牵引装置以及在合适位置安装索夹,连接塔吊。

斜拉桥斜拉索施工作业指导书(DOC)

中铁十三局集团有限公司 施工过程控制标准化管理手册(桥梁分册) 斜拉桥斜拉索施工作业指导书(高强平行钢丝斜拉索) 编制: 审核: 批准:

目录 1.目的 (1) 2.编制依据 (1) 3.适用范围 (1) 4.技术准备 (1) 4.1内业准备 (1) 4.2外业准备 (1) 4.2.1施工前检查工作 (1) 4.2.2 安装预埋件的布置 (2) 5.劳动组织 (2) 6.材料要求 (2) 6.1斜拉索 (2) 6.2锚具 (3) 7.设备机具配置 (3) 8.施工工艺流程 (3) 9.施工作业方法及要求 (4) 9.1斜拉索进场 (4) 9.2斜拉索放索 (4) 9.3拉索水平牵引 (5) 9.4拉索的挂设 (5) 9.4.1上锚安装 (5) 9.4.2 下锚安装 (6) 9.5拉索的张拉 (8) 9.5.1张拉前的准备工作 (8) 9.5.2 张拉施工 (9) 9.6索力调整 (10) 9.6.1 调索的目的及次数 (10) 9.6.2 调索的步骤 (11) 9.6.3 调索注意事项及效果 (11) 9.7斜拉索的临时减振 (11) 9.8斜拉索检查及修补 (12) 9.9斜拉索附属安装 (12) 9.10斜拉索的防腐 (12) 9.10.1索体防腐 (12) 9.10.2 锚具端面、外露斜拉索的防腐 (12) 9.11技术要求 (12) 10.质量控制及检验标准 (13) 10.1斜拉索安装质量控制要点及措施 (13) 10.2拉索张拉质量控制要点及措施 (13) 11.安全及环保要求 (13) 11.1组织机构 (13) 11.2安全要求 (14) 11.2.1 挂索安全要求 (14)

桥梁转体施工方案

球铰法转体施工方法及工艺 ⑴概况 XXXX立交特大桥左线桥在HK21+497.91~HK21+561.91上跨既有兰武铁路,其上部结构采用(40+64+40)m单线预应力混凝土连续梁。该桥与既有兰武线夹角约为30°。为保证既要兰武铁路运营安全,减少施工过程中对既有线运营干扰,连续梁采用转体施工。转体前在连续梁两主墩处平行于既有兰武铁路挂篮浇筑悬灌段施工,待施工到最大悬臂状态后,结合既有铁路运营、施工天气等因素,择机实施转体施工。将连续梁梁体逆时针旋转30°,转体到位后再进行合龙段施工。连续梁旋转前位置详见图2.5.5-26旋转前平面示意图。 ⑵转体结构 钢球铰平转体系主要有承重系统、顶推牵引系统和平衡系统三大部分构成,转体结构侧面示意图详见图2.5.5-27。承重系统由上转盘、下转盘和转动球铰构成,上转盘支承转体结构,下转盘与桩基础相连,通过上转盘相对于下转盘转动,达到转体目的,上转盘平面示意图详见图2.5.5-28。顶推牵引系统由牵引设备二台ZLDl00型100t连续千斤顶及二台普通YCWl00型100t助推千斤顶构成、牵引反力支座、顶推反力支座构成;平衡系统由结构本身、上承台的钢管混凝土圆形撑脚、大吨位千斤顶及梁顶放置的四个容积5方备用水箱构成。转体结构施工过程图详见图2.5.5-29转体结构施工工艺流程图。

图2.5.5-26 旋转前平面示意图 图2.5.5-27 转体结构侧面示意图 图2.5.5-28 上转盘平面示意图 武威 兰 武 铁 路 逆时 针旋转 逆时针旋 转 助推反力支座 助推反力支座 后封C50微膨胀混凝土 转动中心线结构中心线 桥墩 环形滑道撑脚 环形滑道撑脚上转盘 下转盘 牵引反力A支座 牵引反力B支座 助推反力支座 索2 索1 转体球铰 环形滑道

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

转体斜拉桥施工监理细则

转体斜拉桥施工监理细则 1.转盘及球铰施工监理 (1)审核承包人的施工方案,注意要求承包人附基坑支护检算资料并予以复核,注意审核其安全施工部分,还应注意审查球铰安装方法,确认其科学、合理性,铁路部门需要审批的要督促承包人按规定报批,同意后承包人方可施工。 (2)审查承包人报送的混凝土配合比,确保其满足设计及相关规范要求。因转盘为大体积混凝土,配合比设计时应从原材料选用、用量、对混凝土质量的影响等方面综合考虑,确保其满足大体积混凝土施工需要。 (3)因本工程转体重量较大,因此钢球铰的加工质量必须达到较高水准。审查转体钢球铰加工单位资质时,要看其是否满足本工程球铰加工的要求,特别应注意是否有类似的工程业绩,必要时与承包人及业主一起实地考察钢球铰加工单位,保证球铰加工质量(此工作宜尽早进行)。 (4)承台基坑开挖前,对其测量放线工作进行复核,确保满足设计及相关规范要求。 (5)施工中注意检查承包人是否按照支护方案进行了基坑支护,坑内施工人员安全作业情况,以确保施工安全。 (6)转盘制作施工监控要点 在桥跨径较大,转动体系重心较高的转体施工中,转盘结构一般采用环道与中心支承相结合的双支撑式转盘。该转盘结构由轴心、中心支承及环形滑道组成。 ①轴心 一般用钢轴(或用球铰钢棒定位轴),直径视转体时两侧牵引力的差值大小而定,轴心控制转动体系的水平方向位置,其横截面抗剪须有足够的安全系数。钢轴的材料物理力学性能必须满足设计及规范要求。 轴心按设计蓝图要求大部分固定于下转盘中,上半部分应车光镀铬、外套10mm的四氟管。四氟管外再套钢管,钢管顶部用钢板封焊。钢管内壁亦应车光镀铬,钢管下口与中心上支承器钢板焊接。在外套钢管支承钢板中心上焊连接钢筋,并浇入上转盘混凝土中。转轴顶端与钢管上盖板底面应留20mm空隙,以保证自由转动。 ②中心支承 中心支承为钢球铰,承受部分转动体系的重量,必须确保加工精度,与上球铰间应进行润滑处理(例如涂润滑剂),确保转体的顺利。 ③环形滑道 环形滑道直径一般为转动体系悬臂长度的1/6~1/10。 在下环道混凝土面敷设弧形镀铬钢板或平整度较高的钢板上加一层厚度为3-5mm的不锈钢板,转动时上环道的四氟板或四氟千岛走板与环道接触面滑动,如右图。

转体桥梁施工方案、工艺、措施

转体桥梁施工方案、工艺、措施 南河川渭河特大桥(72.5+120+72.5)m连续梁跨越陇海线,采用转体施工,转体重量约12000t。 进行承台施工时完成转体系统的安装,转体系统主要由下转盘、球铰、上转盘以及转体动力系统组成。在施工承台时精确安装球铰,然后进行墩身施工。 按照挂篮悬臂浇筑法完成梁体的施工。待最后节段强度和弹模达到设计要求,进行张拉压浆,达到强度后,拆除墩旁托架,进行转体施工。 转体分试转、正式转体和精调对位三个过程。 调试牵引系统,清理、润滑滑道。拆除有碍平转的障碍物。先让辅助千斤顶达到预定吨位,再启动牵引千斤顶使转动体系起动,牵引牵引索平转;在平转就位处设置限位装置,避免过转,平转基本到位后降低平转速率,采用点动迁移进行精确就位;焊接上下转盘钢筋进行固定,清理杂物后浇筑上下转盘混凝土。 转体就位后,拆除主墩临时垫块,拆除多余水平约束,同时进行两边跨合拢段施工,然后进行中跨合拢段段施工。 转体施工工艺流程框图见图2.5.3.14。

图2.5.3.14 转体施工工艺流程图 2.5. 3.9.1钻孔桩施工 主墩23#、24#位于铁路路基坡脚附近,基坑开挖会对铁路路基产生影响,桩基施工前对铁路路基进行防护,采用钻孔桩防护,桩径、桩长根据受力计算确定。 2.5. 3.9.2承台施工 由于转体的核心部件球铰位于承台中,承台的施工工艺流程如下: 基坑开挖→施工下承台第一次混凝土→安装球铰定位底座→浇筑下承台第二次混凝土→安装下球铰→浇筑球铰下混凝土→安装环道→浇筑环道下混凝土→浇筑反力座混凝土→安装上球铰→安装撑脚→浇筑上承台混凝土。 2.5. 3.9.3转动体系施工 进行承台施工时完成转体系统的安装,转体系统由下转盘、球铰、上转盘、转动牵引系统组成,转体完成后,上下转盘共同形成承台。 转体系统构造见下图2.5.3.15 ⑴下转盘 下转盘承台截面尺寸18m×18m×6.1m,分三次浇注成型,用于固定球铰支架、滑道支架。滑道宽1.2米,半径5米,滑道顶面为3mm厚不锈钢板,安装时任两点相对高差≯2mm,且任意3m弧长滑道高度差不大于1mm。 ⑵球铰

斜拉桥拉索自振频率分析

斜拉桥拉索自振频率分析 摘要:应用数理方程知识和有限元理论,分别求得斜拉索自振频率的解析解和数值解,并将两种方法得到的结果进行比对,证明了解析法和有限单元法的可靠性,为拉索的风雨激振和参数共振分析提供基础。 关键词:斜拉桥;拉索;自振频率 Abstract: the application of mathematical equations knowledge and finite element theory, respectively given.according vibration frequency of stay-cables analytical solution and the numerical solution, and will by the two methods than the results, and proves the analytic method and finite element method of reliability, for the storm of the lasso excitation and parameter resonance analysis provides the foundation. Keywords: cable-stayed bridge; The lasso; The natural frequency of vibration of 1. 引言 随斜拉桥跨度的不断增大,斜拉索变得越来越长,因为索的大柔度、小质量和小阻尼等特点,极易在风雨、地震及交通等荷载激励下发生振动[1]。长拉索前几阶频率在0.2-0.3Hz时,模态阻尼比只有0.1%,更有可能发生大幅的摆动。迄今,已有许多斜拉索风致振动的报导:日本结构工程协会(Japan Institute of Construction Engineering) 在1988 年一年内对日本的五座斜拉桥斜拉索振动进行了观测和测量,发现它们的最大振幅如下:Brotoni桥达600毫米,Kofin桥达1000毫米,Meikeh桥达600毫米,Aratsu桥达300毫米,大约为直径的两倍。在国内,1992 年南浦大桥在一次风雨联合作用的情况下浦西岸尾部几根斜拉索发生了较大的振动;杨浦大桥尾索在风雨共振作用下也发生过剧烈的振动,最大振幅超过l米。2001年,在南京长江二桥通车前,桥上斜拉索在风雨激振下发生大幅摆动,导致安装在梁端的部分油阻尼器损坏[3-5]。 目前对斜拉索风致振动的研究主要集中在单索的风致振动,已经发现的斜拉索可能的振动类型主要包括以下六类:(1) 顺向风振动;(2) 风雨激振;(3) 横风向驰振;(4) 涡激共振;(5) 参数共振。 1. 顺向风振动是拉索振动最常见的一种。由于风速可以分解为平均风速和脉动风速,风对拉索的作用也表现为平均风引起的静内力、静位移和脉动风引起拉索的振动响应,包括动内力、动位移和振动加速度。

稀索转体斜拉桥主梁采用支架法施工的技术要点

收稿日期:2003-08-18 作者简介:宋 杰(1968-),男,河南省郑州市人,本科,高工. 稀索转体斜拉桥主梁采用支架法施工的技术要点 宋 杰,李艳哲 (中铁大桥局集团一公司,河南 郑州 450053) 摘 要:稀索转体斜拉桥主梁具有其独特的结构特点和施工要求,采用支架法施工主梁时,对此应给予高度重视,以保证施工过程中支架及梁体的结构安全。本文根据某桥的施工实践,介绍采用满铺钢管支架法施工该桥主梁的技术要点。 关键词:满铺支架;转体斜拉桥;主梁;施工 文章编号:1009-6477(2004)02-0061-04 中图分类号:U448.27 文献标识码:A Technical Points for Main Beam of Rotational Cable -stayed Bridge with Rare Stay Cable s Constructed by Support Method SONG Jie ,LI Yan 2zhe Abstract :Main beam of rotational cable -stayed bridge with rare stay cables has the unique structural character 2istics and construction requirements ,which should be paid much attention when main beam is constructied by support method ,s o as to ensure the structural safety of the support and beam during construction.This paper in 2troduces the technical points of the main beam of a bridge constructed by the supports with fully paved steel tubes. K ey w ords :support with fully paved steel tubes ;rotational cable -stayed bridge ;main beam ;construction 转体法施工在桥梁工程施工中已较为广泛,尤其是在主跨上部结构施工条件受限,但边跨具有相对较好的施工条件的情况下。主梁为预应力混凝土结构的斜拉桥采用转体法施工时,主梁结构设计一般均需考虑施工的方法。满铺支架法是桥梁上部结构施工中较常见的一种施工方法,尤其是在墩身不高的旱地上浇注桥梁主梁时,几乎成为首选方法。特别适用于工期要求较短的市政交通工程。用满铺钢管支架法施工稀索转体斜拉桥主梁时,要充分考虑其结构特点和整体要求。1 稀索转体斜拉桥主梁的结构特点 转体法施工的斜拉桥国内为数不多。受转铰结构加工及安装要求限制,主桥规模一般不会太大,国内现有的该类桥梁主梁跨度大多在100m 左右。稀索斜拉桥因主索布置稀少,其索力要求较大,索的断面因此较粗。受此影响,为满足施工及使用阶段的内力要求,梁体内预应力束多为三向预应力,纵向束一般布置较多且上下交错复杂。此外,受斜拉索锚 固传力的需要,结构断面变化较多。这就形成了稀 索转体斜拉桥主梁典型的结构特点。2 稀索转体斜拉桥主梁施工的技术要点 转体法施工的斜拉桥,主梁一般在支架上浇筑,待预应力及斜拉索张拉后脱架转体。施工过程中,预应力及斜拉索的张拉不但将使梁体受到纵向压缩,更重要的是会引起梁体不同区段的竖向变形,造成支架的支撑反力将重新分配。尤其对于稀索斜拉桥的主梁,其结构反应更加明显。因此,支架及其基础设计时,一是要注意减小支架及模板对梁体的纵向约束,以保证梁体纵向预应力的及时有效性,同时需认真分析研究支架的竖向支撑问题,以满足施工过程中支架及其基础的可靠性。必要时可适当调整施工工序,通过提前挂设张拉斜拉索以减少支架的支撑反力,同时改善主梁施工过程中的应力状态。 此外,因斜拉桥施工阶段内力的渐进性,梁体施工过程中的支撑形式及其竖向刚度都将影响主体结构的内力形成。也就是说,不同的支架形式及其支 公路交通技术 2004年4月 第2期 T echnology of Highway and Transport Apr.2004 No.2

斜拉桥平行钢绞线斜拉索安装施工工艺

斜拉桥平行钢绞线斜拉索安装施工工艺 10.1.1工艺概述 本工艺适用于斜拉桥平行钢绞线斜拉索施工,明确平行钢绞线斜拉索施工作业的工艺流程、操作要点和相应的工艺标准,指导、规范平行钢绞线斜拉索的施工。 10.1.2作业内容 平行钢绞线斜拉索安装作业包括 PE 管制作、PE 管及钢绞线安装、钢绞线张拉、顶压夹片、索力平均、索力监测、调索、安装减震器、防护处理等工序。 10.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 10.1.4工艺流程图 图10.6.4-1 平行钢绞线斜拉索安装工艺流程图 10.1.5工艺步骤及质量控制 一、施工准备 1.施工场地布置 (1)材料存放场地

在施工现场便于运输的地方设置材料存放场地,斜拉索部件在堆放和吊运时应无破损、无变形、无腐蚀。施工场地内需要存放的主要构件有:钢绞线;短节高密度聚乙烯外套管(HDPE管)、延伸管、热缩管;钢质PE管保护罩和张拉端及锚固端的锚垫板;锚头;其它临时构件。 存放场地表面应平整,可直接在其上铺枕木抄垫存放构件,在存放场内均需搭设临时棚用以存放锚头、钢质PE管保护罩、锚垫板等铁件以防下雨受潮生锈。钢绞线盘、聚乙烯管露天用彩条布覆盖即可。锚头运到现场时应根据运输文件检查其数量,检查包装是否有损伤,检查锚具组件是否完好。短节HDPE管在装卸时应小心轻放,连同外包装塑料袋整体装卸,避免损伤或弄脏外表。存放时应在下方垫以方木,并摆放整齐,上盖塑料布。锚具采用二点吊装,把锚具放在木制平台(枕木)上。锚具可水平放置也可竖向放置,如果储放时间短,最好水平放置;若时间较长则垂直放置。水平放置时在储存期内应特别注意对锚头丝扣和锚头内延伸管的保护。锚具在储存期间应采取措施以防延伸管束、导向管变形和锚头上的孔洞被杂物堵塞。 (2)塔内外挂索施工脚手架搭设 塔外挂索施工脚手架搭设:为经济计,塔外挂索施工脚手架的搭设宜在塔柱施工之前与塔柱施工脚手架综合考虑。塔外脚手架的搭设应满足:挂索期间不与斜拉索相碰;方便塔外索道管口操作;通道畅通;结构安全等的要求。 塔内挂索施工脚手架搭设:挂索施工脚手架的搭设可与塔柱施工脚手架综合考虑采用固定式脚手架,也可以在塔柱施工完后采用塔顶吊挂的活动平台脚手的形式。 (3)HDPE管焊接车间 需一大约2Om× 10Om的矩形工作区建造HDPE管焊接车间,焊接车间可建在桥面,如桥面不具备设置焊接车间的条件,可在地面上便于运输处设置焊接车间,焊接好的HDPE管经运输抵达墩位处由塔顶卷扬机起吊安装。 二、斜拉索验收 斜拉索部件进场后应进行钢绞线、锚头、夹片、HDPE管等重要部件的抽检: 1.钢绞线柚检: (1)钢绞线力学检验:按有关规范、设计要求和试验规程进行操作。 (2)外观检查: ①外包聚乙烯皮是否光滑、均匀、对钢绞线包裹紧密,是否划伤、有缺陷(此项工作多半在挂索过程中进行); ②外包聚乙烯皮的厚度应不小于15mm,以便有良好的保护钢绞线功能; ③外包聚乙烯皮的外径是否过大(有些体系的锚头对此有严格限定,聚乙烯皮外径过大容易将延伸管端部的密封圈带出理论位置而起不到密封油脂功能); ④外包聚乙烯皮是否外观浑圆,无凹陷现象; ⑤将外包聚乙烯皮的钢绞线放直,在长度方向任一位置的10m长度弯曲度最大不大于25mm; ⑥钢绞线不能有任何的机械损伤或腐蚀。 2.锚头抽检: (1)硬度检验:按有关规范、设计要求和试验规程进行操作。 (2)外观检查:应全部检查,主要检查有无外观缺陷、表面裂缝、有关尺寸是否正确,对每孔均应做探入式检查,检查是否有扭孔、破损、孔洞、被杂物堵塞等情况出现。检查螺纹有无破损,碰伤、被水泥渣弄脏的情况。 3.夹片抽检 (1)硬度检验:按有关规范和试验规程操作。 (2)外观检查:夹片是否有生锈、尺寸异常情况。 4.HDPE管检查: HDPE管主要做外观检查:检查是否连续挤压或为标准长度焊接,焊接处强度不小于母材强度。检查外表色泽是否退色或改变、是否有划伤、被污物污染或其它缺陷、厚度是否均匀、圆度是否良好。 5.钢质PE管保护罩:

浅谈转体桥梁的施工现状及关键技术

侯书亮水务二班 1101060228 浅谈转体桥梁的应用现状及关键技术 摘要:随着我国城市交通的发展,道路立交化已经是大势所趋。尤其是在已修建的公路、铁路上修建桥梁,每月必须申请多日铁路 A 类“天窗”内方可施工,不但施工进度受到道路行车运营情况的严重制约,而且也会影响繁忙的道路正常运营,同时也对道路的安全构成严重威胁。所以转体桥梁施工技术应运而生,并在近几年取得飞速发展。随着转体桥梁技术的大范围应用,其关键技术成为保障工程质量的关键性因素。现对转体桥梁的应用现状与关键的施工技术进行研究,了解这一技术的发展情况。 关键词:转体桥梁现状关键技术 1 转体桥梁的概念 桥梁转体施工技术是指桥梁在非设计位置完成桥梁上部结构的施工,然后通过转动体系使桥梁上部结构转动一定角度后就位于设计位置的一种施工方法(平面或竖向角度)。该施工方法具有结构合理、节约材料。施工设备投入少。施工安全,不影响通航、不中断桥下通行等优点,所以该施工方法发展迅速应用越来越广泛。尤其是对修建处于交通运输繁忙、安全要求苛刻的铁路跨线桥。由于该方法将在铁路上方的施工转换为在安全区域的施工,不对铁路运输产生安全威胁,所以其优势更加明显。目前跨越铁路的桥梁施工,铁路部门一般均要求采用该施工方法进行设计、施工。 2 转体桥梁的应用现状 为了确保既有铁路的运营安全,尽量减少施工对既有铁路运输的影响,铁道部及相关铁路局在进行跨越既有铁路桥梁方案的审批过程中越来越倾向于采用转体施工方案。特别是跨越既有电气化铁路、繁忙客货运铁路均要求转体施工。为此针对于采用转体施工方案过程中保证既有铁路运输安全如何使制订的施工方案更有针对性和可操作性成为一个新的研究课题。 3 转体桥梁施工的关键技术 在跨铁路桥梁转体施工法中,转动设备与转动能力是最为关键的技术问题。这一技术问题的突破能有效保证施工过程中的结构稳定,还能保证其强度,有效的实施结构的合拢,进行相应体系的高效转换。 3.1 竖转法 一般在肋拱桥工程中主要采用竖转法。而肋拱一般都是在底位浇筑,或是进行低位拼装之后再向上拉升,进而使其达到相应的设计位置,之后再进行合拢。竖转体系的构成也相对来说简单一些,方案设计为安装旋转支座——搭设拼装支架、塔架,安装扣索、平衡索——起吊安装拱肋——竖转对接—调整线形—焊接合龙。其中,在脱架时,竖转的拉索索力是最大的。主要是由于在这时候拉索的

转体施工钢箱梁独塔斜拉桥设计

世界桥梁2016年第44卷第4期(总第182期) 11 转体施工钢箱梁独塔斜拉桥设计 曾甲华,刘智春,陈裕民,聂利芳 (中铁第四勘察设计院集团有限公司,湖北武汉430063) 摘要:龙岩大桥为(190 + 150) m 不对称孔跨钢箱梁独塔斜拉桥;主梁为全宽36. 3 m 的扁平流线型钢箱梁,桥塔为宝石形 混凝土结构。采用半飘浮体系,桥塔与主梁间纵向约束采用水平拉索和阻尼器相结合形式,斜拉索和塔梁间纵向拉索均采用 抗拉标准强度1 670 MPa 镀锌平行钢丝拉索。平面转体施工实现跨越既有铁路,转体球铰设置在承台顶面,转体主梁悬臂长 173. 75 m ,转体主梁总长323. 45 m ,最大转体总重量为25 510 t ,转体主梁通过“多点步履式顶推技术”顶推就位。该桥采用的 桥式结构和施工方案最大程度避免了桥梁施工对铁路和城市道路的行车影响。 关键词:独塔斜拉桥;钢箱梁;转体施工;钢球铰;顶推施工;大转体吨位;不对称孔跨;结构设计中图分类号:U448. 27;U442. 5 文献标志码:A 文章编号:1671 — 7767(2016)04 — 0011 — 05 1工程概况龙岩大道位于龙岩市中心城区,是龙岩市“一轴 二环三纵四横”快速道路系统中南北向交通中心轴 和景观轴。 龙岩大桥为龙岩大道高架桥工程的关键节点和 控制性工程[1]。大桥为(190 + 150) m 不对称孔跨 钢箱梁独塔斜拉桥,其以平面小角度(28. 7°)跨越4 股道铁路线、龙津河及2条城市道路,173. 75 m 的 转体主梁单悬臂长、323. 45 m 的转体主梁总长、超2. 4万吨的转体总重量等特点均为该桥设计与施工 的技术难点。 2 主要技术标准 (1) 道路等级:城市主干路,远期预留为城市快速路。 (2) 设计速度:60 km /h 。 (3) 跨越铁路等级:龙厦铁路为200 km /h 客货 共线电气化铁路,漳龙铁路和在建龙岩站牵出线均 为100 km /h 单线电气化铁路。 (4) 桥面宽度:主桥为双向6车道,外侧各设置 2. 〇 m 宽防撞缓冲平台。 (5) 桥面纵坡:在桥塔中心沿纵向采用对称2% 人字坡。 (6) 桥面横坡:双向2.0%。 (7) 汽车荷载等级:城一 A 级。 3结构设计 3. 1桥跨桥式结构选定 龙岩大桥以平面小角度跨越4股道铁路线、龙 津河及2条城市道路。在铁路股道间、罗龙路与铁 路路基间均无设墩条件,只能1跨跨越。龙津河与 罗龙路之间有10余米宽的绿化带可设置桥塔。铁 路南侧的既有铁路路基边坡外侧和双洋路北侧有设 置边墩条件,龙津河两侧的施工场地有城市道路通达。 基于上述建桥条件,采用(190 + 150) m 的孔跨 布置。同时,为最大程度避免桥梁施工对铁路和城 市道路交通的影响,龙岩大桥宜采用平面转体施工。 因此,最终选定采用(190 + 150) m 独塔双索面钢箱 梁斜拉桥。龙岩大桥总体布置如图1所示。3. 2结构体系 龙岩大桥为(190 + 150) m 独塔双索面钢箱梁 斜拉桥,采用塔墩固结、塔梁分离的半飘浮体系[2 ]。 塔梁间设置纵向弹性拉索,以限制在活载及风载作 用下的纵向飘移,减小梁缝规模和梁端伸缩量。同 时,在桥塔下横梁主跨侧布置2台纵向阻尼装置以 提高整体结构的阻尼比,抑制急变荷载(如地震、脉 动风、汽车制动等)的动力响应,并减小纵向斜拉索 疲劳应力幅%4]。桥塔下横梁顶面设置2个双向活动球型钢支 座,左右塔柱与钢箱梁外腹板间各设置1个盆式橡 胶支座;边墩顶左(西)侧设置纵向活动球型钢支座, 右(东)侧设置双向活动球型钢支座,横向设置抗震 收稿日期=2015 —11 一 09 作者筒介:曾甲华(1984 —),男,高级工程师,2006年毕业于西南交通大学工程管理专业,获学士学位,2009年毕业于西南交通大学桥梁与隧道 工程专业,获硕士学位(E -mail :21966676@qq . com )。

桥梁转体施工方法及发展应用

桥梁转体施工的发展应用 桥梁转体施工特点 桥梁转体施工是指将桥梁结构在非设计轴线位置制作(浇注或拼接)成形后,利用摩擦系数很小的滑道及合理的转盘结构,通过转体就位的一种施工方法。它可以将在障碍上空的作业转化为岸上或近地面的作业。根据桥梁结构的转动方向,它可分为竖向转体施工法、水平转体施工法(简称竖转法和平转法)以及平转与竖转相结合的方法,其中以平转法应用最多。 桥梁转体法施工与传统施工方法相比, 具有如下优点:  施工所需的机具设备少、工艺简单、操作安全。  具有结构合理,受力明确,力学性能好。  转体法能较好地克服在高山峡谷、水深流急或经常通航的河道上架设大跨度构造物的困难,尤其是对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势更加明显。  施工速度快、造价低、节约投资。在相同条件下, 拱桥采用转体法与传统的悬吊拼装法、桁架伸臂法、搭架法相比,经济效益和社会效益十分显著。 桥梁转体施工方法的发展应用 1975年我国桥梁工作者开始进行拱桥转体施工工艺的研究,并于1977年首次在四川省遂宁县采用平转法建成跨径为70 m的钢筋混凝土箱肋拱。此后,平转法在山区的钢筋混凝土拱桥中得到推广应用。 70年代末80年代初我国平转法施工的拱桥,跨径均在100m以下,且均为有平衡重转体施工。为解决大跨径拱桥 转体重量大的问题,我国桥梁专家提出 无平衡重转体施工法,并于1987年成功 地进行了跨径为122 m的四川巫山龙门 桥试验桥的施工。1988年四川涪陵乌江 大桥采用该法转体成功,使我国拱桥的 跨径首次跃上200m大关。 随着转体施工工艺的进步,主要 是转动构造中磨擦系数的降低和牵引能 力的提高,这一方法在我国的斜拉桥和 刚构桥中也得到应用,并且使其从山区 推广至平原,尤其是跨线桥的施工。例 如,1980年四川金川县的曾达桥(独塔 斜拉桥,转体重量1344t);1985年江西 贵溪跨线桥(斜脚刚构桥,转体重量 1100t);1990年四川绵阳桥(T构桥,转 体重量2350t);1997年山东大里营立 交桥(刚性索斜拉桥,转体重量3040t); 1998年贵州都拉营桥(T构桥,转体重 量7100t)。 2003年8月6日北京石景山混凝 土斜拉桥建成,该桥是北京市五环路的 标志性工程,位于北京石景山南站咽喉 区,现有电气化铁路7股道,远期规划 为11股道,行车密度大,平均每3min 就有一趟列车通过,为避免对铁路产生 频繁的干扰,采用了转体法施工的预应 力混凝土曲线斜拉桥方案。该桥主桥为 45m+65m+95m+40m四跨连续独塔单 索面的预应力混凝土部分斜拉桥,转体 结构总重14000t,直接依靠主牵引系 统实现转体并精确定位,最终合拢误差 2mm。 钢管混凝土拱桥近10年来在我国 的应用与发展迅猛。为拱桥的轻型化和 向大跨度发展提供了可能,转体施工方 法也被广泛应用于这种桥型之中。在竖 转方面,虽然我国在80年代初期就应用 该法进行了钢筋混凝土桁架拱的施工, 但其应用一直没有得到推广。1996年 施工的三峡莲沱钢管混凝土拱桥(主跨 114m)和1999年施工的广西鸳江钢管 混凝土拱桥(主跨175m)采用竖转法, 后者的竖转体系采用了液压同步提升技 术,使竖转技术跃上了新的台阶,徐州 京杭运河钢管混凝土提篮拱桥(主跨 235m)也将采用这一技术进行竖转施 工。2001年贵州北盘江大桥是铁路桥 梁上第一次采用钢管拱结构,跨度236 m,转体重量达到10230t。在平转方面, 1996年施工的三峡黄柏河和下牢溪两 座钢管混凝土上承式拱桥采用该法施 工,两桥主跨均为160m,转体重量达 3500t。 更为重要的是,竖向转体与平面转 体结合应用的方法在钢管混凝土拱桥中 的应用,使桥梁转体施工法进入了一个 新的发展时期。1995年安阳文峰路 135m钢管混凝土拱桥首次采用这一方 法转体成功。1999年10月广州丫髻沙大 桥也采用此法顺利合拢,并于2000年6 月建成通车,丫髻沙大桥主跨达360m (净跨344m),平转重量13685t。 转体施工法在我国西南各省使用较 多,近几年转体施工工艺在河北省干线 公路、高速公路铁路跨线桥施工中开始 应用。目前正在建设的张石高速公路、廊 涿高速公路、石环公路铁路跨线桥施工 中,为避免对铁路线运营的影响,均采用 了转体施工法。其中石环公路与石太铁 路相交,跨越六股电气化铁路轨道并预 留两股,主桥为跨径45+85+85+45m独 桥梁转体施工方法及发展应用 文/胡素敏 《交通世界》129 2008年 第1期 (1月上)

斜拉桥斜拉索施工工艺流程及作业指导(优秀工作范文)

斜拉桥斜拉索施工工艺流程及作业指导 1.目的 明确斜拉桥斜拉索施工作业工艺流程、操作要点和相应的工艺、质量标准,指导、规范桩基成孔作业. 2.编制依据 (1)《斜拉桥施工图设计-拉索结构施工图设计》; (2)《公路桥涵施工技术规范》(JTJ041-2000); (3)《公路斜拉桥设计规范》(试行)JTJ027-96; (4)《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》GB/T18635-2001; (5) 斜拉索安装的相关技术资料; (6)《公路斜拉桥设计细则》(JTG/TD65-1-2007). 3.适用范围 适用于斜拉桥高强平行钢丝成品索配合对称悬灌主梁施工的斜拉索施工. 4.技术准备 4.1内业准备 (1)开工前组织技术人员认真审核施工设计图纸和有关设计资料,澄清有关技术问题,熟悉规范和技术标准,编制斜拉桥斜拉索实施性施工组织设计,制定施工安全保证措施,提出应急预案. (2)从事起重机械作业、登高架设作业、机动车辆驾驶等特种作业的人员必须持有特种作业证.对所有施工人员进行岗前技术培训,作业前进行技术交底. 4.2外业准备 4.2.1施工前检查工作 (1)对已施工完成的塔柱和主梁段进行检查,并将检查结果报监理工程师进行审核,合格后方能进行斜拉索作业施工. (2)在锚垫板上放出孔道口十字中心线,以便对中,如若锚头安装偏位会造成锚头外螺纹与孔口磨擦,影响斜拉索张拉力精度. (3)对施工所用的平行钢丝斜拉索、斜拉索锚具生产厂家进行调查,选用供货商.成品索进场后根据质保单进行严格查验,检查锚具,PE在运输过程中是否有损伤,如有损伤,及时采取修理措施并妥善保管;检验并核对成品索合同内的质量证明文件等是否齐全完整.对需要进行试验和检验的项目要按规定进行试验和检验,确保工程材料的质量和数量满足设计、规范和施工的要求.

桥梁转体施工方案工艺及技术[优秀工程方案]

桥梁转体施工方案、工艺及技术
1、总体施工顺序 1.1 基础部分 桩基施工→基坑围护结构施工→下承台施工→球铰安装→上承台施工→拱 座施工 1.2 拱梁施工 地基处理→搭设支架→预压→分节段支架现浇拱肋→浇注拱上立柱→搭设 拱上支架→浇注拱上简支梁→张拉临时系杆及其它预应力索→拆除拱肋、拱上支 架→现浇连续梁湿接缝(简支变连续)→转体准备→正式转体→平转到位→封铰 →支架现浇边跨并合拢→中跨合拢→张拉永久系杆,拆除临时系杆→桥面附属施 工 2、总体施工方案 2.1 钻孔桩 钻孔桩设计为摩擦桩,钻孔采用回旋钻机,主墩采用气举反循环工艺,边墩采 用正循环工艺进行施工,主墩砼采用泵送方法进行灌注。 2.2 承台 承台开挖采用圆形双壁钢围堰进行防护,靠沪杭高速公路侧在围堰外设置一 排抗滑桩,围堰开挖下沉到位以后,进行封底砼施工,承台厚度 6.5 米,总体分三次进 行浇筑,第一次浇筑 3.5 米,第二次浇筑球铰以上 2.1 米(部分承台),最后封铰浇注剩 余承台混凝土(包括平转空间 0.9m)。在承台砼当中埋设好冷却水管,以降低砼的 内部温度,防止砼开裂。 2.3 主拱圈 拱圈砼采用碗扣式满堂脚手架现浇的方法施工,地基处采用 CFG 桩进行加 固。计划将单个转体半边主拱圈分为 3 个节段,每段水平长度分别为 25m、25m、 28m。每节段设置 1m 宽间隔槽,节段间设型钢劲性骨架,每段分 3 环浇注施工。具 体分段见下图:

2.4 拱上立柱 拱上立柱采用定型加工的大块钢模一次性浇注完成。 2.5 拱上连续梁 连续梁连续拟采用膺架体系作支撑,立柱采用钢管和在拱上柱顶部设置牛腿 结合的方案,支撑梁采用贝雷梁。梁部钢筋在桥下专用胎具上绑扎好后,整体吊装 入模,单跨简支梁一次性浇注完成。逐孔梁施工完毕后,安装并张拉临时系杆后落 梁。拆除拱上支架,现浇湿接缝,按设计要求张拉相关预应力索后完成简支变连续 体系转换。 2.6 转体 完成拱梁现浇后,实施转体。转体前进行平转摩阻力测定、不平衡力矩测试, 根据检测结果进行配重,然后每个转体依靠由 2 台 2021 连续型牵引千斤顶、两台 液压泵站及一台主控台通过高压油管和电缆连接组成的牵引动力系统牵引实施 转体,根据高速公路管理部门的要求,路两侧两个转体的先后转体。精确就位后立 即锁定,然后进行转铰固结施工。 2.7 合拢 按照先合拢边跨,后合拢中跨的顺序施工。合拢时,需要安装临时锁定设施, 并选择当天气温最低或设计要求的温度浇筑合拢段砼。中跨合拢时根据设计要求 施加 700t 的顶推力。 3、主要施工方法、工艺 3.1 桩基础
3.1.1、施工工艺流程

35_斜拉桥的正装分析(未闭合配合力功能介绍)

用MIDAS/Civil做斜拉桥正装分析 1. 斜拉桥正装分析和未闭合配合力功能 在斜拉桥设计中,可通过成桥阶段分析得到结构的一些必要数据、拉索的截面和张力等,除此之外斜拉桥还需要进行施工阶段分析。 根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。 进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。 采用这种分析方法,工程师普遍会经历的困惑是: 1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。 2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。 产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下: 1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。 2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。 从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容

斜拉桥转体与线形调整总结

斜拉桥转体与线形调整 1、总体施工方案 将转体扭矩分成两部分,第一部分是按动摩擦系数计算所需的扭矩,此部分扭矩约占转体部分总重的5%的重力所产生,采用上转盘预埋的2X 19-孙5钢铰线牵引克服。第二部分是转体起动阶段按静摩擦力计算所产生的扭矩,扣除上转盘预埋钢束牵引力产生的扭矩后所产生的扭矩后剩余部分扭矩,此部分扭矩靠在滑道处钢管混凝土撑脚内外侧的千斤顶反力座向撑脚施加水平力克服。 转体施工时,先对牵引钢束施加拉力收紧,然后对上转盘撑脚以100KN为一级逐级加载至1000KN,再对转盘上牵引束连续作用千斤顶逐级加载直至结构开始启动,启动后助推千斤顶对钢管混凝土撑脚的水平推力自动失效,全部靠钢束牵引结构转动。转动应连续,并全程跟踪观测线形与应力,控制最大线速度,并精确合拢、制动、微调定位。转体对接后进行梁体线型调整并浇注合拢段,具体施工方法如下: 2、缆索挂设与xx 转体前对箱梁混凝土试件进行试压,确保混凝土强度达到设计要求。然后按设计要求的顺序与方法对缆索进行张拉、验收。 3、支架拆除 逐步拆除梁底支架,使整个斜拉桥体系由支架支撑转换到转体前的自平衡状态,完成第一次体系转换。 支架拆除包括两部分,一是主塔挂索支架,二是梁底支架。挂索支架拆除是为了减重,梁底支架拆除是为了完成体系转换。梁底支架在拆除前,预先在梁端所设的称重反力架上安装千斤顶等称重装臵,然后进行支架拆除。拆除步骤如下: ( 1 )将梁上塔柱四周,28m 现浇段以上的挂索支架全部拆除。 (2)在缆索张拉后,对现浇箱梁下的满堂支架进行拆除,现浇箱梁下支架分区分片按设计要求拆除。拆除时按以下步骤进行: 1 对整个斜拉桥体系进行全面检查,

相关主题
文本预览
相关文档 最新文档