当前位置:文档之家› 20立方米石油液化气储罐

20立方米石油液化气储罐

20立方米石油液化气储罐
20立方米石油液化气储罐

设计摘要

储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。

关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言

在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。

生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。

化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。

由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。

在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。

对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

一、设计条件:

1、工作压力: 1.5 MPa

2、工作温度:30℃

3、物料密度:0.45×103 Kg/m3

4、设备材料:Q345R

5、设备总容积:20 m3

6、充装系数:0.85

7、焊接接头系数:1.0

8、腐蚀裕度: 1.5 mm

9、设备简图:见下图

10、管口表:

二、方案论证

(1)、结构方案

石油液化气储罐是圆筒形容器;具有制造容易,安装内件方便,承压能力较强等特点。

圆筒形容器是由筒体(筒身)、封头(端盖)、密封装置、人孔、接管和支座等6个部件组成。筒体和封头是用板材卷制而成的具有典型几何形状的焊接构件,构成了整个压力容器实现化学反应或储存物料的压力空间,是压力容器是主要的受压元件。

压力容器使用的密封装置较多,其主要目的是在压力容器某一可能发生介质泄露而需要加入密封的部位设置一个完善的物理壁垒;保证压力容器正常、安全可靠运行的又一个重要部件。

因为工艺过程的要求和检修的需求,在压力容器的管体和封头上开设有不同尺寸的安装孔和工艺接管,如:人孔、物料进出口接管以及安装压力表、液面计、安全阀和各类检测仪的接管等。

在压力容器壳体上开孔后,器壁会因去除一部分承载的材料而强度被削弱,并使容器结构出现局部的的不连续;对筒体和封头上开设的孔,当尺寸超过某一规定值后,就要进行开孔补强设计,选用合理的补强结构,确保压力容器所需的强度。

支座是支撑和固定设备的一个基础部件,通常是由板材或成型材组焊而成;该石油液化气储罐采用了卧式支座。根据容器的质量、结构、承受的载荷以及操作和维修要求来选定的,压力容器采用的是卧式支座中的一种典型结构的,现拟用鞍式支座。

(2)、材料选用方案

储存压力容器主要用于储存或盛装气体、液体、液化气体等介质的压力容器;现为液化石油气储罐。根据?固定式压力容器安全技术监察规程?采用了既考虑容器的压力等级、容积大小,又考虑介质危害程度以及在生产过程中的作用的分类方法,将此容器划分到第二类压力容器。

根据?化工设备?第十页,压力容器用钢要求:

根据工作环境和操作条件,压力容器用钢应具有较高的强度,同时应有良好

的朔性、韧性和优良的焊接性能,另外还要满足耐腐蚀要求。

①压力容器需要承受压力或其他载荷,钢材应该具有足够的强度。压力容器的强度指标是确定壁厚的依据,但钢材的各项力学性能相互联系又相互制约,因此,选材时不能单看强度,而要全面分析。材料强度过低,势必要增强容器元件的厚度;但无原则地选用高强度的材料,将会带来材料和制造成本的提高以及抗脆断能力的降低。

②在考虑强度要求的同时,钢材应有良好的韧性。在压力容器的结构上不可避免地会有小圆角或缺口结构;在焊接制造中也不可能没有如气孔、夹渣、未焊透、未溶合等缺陷,甚至裂纹。这些都会在容器的局部位置形成应力集中,这时就要求材料应具有良好的韧性,以防止因载荷波动、冲击、过载或低温而造成压力容器的裂纹。

③从制造工艺考虑,钢材还要有良好的焊接性能和较好的冷(热)加工性能。压力容器多数情况下是用钢材采用冷(热)卷,热冲压成型以及焊接等加工工艺制造出来的;要求材料应具有良好的塑性和焊接性能,以保证冷卷和热冲时不断裂,而且能得到质量可靠的焊接结构。

④为了满足工艺条件需要,钢材应具有较好的耐腐蚀能力。

⑤考虑到压力容器的使用性能,钢中的硫和磷含量应较低。因为硫和磷是最主要的有害元素。硫能促进非金属夹杂物的形成,是塑性和韧性降低;磷元素尽管能够提高钢材的强度,但会增加钢材的脆性,特别低温的脆性。压力容器用钢的硫和磷含量就要求分别低于0.02%和0.03%。

钢材所具有的各种性能都是通过钢中化学成分的设计或采用不同的热处理方法来获得的,为了保证钢材的使用质量,压力容器制造厂在接受钢厂来货时,都需要按照钢材的质量保证书,对于保证钢材基本要求的化学成分、抗拉强度、屈服强度、断后伸长率、冲击功等指标进行检查。有必要时要进行100%无损检测。

压力容器用碳素钢和低合金钢板,这类材料属于一般压力容器专用钢板。其中低合金钢是在普通结构钢的基础上加入了少量或微量的合金元素,如:Mn、Si、Mo、V、Ni、Cr等,从而使钢材的强度和综合力学性能得到明显改善。中国GB713-2008?锅炉与压力容器用钢板?提供了多个钢板品种,根据设计条件给

出设备材料为Q345R,工作温度30°C,符合(《化工设备》表1—2 压力容器用碳素钢和低合金钢板使用性能);厚度范围6~16mm,使用温度范围-20~475°C。

Q345R是在低碳钢的基础上加入合金元素Mn而得到的低合金钢。与20R 钢相比,含碳量相仿,但加入适量的Mn元素后,使Q345R的强度显著提高。

三、筒体设计

一、强度计算

1、设计条件:

工作压力: 1.5 MPa

工作温度:30℃

物料密度:0.45×103 Kg/m3

设备材料:Q345R

设备总容积:20 m3

充装系数:0.85

焊接接头系数: 1.0

腐蚀裕度: 1.5 mm

2、压力容器壁厚的计算:

①设计温度选用(根据《化工设备》第48页表3—3);

设计温度t:

t=t w+20=30+20=50°C

设计温度t为50°C

②设计压力P:

根据《化工设备》第47页所述:当容器上装有安全阀时考虑到安全阀开启动作的滞后,容器不能及时泄压,设计压力P不得低于安全阀的开启压力p2[开启压力是指阀瓣在运行条件下开始升起,介质连续排除的瞬间时压力其值小于或

等于(1.05~1.1)倍容器的工作压力p w].

所以p≥(1.05~1.1)p w 因此

p=1.05×p

w=1.05×1.5=1.57Mp

a

根据《化工设备》第8页:内压容器按压力大小分等级可知:因p=1.57Mp a,

所以该容器属于低压容器(代号L):0.1Mp

a≤

p<1.6Mp

a。

为了对不同安全要求的压力容器进行更好的技术管理和监督检查,《固定式压力容器安全技术监察规程》采用了既考虑容器的压力等级、容积大小,又考虑介质危害程度以及在生产过程中的作用的分类方法,将压力容器划分成了三个类别。

根据第三类压力容器情况为:易燃或毒性程度为中度危害介质,且

pv乘

积大于10Mp

a﹒

3

m的中压储存容器。因此,该储存容器属于第三压力容器。

③压力容器的公称直径DN:

根据《化工设备》第61页所述:规定公称直径的目的是使容器的直径成为以系列规定的数值,以便零部件的标准化,以符号DN表示,单位为mm。用钢卷制而成的筒体,其公称直径即等于内径(D i),现行标准中规定的压力容器公称直径系列,封头的公称直径与筒体一致。

根据NB/T47001-2009《钢制液化石油气卧式储罐型式与基本参数》第286页,表4所取:取压力容器公称直径DN=2000mm;根据JB/T4746-2002《钢制压力容器用封头》查得:DN2000封头容积Vf=1.1257

因此:

筒体的体积为V=20-2Vf

V=20-2×1.1257=17.7486 m3

筒体高h(或l)为:

h=V/π

2

r=5649.5mm 经圆整得:h=5700mm

取DN=2000mm

得h=5700mm

筒体周长C=6283mm

④储存量W《容规》宣贯第三章设计

介质为液化气体(含液化石油气)的固定式压力容器设计储存量;W=Φνp

t

(Ф—充装系数0.85,ν—压力容器的容积3m ;p

t —物料密度:

0.45×103 Kg/m 3

W=Φνp t =7.65t ⑤确定筒体厚度:

根据《化工设备》第59页所述:双面焊对接接头,100%无损检测Ф=1.0。 设计压力: 1.57 MPa 设计温度: t=50°C

容器公称直径: DN=2000mm 腐蚀裕度: 1.5 mm 设备材料: Q345R

Q345R 钢板在50°C 的许用应力由(《化工设备》第50页表3—6 查取,估计壁厚在6~16mm 之间,故t ][σ=170

MPa ,将数据代入公式δ=

c

t i

c p D p -?σ][2得到储罐筒体计算厚度:

δ=

c t i

c p D p -?σ][2=43.3383140

=9.27mm

设计厚度:

δd

+

c

2=10.77mm

根据GB713-2008《锅炉与压力容器用钢板》第2页5.2条款查得: 钢板厚度的负偏差:c

1=0.3mm

因而钢板的名义厚度

δ

n

δn

d

+

c

1=11.07mm

根据钢板厚度规格,其取名义厚度圆整为:

δ

n

=12mm

因此,计算得出的厚度符合估计厚度的范围内符合要求。 3、筒体强度计算与板料的选择: 直径之比:

K =i D D

=20002024

=1.012

因此

K =1.012≤1.2

所以该容器属于薄壁容器。 ①经向应力为

1σ:

根据《化工设备》第25页式(2—1),圆筒横截面的经向应力为:

1

σ=δ4PD =483140

=65.4MPa≤t ]

圆筒横截面的受力分析:

②环向应力为

2

σ:

根据《化工设备》第25页式(2—2),圆筒纵截面的经向应力为:

2

σ=δ2PD =21σ=130.8 MPa≤t ][σ。

圆筒纵截面的受力分析:

③板料的选择

12mm厚的Q345R钢板的(宽×长)有:1800×8000mm、2000×8000mm、2000×10000mm:根据前面的计算得到筒体长度为5700mm,筒体的周长C=πDN=6283mm,DN=2000mm;根据以上的板材尺寸,选择2000×8000mm规格;计算如下,

板料(n)张=3(张)

余料为:6000-5700=300mm

长度的余料为:8000-6283=1717mm

经计算,规格为2000×8000mm剩余的余料最少,因此选该规格为最佳方案。

4、圆筒体的号料与划线

①号料的方法及要求

根据以上所计算得尺寸,在远离切割线的中间部位进行标记。如下图:

根据《化工设备制造技术》第51页的号料工序要求如下:

A、号料前要核对所号原料的材质和规格应于施工图纸及工艺技术文件一致;

B、号料的标记要清晰。

②划线的内容和要求

由于钢板原材料在宽度及长度方向上都存在偏差,相邻两板边互相不垂直,不能直接投料来卷制圆筒,因此首先要对板边进行“找正”。在找正后的矩形板料上再按筒体展开尺寸进行划线。首先要划线实际用料线,即下料切割并经过边缘加工以后要保证的尺寸线,然后根据切割方法的不同在实际用料线外围放大到一定尺寸后划出切割线。具体如下图:

根据《化工设备制造技术》第53页可得:不同切割线方法的切割加工余量;

自动气割:4~5mm;

手工气割:6~7mm;

手工等离子切割:8~10mm。

划线的具体要求:

①划线前应首先检查板料的平整度及表面质量,检查板边是否存在重皮、“缺肉”、弯折、斜边及裂纹等缺陷。

②板料上应准确划出实际用料线、切割线、检查线和中心线,其划线尺寸允许下偏差为零,上偏差为+2.0mm,两对角线之差为4.0mm。

③确认无误后方可切割。

5、筒体的直线度允差

根据《化工设备制造技术》第111页可知:壳体直线度是用0.5mm的钢丝两端用滑轮支撑并悬垂重物进行度量,在沿圆角0°、90°、180°、270°四个方位测量。壳体直线度随壳体长度的不同而要求不同,具体控制指标为:筒体直线度为≤H/1000,

因此该直线度为:5.7mm。

6、筒体的基本尺寸

筒体的长度l=5700mm

公称直径DN=2000mm

=12mm

筒体的壁厚:

7、筒体的焊接坡口选择

根据《化工设备制造技术》第139页坡口的选择以及筒体的工艺条件的要求,筒体的焊接坡口为V型坡口;V形坡口形状简单,加工方便,是最常用的坡口形式,12mm以上一般可考虑开单面坡口,双面焊接,但是背面施焊前应清好根。焊接坡口的基本形式如下图所示:

以上的V型坡口用于筒体的纵焊缝于环焊缝,其焊缝工艺施行“焊接工艺卡”上得要求。

8、筒体的卷板和校圆工艺

(1)、弯卷前的准备工作

钢材具有良好的塑性、焊接性能和较好的冷(热)加工性能。压力容器多数情况下是用钢材采用冷卷。卷圆前,钢板两端板边必须首先进行预弯,应根据筒体直径、材料性能及厚度以及卷板机的工作能力等因素综合考虑,选择卷板机自预弯、采用胎板预弯或采用压力机压头预弯工艺。

(2)、筒体的校圆

纵向焊接接头焊完后,需清除氧化皮、焊接飞溅及焊疤后,采用滚板机进行校圆。校圆时,应调整好辊间的平行度,并使圆筒中心与中间辊互相平行。校圆用的样板应与滚圆用的样板一致。

9、筒体制造工艺卡(另附)

10、筒体焊接工艺卡(另附)

11、筒体图纸(另附)

四、封头设计

一、封头结构和计算 1、封头结构

由于椭圆形封头的椭球部分线曲率变化平滑连续,故应力分布比较均匀。且椭圆形封头深度半球形封头小得多,易于冲压成型,是目前中低压容器中应用较为普遍的一种封头形式;故选椭圆形封头。如下图:

2、封头的设计计算 ①、最大综合应力max

σ

根据《化工设备》第三章第三节可知:受内压的椭圆形封头最大综合应力

max σ与椭圆形封头长短轴的比值,即a/b=[a=(δ+i D )/2,b=

2

δ

+

i h (h

为封头曲面深度),故b a =i

i

h D 2]有关。工程上对b

a

=1.0~2.6的椭圆形封头,引

入行状系数K ,由此得到最大综合应力为:

max σ=

δ

2KPD (3—12)

式中K —椭圆形封头形状系数,其K 值根据b a =i

i

h D 2,按《化工设备》第

三章第三节表3—18 (椭圆形封头形状系数K 值)查取:

选取标准椭圆形封头,其b a =i

i

h D 2=2,K=1。

取封头的厚度与筒体的厚度

δ

值一样,其设计压力P 与直径D 值一样,

δ

=12mm

P=1.57MPa D=2024mm

因为:b a =i

i

h D 2=2,所以i h =500mm

将其代入(3--12)得

max σ=δ

2KPD

=130.8MPa

因封头的材料与筒体的板材一致,为Q345R ;其许用应力为t

]

[δ=170MPa ,

其单面焊对接接头100%无损检测

?

=1.0。

因此

max σ=130.8MPa≤t ][δ?

②封头直边段高度h 及作用

根据《化工设备》第三章第三节表3—17 (椭圆形封头材料、厚度和直边高度的对应关系)查取:

H=25mm

直边段的作用是避免筒体与封头间的环向连接焊缝处出现边缘应力与热应力叠加,以改善焊接的受力情况。

③封头厚度的计算

标准椭圆形封头的厚度计算公式:

δ

=[]

c

t i

c P D P 5.02-?

σ=9.25mm ,

腐蚀裕量:

2C =1.5mm ,

根据GB713-2008《锅炉与压力容器用钢板》第2页5.2条款查得: 钢板厚度负偏差:1

C =0.3mm

因此n δ=δ+1C +2C =11.05mm

从计算结果可以知道,标准椭圆形封头厚度大致和其相连接的圆筒厚度相等;因此,筒体和封头即可采用等厚度钢板进行制造。这部仅给选材带来方便,也方便与筒体和封头的焊接加工,故工程上多选用标准椭圆形封头作为圆筒形容器的端盖。

因此,封头厚度与筒体的厚度一样,δ

=12mm

④最大允许工作压力

椭圆形封头最大允许工作压力公式:

[]w

P =[]e

i e

t

KD δ?δσ5.02+

将其数值代入上式得:

[]

w

P =[]e

i e

t

KD δ?δσ5.02+=2.03MPa

因此P=1.57MPa≤[]w

P =2.03MPa

故符合要求。

按上面的计算公式,椭圆形封头虽然满足强度要求,但仍有可能发生周向屈服。目前,工程上采用限制椭圆形封头最小厚度的方法解决这一问题,即标准椭圆形封头的有效厚度应不小于封头内直径的0.15%(3.0mm )。

⑤椭圆形封头的基本尺寸

椭圆形封头的公称直径:DN=2000mm ;

封头曲面深度:i h =500mm ;

封头钢板的厚度:

δ

=12mm ;

封头的直边段:h=25mm 。 ⑥封头的容积计算:

a

V =0.13093

i

D =1.0472

m 3

直边段的容积:

h V =hπ2

)2(D

=0.07854

m 3

整个封头的容积(包括直边段);

f V =a V +h V =1.1257 m 3

3、封头焊接坡口的选择

根据封头钢板的厚度与《化工设备制造技术》第139页来选择;该封头的坡口为V 形坡口。V 形坡口形状简单,加工方便,是最常用的坡口形式,12mm 以上一般可考虑开单面坡口,双面焊接,但是背面施焊前应清好根。

封头焊接坡口的基本形式如下图:

4、封头的加工余量的工料展开计算:

根据《化工设备制造技术》第50页可知:一般冲压或旋压的椭圆形封头都

是近似标准的椭圆形封头,由大半径R=0.8i

D 和小半径r=0.146i D 的三段圆弧组成,高度H= 0.25i D ,如下图所示:

其圆板的理论展开计算直径为:

s D =1.20066(i D +

)+2h+30mm (加工余量)

因此

s D =2495.72mm

①、内直径公差

根据JB/T4746-2002《钢制压力容器用封头》第32页表4可知:以内直径为对接基准的封头切边后,在直边部分实测等距离的四个内直径,取其平均值:

内直径公差为:-3mm~+4mm 。 ②、圆度公差

根据JB/T4746-2002《钢制压力容器用封头》第32页可知:封头切边后,在直边部分实测等距离分布的四个内直径,以实测最大值与最小值之差作为圆度

公差,其圆度公差不得大于0.5%i D (i D 为封头的内径),且不大于25mm ;因此,

圆度公差为:10mm 。

③、形状公差

根据JB/T4746-2002《钢制压力容器用封头》第33页可知:封头成型后的形状公差,用弦长相当于封头内直径的间隙样板,检查封头内表面的形状公差。

样板与封头内表面的最大间隙,外凸不得大于 1.25%i D ,内凹不得大于0。625%i D ;

外凸≤25mm ; 内凹≤12.5mm 。

④、封头总深度公差及直边段公差

根据JB/T4746-2002《钢制压力容器用封头》第32页可知:封头切边后,在封头端面任意两面直径位置上分别放置直尺或拉紧的钢丝,在两直尺交叉处或两根钢丝交叉处垂直测量封头总深度(封头总高度),其公差为(-0.2~0.6)%i

D 。

当封头公称直径DN ≤2000mm 时,直边段H 宜为25mm ,直边段的公差为-5%~10%h 。

封头总深度公差为;-4mm~12mm 直边段公差为:-1.25mm~2.5mm

五、人孔

一、设计条件

人孔的公称直径为:500mm

二、人孔的计算及选择{参考《化工设备》第六章第三节} 1、初步选取人孔类型

因该储罐i D ≤2500mm ,在筒体上开设一个人孔,因不需要经常开启,设备

工作压力为低压,选用回转盖带颈对焊法兰人孔。

2、确定人孔筒节及法兰材质

根据储罐的材质,可选择人孔筒节与法兰盖的材质为Q345R ,法兰的材质为16Mn Ⅱ锻件,其外伸长量为300mm 。

3、确定人孔的公称直径DN 及公称压力PN

由于该设备露天放置,且不在寒冷地区,人孔的公称直径DN=500mm , 人孔设计压力P=1.5×1.05=1.57MPa 设计温度t=50℃

由人孔的设计压力,设计温度及材质查《化工设备》表6—8可确定人孔法兰的公称压力级别为2.5MPa 。

人孔的公称压力即为人孔上法兰的公称压力,所以,人孔的PN=2.5MPa 。 4、确定选用人孔

由以上得出的人孔的公称直径和公称压力查《化工设备》表6—12可知,回转盖带颈对焊法兰,凹凸面密封面适合该设备。

标准号为

在生产过程中,为了便于内部的附件安装;检修和衬里,以及检查压力容器和设备内部在使用过程中是否产生裂纹、变形、腐蚀等缺陷而开设的。

5、人孔补强

容器开孔后,在开孔处产生较大的附加应力,结果使该区域的局部应力达到较高的数量,甚至可以达到容器壁厚薄膜应力的3倍或更大。

(1)、确定是否需要补强

按照GB150规定,由于人孔的公称直径DN 〉89mm ,故此需要补强。 (2)、补强计算

①、计算开孔后被削弱的金属截面面积A 。其人孔材质与筒体一致 C=1

C +

2C =1.8mm

开孔直径为

d=i D (DN )+2C=533.6mm

根据《化工设备》查表3—6和3—7得筒体在设计温度下材料的许用应力

[]t τ

σ=170MPa ,故:

强度削弱系数

r f =

[]

[]

t

o

t

σσ=1

筒体开孔处计算厚度

δ

=[]P

PD t

i

-?σ

2=57.10.117022000

57.1-???=9.27mm

接管的有效厚度

et δ=nt δ-C=12-1.8=10.2mm

A=

δd +

)1(2r e f -δδ=

δ

d =4946

2

mm

②、确定有效补强范围 因B=2d=1067.2mm 则B=d+

n δ2+

nt

δ2=581.6mm

故取大值,则B=10672mm 外侧有效高度

1

h =

nt d δ=80.01mm

nt

d δ=80.01mm ,故人孔的筒节的内侧有效高度取

2

h =80.01mm

③、计算有效范围内用来补强的金属面积e A .

a 、计算壳体多余金属截面积

1A :

e δ=c n -δ=17.7mm

1

A =(B-d )(e δ-δ

)-2(c

nt -δ)(e δ-

δ

)(1-r f )

=496.24

2

mm

b 、计算人孔筒节多余的筒壁截面积

2A

et δ= 10.2mm 则 t

δ =

δ

=[]

P

PD t i

-?

σ2=2.45mm

所以 2A =r et r t et f c h f h )(2)

(2221-+-δδδ

=2632.32

mm

c 、计算焊缝金属截面积3

A

取焊角高度为20mm ,故焊缝截面积为

3A =249.42mm

用来补强的金属面积为

e A =1A +2A +3A =3377.942mm

由于e A

(3)、确定标准补强圈尺寸

由于上计算可知,需要由补强圈提供的金属面积为

4A ≥A -e A =1568.062mm

取补强圈厚度

c δ=10mm ,板厚负偏差1C =0.3mm

由于补强圈与空气接触,有轻微腐蚀,取腐蚀裕量2C =1.5mm ,故

补强圈有效厚度为

20立方米石油液化气储罐

设计摘要 储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。 关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言 在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。 生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。 化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。 由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。 在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。 对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

液化石油气的危险性及处置程序

液化石油气事故处置 一、液化石油气的危险性 1.液化石油气在空气中的爆炸极限约为1.5~9.5%,最小着火能量也很低,只有3×10-4焦耳,极易与空气混合形成爆炸性混合物,遇明火或火花则发生爆炸。 2.液化石油气扩散范围大。液化石油气在常温常压下为气态,为了存储方便而普遍通过加压的方法使其液化(环境压力高于饱和蒸汽压就会液化,前提是在临界温度以下)。当它从液态变成气态时,1L液化石油气可气化为250~350L气体。再加上它的密度比空气大,约为空气的1.5~2.0倍。 3.液化石油气爆炸破坏性大。液化石油气的热值为92114-121423kJ,比普通的城市煤气约高6倍,而它在燃烧爆炸的一瞬间就要将所有的能量释放出来,所以其燃烧猛烈,爆炸威力大。据试验测定,1L液化石油气与空气混合浓度达到2%时,能形成体积为12.5m3的爆炸性混合物,爆炸速度为2000-3000m/s,火焰温度2000℃,使具有爆炸危险的范围大大扩大,因而所产生的破坏程度也相应增加。根据计算,100kg的液化石油气扩散后其爆炸能量相当于72kg的TNT炸药。100m3的液化石油气扩散后其爆炸的能量相当于36tTNT 炸药,致死半径51m、重伤半径99m,轻伤半径145m。 4.液化石油气事故处置困难。液化石油气火灾具有易发性、反复性以及破坏性,所以处置液化石油气火灾具有一定的难度和危险性。同时,液化石油气发生事故,多数都是由于泄露出后引起的。它会立即变为气体,既不能象固体那样进行搬移,又无法象液体那样进行围堵,只能是设法切断气源,阻止其进一步泄漏。 二、液化石油气预防措施 1.防泄漏措施 液化石油气一旦发生泄漏,扩散到空气中不易控制。

20立方米液氨储罐设计说明书

目录 课程设计任务书 2 20m3液氨储罐设计 2 课程设计容 3 液氨物化性质及介绍 3 1. 设备的工艺计算 3 1.1 设计储存量 3 1.2 设备的选型的轮廓尺寸的确定 3 1.3 设计压力的确定 4 1.4 设计温度的确定 4 1.5 压力容器类别的确定 4 2. 设备的机械设计 5 2.1 设计条件 5 2.2 结构设计 6 2.2.1 材料选择 6 2.2.2 筒体和封头结构设计 6 2.2.3 法兰的结构设计 6 (1)公称压力确定7 (2)法兰类型、密封面形式及垫片材料选择7 (3)法兰尺寸7 2.2.4 人孔、液位计结构设计8 (1)人孔设计8 (2)液位计的选择9 2.2.5 支座结构设计10 (1)筒体和封头壁厚计算10 (2)支座结构尺寸确定12 2.2.6 焊接接头设计及焊接材料的选取14 (1)焊接接头的设计14 (2)焊接材料的选取16 2.3 强度校核16 2.3.1 计算条件16 2.3.2 压圆筒校核17 2.3.3 封头计算18 2.3.4 鞍座计算20 2.3.5 开孔补强计算21 3. 心得体会22 4. 参考文献22

课程设计任务书 20m3液氨储罐设计 一、课程设计要求: 1.按照国家最新压力容器标准、规进行设计,掌握典型过程设备设计的全过程。 2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。 3.工程图纸要求计算机绘图。 4.独立完成。 二、原始数据 设计条件表 三、课程设计主要容 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 四、学生应交出的设计文件(论文): 1.设计说明书一份; 2.总装配图一(A1图纸一)

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气储罐泄漏危害预防和控制的安全措施

液化石油气储罐泄漏危害预防和控制的安全措施随着石油化学工业的发展,液化石油气作为一种化工生产的基本原料和新型燃料,已愈来愈受到人们的重视。液化石油气属于甲类火灾危险性物质,常温高压下储存于压力容器中,火灾危险性极大,一旦泄漏极易引起火灾爆炸,造成人员伤亡和巨大财产损失。近年来液化石油气储罐泄漏事故不断发生,例如1998年3月5日发生在西安市液化石油气站的爆炸火灾事故,造成12人死亡,32人受伤,直接损失400多万。2004看3月29日,辽宁省葫芦岛市某天然气分离厂液化石油气储罐泄漏,消防官兵抢险长达8h,方排除险情。如何预防和控制液化石油气储罐泄漏危害一直是倍受关注的安全问题。 一、储罐的种类及特点 1.卧式圆筒罐 卧式圆筒罐主要是由筒体,封头、人孔、支座、接管、安全阀、液位计、温度计及压力表等部件组成。圆筒体是一个平滑的曲面,应力分布均匀,承载能力较高,且易于制造,便于内件的设置和装拆,广泛应用于中小型液化石油气储配站。 2.球形罐 球形罐主要由壳体、人孔接管及拉杆等组成,其壳体由不同数量的瓣片组装焊接而成。球形罐受力均匀,在相同壁厚的条件下,球形壳体的承载能力最高,但制造比较困难,工时成本高,对于大型球罐,由于运输等原因,要先在制造厂压好球瓣,然后运到现场组装,由于施工条件差,质量不易保证。因此,球形罐用于大型液化石油气储配站。 二、储罐泄漏火灾风险分析

1.泄漏物质易燃易爆 液化石油气具有很强的挥发性,闪点低于-60℃,具有易燃特性,最小点火能量为0.2~0.3mJ,一旦遇到火源,极易发生燃烧爆炸事故。 当液化石油气发生泄漏时,1m3液化石油气可转变成250~300m3的气态液化石油气,液化石油气的爆炸极限按2%~9%的近似值计算,则1m3的液态液化石油气漏失在大气中,将会变成3000~15000m3的爆炸性气体。液化石油气泄漏形成为爆炸性气体遇火源发生化学性爆炸,其爆炸威力是TNT炸药当量的4~10倍,爆速可达2000~3000m/s。由于液化石油气热值大,1m3发热量是煤气的6倍,火焰温度高达1800℃。因此,液化石油气爆炸起火后,会迅速引燃爆炸区域的一切可燃物,形成大面积燃烧,造成重大破坏和人员伤亡。液化石油气的化学性爆炸比物理性爆炸的破坏作用更大。 储罐内液化石油气在一定温度、压力条件下保持蒸气压平衡,当罐体突然破裂,罐内液体就会因急剧的相变而引起激烈的蒸气爆炸。当储罐,设备或附件因泄漏着火后,其本身以及邻近设备均会受到火焰烘烤;受热膨胀后压力超过储罐所能承受的强度时,致使破裂,内部介质在瞬间膨胀,并以高速度释放出内在能量,引发物理性蒸气爆炸。喷出的物料立即被火源点燃,出现火球,产生强烈的热辐射。若没有立即点燃,喷出的液化气与空气混合形成可燃性气云,遇邻近火源则发生二次化学性爆炸。 2.易发生泄漏 造成储罐泄漏的原因很多。质量因素泄漏,如设计不当,选材料不符,强度不足,加工焊接组装缺陷等。工艺因素泄漏,如高流速介

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书

前言 本说明书为《30m3液氨储罐设计说明书》。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录 第一章绪论 (4) (一)设计任务 (4) (二)设计思想 (4) (三)设计特点 (4) 第二章材料及结构的选择与论证 (4) (一)材料选择 (4) (二)结构选择与论证 (4) 第三章设计计算 (6) (一)计算筒体的壁厚 (6) (二)计算封头的壁厚 (7) (三)水压试验及强度校核 (7) (四)选择人孔并开孔确定补强 (8) (五)核算承载能力并选择鞍座 (8) (六)选择液面计 (9) (七)选配工艺接管 (9) 第四章设计汇总 (10) 第五章结束语 (11) 第六章参考文献 (11)

第一章绪论 (一)设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 (三)设计特点: 容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 第二章材料及结构的选择与论证 (一)材料选择: 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。如果纯粹从技术角度看,建议选用20R类的低碳钢板,16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。 (二)结构选择与论证: 1.封头的选择: 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最

的压力容器设计储罐液氨

设计任务书 设计题目:液氨储罐设计 设计任务:试设计一液氨储罐,完成主体设备的工艺设计和附属设备的选型设计。 包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。 已知工艺参数如下: 最高使用温度:T=50℃; 公称直径:DN=3000㎜; 筒体长度(不含封头):Lo=5900㎜。

目录 设计任务书 1 前言 (1) 2 设计选材及结构 (2) 2.1 工艺参数的设定 (2) 2.1.1设计压力 (2) 2.1.2筒体的选材及结构 (2) 2.1.3封头的结构及选材 (2) 3 设计计算 (4) 3.1 筒体壁厚计算 (4) 3.2封头壁厚计算 (4) 3.3压力试验 (5) 4 附件的选择 (6) 4.1人孔的选择 (6) 4.2人孔补强的计算 (7) 4.3进出料接管的选择 (9) 4.4液面计的设计 (10) 4.5安全阀的选择 (10) 4.6排污管的选择 (10) 4.7 鞍座的选择 (11) 4.7.1鞍座结构和材料的选取 (11) 4.7.2容器载荷计算 (12) 4.7.3鞍座选取标准 (12) 4.7.4鞍座强度校核 (13) 5 容器焊缝标准 (14) 5.1压力容器焊接结构设计要求 (14) 5.2筒体与椭圆封头的焊接接头 (14) 5.3管法兰与接管的焊接接头 (14) 5.4接管与壳体的焊接接头 (14)

6 筒体和封头的校核计算 (16) 6.1 筒体轴向应力校核 (16) 6.1.1由弯矩引起的轴向应力 (16) 6.1.2 由设计压力引起的轴向应力 (17) 6.1.3 轴向应力组合与校核 (17) 6.2筒体和封头切向应力校核 (18) 7 总结 (19) 参考文献 (20)

液化石油气移动式压力容器充装事故应急预案

**市燃气有限公司 移动式压力容器充装 事故应急预案 专项应急预案 应急预案版本号:21060**** 应急预案编号:**/LPG移专 颁布令 根据《中华人民共利国安全生产法》、《危险化学品安全管理条例》、《中华人民共与国突发事件应对法》、《特种设备安全监察条例》、《移动式压力容器充装许可规则》等有关规定,组纵公司再职能部门与专业技术人员,结合公司实际与安全生产工作经验,制定了公司《移动式压力容器充装事故急预案》。 应急工作就是企业安全生产管理工作得重要组成部分。《移动式压力容器充装事做应急顸案》得颁布实施,规范了应急管理工作,极大地增强企业麻急处置能力,望部门认真组纵学习,严格遵守执行。 前言 本预案以**燃气有限公司安全生产事故应急预案综合预案为主体,主要就是移动式压力容器液化石油气充装中最容易发生事故得专项应急预案.由总则、事故风险分析、应急指挥机构及职责、处置程序、处置措施为本专项应急预案得主要内容。

目录 1总则?错误!未定义书签。 1、1编制目得 .................................................. 错误!未定义书签。 1、2编制依据 ................................................. 错误!未定义书签。2事故风险分析?错误!未定义书签。 2、1液化石油气装卸车工艺流程?错误!未定义书签。 2、2介质特性简介?错误!未定义书签。 2、3主要危险、有害因素分析 ....................... 错误!未定义书签。 3、组织机构及职责 .................................................. 错误!未定义书签。 3、1应急组织体系?错误!未定义书签。 3、2职责?错误!未定义书签。 4预防与预警.............................................................. 错误!未定义书签。 4、1人员培训演练?错误!未定义书签。 4、2危险监控?错误!未定义书签。 5应急处置操作规程?错误!未定义书签。 5、1泄漏?错误!未定义书签。 5、2爆炸?错误!未定义书签。 6对外联系方式及相关部门 ..................................... 错误!未定义书签。 7、应急救援保障组名单?错误!未定义书签。 8、救援防护用品明细表 .......................................... 错误!未定义书签。

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

液化石油气储罐倒罐参考文本

液化石油气储罐倒罐参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液化石油气储罐倒罐参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 储罐倒罐是指将某个储罐内的液态液化石油气通过输 送设备和管道倒入另一储罐的操作过程。要求储配站至少 配备两台液化石油气储罐,其目的就是以备相互倒罐。 一、储罐倒罐的原因 液化石油气倒罐,除了从储罐倒入中间储罐以备汽化 输往生产窑炉使用外,当遇有下列情况之一时,必须进行 倒罐。 1.已到检验周期,需要进行定期检验的储罐 根据《压力容器安全技术监察规程》第132条规定: 安全状况等级为1~2级的压力容器,每6年至少进行一次

内外部检验;安全状况等级为3级的压力容器,每隔3年至少进行一次内外部检验。液化石油气储罐在进行内外部检验之前,应将内存液化石油气全部倒出,并经清洗置换合格,以便检验人员进入罐内检查。 2.储罐的安全附件损坏,需进行修理时 液化石油气储罐的安全附件主要有:安全阀、压力表、温度计、液压计、降温冷却系统等。当这些部件损坏、失灵,需要修理或更换,有的附件还要进入罐内修复,即使不需动火,也应将液化石油气倒出,以免发生事故。 3.储罐的入孔盖、盲板、法兰出现泄漏或所属阀门损坏 当储罐人孔、盲板、法兰等密封部位发生泄漏时,应及时将液化石油气倒出,再进行修复,禁止带压紧固螺栓和修理附件。更换储罐的根部阀门时,也应将液化石油气倒空,避免液化石油气泄出在储罐区形成爆炸性气体。

20立方米液氨储罐设计

《过程设备设计》 课程设计说明书 设计项目: 20M3液氨储罐设计 所属院系:化学化工学院 专业班级:化学工程与工艺1304班 学号: 学生姓名: 指导教师:张铱鈖 2016年01月20日

摘要 本次课程设计任务为设计一个容积为20m3的液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管等进行设计,然后对其进行强度校核,最后形成合理的设计方案。 设计说明书的正文部分包括工艺设计和机械设计,其中机械设计包括结构设计和强度计算两部分内容,结构设计中包括设备一系列零部件的数据,强度计算包括厚度计算、水压试验、气密性试验等。

一、设计任务书 20M3液氨储罐设计 课程设计要求及原始数据(资料) 一、课程设计基本要求 1、按照国家压力容器设计标准、规范设计要求,掌握典型过程设备设计的过程。 2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。 3、工程图纸要求计算机绘图。 4、独立完成。 二、原始数据 表1 设计条件表

目录 一、设计任务书 (2) 二、课程设计内容 (5) 工艺设计 (5) 一、设计压力的确定 (5) 二、设计温度的确定 (6) 机械设计 (6) 一、结构设计 (6) ①设计条件 (6) ②结构设计 (7) 1、压力容器选择 (7) 物料的物理化学性质 压力容器的类型 压力容器的用材 2、筒体和封头的结构设计 (8) 容器的筒体和封头壁厚的设计 (8) 三·设备的设计计算 1、筒体名义厚度的初步确定 (8) 2、封头壁厚的计算 (8) 容器的水压试验 (10) 3、各个接管的位置及法兰的选择 (11) 接管的设计 法兰的设计 垫片的选择

液氨储罐区消防设计专篇

** 氨库装置 消防专篇编制: 校核: 审核:

1 设计原则、依据及规范 1.1 设计原则 认真贯彻“预防为主,防消结合”的方针,严格遵循国家和地方的有关防火规范及规定,搞好本项目的防火设计。充分利用装置所在地域现有的消防设施,尽量节约投资。 1.2 设计依据 1.2.1 设计合同。 1.2.2 **提供的设计基础资料。 1.3 国家和地方的相关法规和规定 1.3.1 《中华人民共和国消防法》(中华人民共和国主席令第4号) 1.3.2 建筑工程消防监督审核管理规定(公安部30号令) 1.3.3 《危险化学品安全管理条例》(中华人民共和国国务院令第344号) 1.3.4 《中华人民共和国安全生产法》(中华人民共和国主席令第70号) 1.3.5 《中华人民共和国劳动法》(中华人民共和国主席令第28号) 1.3.6 《特种设备安全监察条例》(中华人民共和国国务院令373号) 1.3.7 《国务院关于进一步加强安全生产工作的规定》(国发【2004】2号)1.3.8 《关于加强安全生产事故应急预案监督管理工作的通知》(国务院安全生 产委员会安委办字【2005】48号) 1.4 设计中执行的主要标准、规范 1)《建筑设计防火规范》(GB50016-2006) 2)《化工企业安全卫生设计规定》(HG20571-1995) 3)《石油化工企业设计防火规范》(GB50160-1992,1999年版) 4)《建筑抗震设计规范》(GB50011-2001) 5)《建筑物防雷设计规范》(GB50057-94,2000版) 6)《建筑防腐蚀工程施工及验收规范》(GB50212-2002) 7)《钢结构设计规范》(GB50017-2003) 8)《爆炸和火灾危险环境电力装置设计规范》(GB50058-1992) 9)《工业企业噪声控制设计规范》(GBJ87-1985) 10)《石油化工企业可燃气体和有毒气体检测报警设计规范》(SH3063-1999)

注水法处理液化石油气储罐泄漏事故注意事项

注水法处理液化石油气储罐泄漏事故 1引言 液化石油气在我国已广泛使用,因液化石油气贮罐泄漏而造成的事故曾多次发生,有的甚至引发了恶性爆炸事故,造成了巨大的财产损失和职员伤亡。因此分析液化石油气贮罐泄漏特点并研究相应的对策是非常有必要的。液化石油气储存系统中出现泄漏的部位不同,则泄漏物的状态、泄漏速度以及泄漏点对罐区构成的威胁各不相同,发生火灾爆炸的危险性大小也不一样。因此,有必要对液化石油气储存系统中可能出现泄漏的不同情况及其危险性特性进行分析,并讨论相应的对策。 2储罐可能出现泄漏的不同部位及危险性分析 液化石油气储罐的接管有液相进口、气相进口、液相出口、气相出口、排污口、放散口以及人孔等。由于集中应力的作用,各种接口、焊缝处较轻易出现泄漏;液化石油气储存系统中蒸气压高,液化石油气对法兰橡胶密封件的溶胀性强,因此法兰处较轻易出现泄漏;液化气中含有一定量的水分,长期贮存时,水分会逐渐积累下沉,积聚在储罐的下部。罐越大,时间越长,积聚量越大。在罐底水层的作用下,罐底及罐底阀件的腐蚀比其它部位严重,轻易出现泄漏[1]。 2.1管道或法兰泄漏 管道或法兰出现泄漏点时,液化气的泄漏速度较慢,泄漏或燃烧点离罐体远,危险性较小。停止输送气体,慢慢封闭泄漏点相邻部位的阀门,即可切断泄漏源排除危险。假如相邻阀门不能关紧,为防止泄漏点四周形成爆炸性混合气体而产生危险,还可以暂时主动点燃液化气,让其稳定燃烧,等必要的抢险措施都预备好后,再扑灭火焰。 2.2罐体顶部或与顶部相连接的阀门、管道出现泄漏 罐体顶部或与顶部相连接的阀门、管道出现泄漏时,泄漏物为气相液化气,泄漏量相对较小;抢险职员直接接触的是气体,冻伤的可能性较低。2000年7月15日,一辆满载9吨(准载8吨)液化气的槽车在途径四川省绵阳市宝成铁路桥洞时,由于车身超高,与桥洞顶部发生碰撞,槽车被卡在桥下,槽车顶部发生泄漏,对铁路线和旅客的安全构成了很大威胁。经消防官兵英勇奋战,强行堵漏成功。据悉,参加抢险的消防官兵当时虽未着防冻服装,却没有职员被冻伤。 2.3罐体底部泄漏或紧邻罐体的第一个阀门/法兰泄漏 无论是罐体底部泄漏或紧邻罐体的第一个阀门/法兰泄漏,泄漏出的都是液体,泄漏速度快,泄漏量大,泄漏点处于罐区之内,危险性比前面谈到的两种情况都大。1998年3月5日,陕西省西安市煤气公司液化气治理所内一个400m3球罐的根部阀门损坏,导致罐内液化气大量泄漏,引发了罐区的连续爆炸,造成11人死亡(事故中有7名消防官兵牺牲),31人受伤。1979年12月18日,吉林

液氨储罐规范要求

第一章总则 第一条为加强液氨储存、装卸环节的安全生产技术管理,进一步规范液氨储存、装卸的安全生产行为,保障人身和财产安全,防止发生事故,依据《中华人民共和国安全生产法》、《危险化学品安全管理条例》和《危险化学品从业单位安全标准化规范》等法律、法规及有关标准等,制定本规范。 第二条本规范适用于山东省境内从事液氨生产、经营、储存和使用等企业的液氨储存、装卸的安全生产技术管理。 第三条新建、改建、扩建液氨储存、装卸装置和设施,属于危险化学品建设项目安全许可范畴的,应严格遵照《危险化学品建设项目安全许可实施办法》和《山东省安全生产监督管理局关于危险化学品建设项目安全许可和试生产(使用)方案备案工作的意见》,获得安全生产行政许可后方可投入生产(使用)。 第四条涉及液氨储存、装卸的企业,应认真落实“安全第一、预防为主,综合治理”的方针,严格遵守危险化学品安全生产的法律、法规、标准和相关规范,建立、健全安全生产责任制度,积极开展安全标准化创建活动,不断改善安全生产条件,提高本质安全水平,确保安全生产。 第五条液氨的储存、装卸装置和设施,应做到安全可靠、技术先进,禁止使用国家明令禁止或淘汰的工艺和设备设施。 第二章设计管理 第一节场所选址 第六条液氨储存和装卸场所的选择,应全面考虑周边的自然环境和社会环境,使其符合安全生产有关标准规范的要求。 第七条在进行区域规划时,液氨储存和装卸场所应根据所在企业及相邻工厂或设施的特点和火灾危险性,结合地形、风向等条件,合理布置。 第八条液氨储存和装卸场所应禁止设置在学校、医院、居民区等人口稠密区附近。液氨储存数量构成重大危险源的,与下列场所、区域的距离必须符合国家标准或者国家有关规定: 1.居民区、商业中心、公园等人口密集区域; 2.学校、医院、影剧院、体育场等公共设施; 3.供水水源、水厂及水源保护区; 4.车站、码头(按照国家规定、经批准专门从事危险化学品装卸作业的除外)、机场、公路、铁路、水路交通干线、地铁风亭及出入口; 5.基本农田保护区、畜牧区、渔业水域和种子、种畜、水产苗种生产基地; 6.河流、湖泊、风景名胜区和自然保护区; 7.军事禁区、军事管理区; 8.法律、行政法规规定的予以保护的其他区域。 第九条液氨储存和装卸场所应充分考虑地震、软地基、湿陷性黄土、膨胀土等地质因素以及台风、雷暴、沙暴等气象危害因素,避免建在断层、滑坡、泥石流、地下溶洞、采矿陷落区界内、重要的供水水源卫生保护区、有开采价值的矿藏区等地段和

液氨卧式储罐

前言 本说明书为《31m3液氨储罐设计说明书》。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录 附:设计任务书 (2) 第一章绪论 (3) (一)设计任务 (3) (二)设计思想 (3) (三)设计特点 (3) 第二章材料及结构的选择与论证 (3) (一)材料选择 (3) (二)结构选择与论证 (3) 第三章设计计算 (5) (一)计算筒体的壁厚 (5) (二)计算封头的壁厚 (6) (三)水压试验及强度校核 (6) (四)选择人孔并核算开孔补强 (7) (五)核算承载能力并选择鞍座 (9) (六)选择液面计 (9) (七)选择压力计 (10) (八)选配工艺接管 (10) 第四章设计汇总 (11) 第五章结束语 (12) 第六章参考文献 (13)

第一章绪论 (一)设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 (三)设计特点: 容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。 各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 第二章材料及结构的选择与论证 (一)材料选择: 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考 虑20R、16MnR这两种钢种。如果纯粹从技术角度看,建议选用20R 类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。 (二)结构选择与论证: 1.封头的选择: 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗

30m3液化石油气储罐设计

课程设计任务书 题目:303m 液化石油气储罐设计 设计条件表 序号 项目 数值 单位 备注 1 最高工作压力 1.893 MPa 由介质温度确定 2 工作温度 -20~48 ℃ 3 公称容积(s V ) 30 3 m 4 装量系数(V ) 0.9 5 工作介质 液化石油气 6 使用地点 太原市,室内 管口条件: 液相进口管 DN50;液相出口管DN50;安全阀接口DN80;压力表接口DN25;气相管DN50;放气管DN50;排污管DN50。 液位计接口和人孔按需设置。

设计计算说明书 1. 储存物料性质 1.1物料的物理及化学特性 1.2 物料储存方式 常温常压保存,不加保温层。 2. 压力容器类别的确定 储存物料液氯为高度危害液体,工作压力为 1.303MPa ,储罐属低压容器。PV ≧0.2MPa.3m ,根据《压力容器安全技术监察规程》][2,所以设计储罐为第三类容器。 3.1储罐筒体公称直径和筒体长度的确定 公称容积g V =303m ,则 4 πi D L =30。 L D i = 3 1计算,得 i D =2.335m ,L =7.006.。 取D=2.3m,此时11] [查表 ,得封头容积1V =2×1.7588=3.517 3 m ,直边段长度为40mm 。计 算筒体容积2V =4824 .267588.1230=?-3 m , 4824 .264 12 =L D ,解得 mm L 3772.61=。取筒体长度为6.4m 。 10.307588.124.63.24 V 2 =?+?=)(真π 此时5%.3%0100%)/303010.30(/)(≤=?-=-V V V 真,所以合适,画图发现比例也合适。 最后确定公称直径为2300mm ,筒体长度为6400mm 。 3.2封头结构型式尺寸的确定

浅谈液化石油气储罐开罐检验

浅谈液化石油气储罐开罐检验 液化石油气储罐的定期检验是液化石油气储运中不可缺少的一项重要工作,也是保证安全生产和稳定供气的前提。宁波兴光燃气集团公司液化气分公司于2004年7月至2006年5月对8台1000m3球罐、10台400m3球罐、1台650m3球罐、2台200m3球罐、2台50m3球罐、1台100m3卧罐、1台50m3卧罐陆续进行开罐检验,并对运行中出现问题的设备、工艺管路进行检修和改造。 一、开罐检验前期准备工作 开罐检验对任何一个LPG气站来讲都是一项重大操作。我公司的开罐检验采取分批次,陆续检验的方法,整个气站正常的生产运行并不停止的特点,前期各项准备工作显得格外重要。 1、建立开罐检验组织机构。我公司成立了分管经理牵头,各职能部门参加的开罐检验领导小组,根据国家有关规定和技术监督部门的要求。组织领导和协调安排开罐检验工作的实施,并对开罐检验期间的安全、检验、检修负全面责任。 2、制定周密翔实的开罐检验方案。由于开罐检验分批次进行,LPG气站仍处于正常运行状态,根据液化石油气系统设备、管路的基本状况,开罐检验主管部门、运行部门与施工单位负责人共同讨论制定检验检修工作的主要内容,制定合理的开罐检验实施方案和安全应急方案。 3、将开罐检验方案送市锅炉压力容器检验所审批同时报请检验,与之签订开罐检验协议和开罐检验安全协议。 4、确定开罐检验所需要的设备、仪器、配件及材料,制订预算,并进行采购工作。 二、开罐检验前的置换工作 我公司采用水置换的方法,即把水作为置换中间介质,将储罐内的空气置换到允许标准。 1、将储灌中液相液化石油气尽可能用完或进行倒罐,并使用压缩机抽取气相,使被检验储罐气相压力低于0.4Mpa,然后利用水系统对储罐顶水,主要目的是将球罐内气相部分尽可能的压到其它的储罐内,减少放散量和液化气的浪费,也保证了放散的安全性。在储罐液位升至90%高度时停止顶水,切断与其它储罐的气相连接,然后打开放散管放散,在放散时注意风向和气压,必要时进行喷淋稀释,设置警戒线,严禁烟火。 2、利用储罐中的水,将需要检修或更换的附属设备水置换。关闭储罐第一道阀门,将与储罐连接的管路都与储罐脱离开,管路阀门前加盲板,保证被检验储罐与正常运行的系统完全隔离。 三、开罐检验过程主要步骤 1、补充进水,浸泡储罐48h后进行强度试验,完成后放水。用防爆工具打开人孔,用防爆风机强制通风,取样分析罐内氧气的体积分数和气相液化石油气的体积分数。 2、取样分析合格后就可以开始拆除储罐附属设备和阀门,送技术监督部门进行强制检验。由市锅炉压力容器检验所对储罐罐体进行外观、侧厚、表面探伤、射线探伤、超声波探伤、硬度测试等检验,并根据检验安全状况等级确定下一次检验时间。 四、开罐检验后的置换工作 1、检验合格后在进行气密性试验之前,需要对储罐再次进行水置换(用水置换空气),其过程与开罐前相似。置换结束后再进行气密性试验,包括储罐人孔,第一道阀门,附属设备等都需要进行严格的检测。合格后再用气相液化石油气置换水,注意观察储罐水位,并控制气相液化石油气压力,必要时可以暂停排污,保证安全。 2、置换结束后,应经常排污、查漏和巡回检查,排污时两道阀门交叉开关;同时储罐板式液位计和玻璃液位计也要经常排污,避免出现假液位。 五、储罐检验过程中同步进行的检修与改造 我公司在储罐检验过程中主要进行了以下检修和改造: 1、将储罐的第一道阀门和安全阀全部更换为由市技术监督部门检验合格的新阀门,保证使用安全。 2、储罐内部环、纵焊缝打磨除锈,外部采取喷沙方式进行整体除锈,部分管路进行人工除锈。

20立方米液氨储罐设计说明书

目录 课程设计任务书2 20m3液氨储罐设计2课程设计内容3液氨物化性质及介绍3 1. 设备的工艺计算3 1.1 设计储存量3 1.2 设备的选型的轮廓尺寸的确定3 1.3 设计压力的确定4 1.4 设计温度的确定4 1.5 压力容器类别的确定4 2. 设备的机械设计5 2.1 设计条件5 2.2 结构设计6 2.2.1 材料选择6 2.2.2 筒体和封头结构设计6 2.2.3 法兰的结构设计6 (1)公称压力确定7 (2)法兰类型、密封面形式及垫片材料选择7 (3)法兰尺寸7 2.2.4 人孔、液位计结构设计8

(1)人孔设计8 (2)液位计的选择9 2.2.5 支座结构设计10 (1)筒体和封头壁厚计算10 (2)支座结构尺寸确定12 2.2.6 焊接接头设计及焊接材料的选取14 (1)焊接接头的设计14 (2)焊接材料的选取16 2.3 强度校核16 2.3.1 计算条件16 2.3.2 内压圆筒校核17 2.3.3 封头计算18 2.3.4 鞍座计算20 2.3.5 开孔补强计算21 3. 心得体会22 4. 参考文献22 课程设计任务书 20m3液氨储罐设计 一、课程设计要求: 1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。 3.工程图纸要求计算机绘图。 4.独立完成。 二、原始数据 设计条件表 三、课程设计主要内容 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书

四、学生应交出的设计文件(论文): 1.设计说明书一份; 2.总装配图一张(A1图纸一张) 课程设计内容 液氨物化性质及介绍 液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。 液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。蒸汽与空气混合物爆炸极限为16—25%(最易引燃浓度为17%)氨在20℃水中溶解度34%;25℃时,在无水乙醇中溶解度10%;在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。水溶液呈碱性。液态氨将侵蚀某些塑料制品,橡胶和涂层。遇热、明火,难以点燃而危险性极低,但氨和空气混合物达到上述浓度范围遇火和燃烧或爆炸,如有油类或其它可燃物存在则危险性极高。

液 氨 储 罐 机 械 设 计

课程设计任务书 广东石油化工学院 《化工机械基础》课程设计任务书 1.设计题目:液氨储罐机械设计 2. 设计数据: 技术特性 公称容积V0(m3) 16 公称直径D i(mm) 2000介质液氨筒体长度L(mm) 4000 工作压力(MPa) 2.07 工作温度(0C) ≤50 厂址茂名推荐材料16MnR 管口表 编号名称公称直径(mm) 编号名称公称直径(mm) a1-2 液位计15 e 安全阀32 b 进料管50 f 放空管25 c 出料管32 g 人孔500 d 压力表15 h 排污管50 工艺条件图

广东石油化工学院课程设计毕业书 3.计算及说明部分内容(设计内容): 第一部分绪论: (1)设计任务、设计思想、设计特点; (2)主要设计参数的确定及说明。 第二部分材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍式支座的选择确定。 第三部分设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; 第四章主要附件的选用 (1)、液面计选择 (2)、各进出口的选择 (3)、压力表选择 第五章设计小结 附设计参考资料清单 4.绘图部分内容: 总装配图一张(1#) 5.设计期限:1周(2014 年 07 月 07 日—— 2014 年 07月 11 日) 6、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 7.参考资料: [1]《化工过程设备机械基础》,李多民、俞慧敏主编,中国石化大学出版社

相关主题
文本预览
相关文档 最新文档