当前位置:文档之家› CameraLink接口数字相机图像显示装置解读

CameraLink接口数字相机图像显示装置解读

CameraLink接口数字相机图像显示装置解读
CameraLink接口数字相机图像显示装置解读

Camera Link接口数字相机图像显示装置(技术)摘要:由于目前基于CameraLink接口的各种相机都不能直接显示,因此本文基于Xilinx公司的Spartan3系列FPGA XC3S1000-6FG456I设计了一套实时显示系统,该系统可以在不通过系统机的情况下,完成对相机CameraLink信号的接收、缓存、读取并显示。系统采用两片SDRAM作为帧缓存,将输入的CameraLink信号转换成帧频为75Hz,分辨率为1,024×768的XGA格式信号,并采用ADV7123JST芯片实现数模转换,将芯片输出的信号送到VGA接口,通过VGA显示器显示出来。设计的系统可以应用于各种基于CameraLink接口的相机输出信号的实时显示。

关键词:CameraLink; FPGA; SDRAM控制器;实时显示

Research on the Real-time Display Technology Based on CameraLink

Abstract: All cameras based on the CameraLink interface cannot be displayed directly at present. Therefore, we designed a real-time display system based on the Xilinx Spartan3 FPGA XC3S1000-6FG456I.Our system could receive, store, read and display the CameraLink signal without the system computer. Two SDRAMs were used as frame storage. Input CameraLink signal was converted to XGA signal with 1024×768 pixles/frame at 75 frame/s. The ADV7123JST was used as D/A convertor. Its output signal was transmitted to the VGA interface and displayed on the screen of the VGA monitor. Our system could display the output signal of all cameras based on the CameraLink interface.

Keywords: CameraLink; FPGA; SDRAM controller; real-time display

目录

第一章绪论 (3)

1.1 引言 (3)

1.2数字图像处理的发展 (3)

1.3 目的及意义 (4)

1.4 国内外研究现状 (5)

第2章视频显示原理和显示格式的转换算法综述 (7)

2.1视频显示的原理 (7)

2.2目前视频显示格式转换算法综述 (8)

2.2.1图像尺寸变换的插值方法综述 (9)

2.2.2每秒帧数变换方法综述 (11)

2.2.3插值算法选择判断的原则 (11)

第三章视频显示格式转换的插值算法方案 (12)

3.1图像尺寸变换采用的算法方案 (12)

3.2每秒帧数变换采用的算法方案 (14)

3.3视频显示格式转换中的像素处理方案 (16)

第四章实时显示系统装置 (17)

4.1.实时显示系统总体设计 (18)

4.2 FPGA概述 (18)

4.3 Camera Link结构与原理 (20)

4.4 SDRAM控制器设计 (22)

4.5 VGA显示接口设计 (24)

参考文献 (25)

第一章绪论

1.1 引言

Cameralink相机以其可靠性高,稳定性好,独立性好和易用等优势,成为现阶段工业大分辨率数字相机的必配接口,相机LVDS信号由专业图像采集卡解码通过一台性能良好的计算机计算最后在计算机显示器上完成图像显示或在计算机硬盘上存储等后续数字图像处理操作。对于某些不需要复杂图像运算的场合,只要求将验证相机的显示效果如何,如此配置略显臃肿,所以提出基于Cameralink数字信号的便携显示思想。

针对上述不足,本文设计一个可以针对LVDS图像信号的实时显示装置。该装置可以将接入的相机数字信号解码成普通CRT显示器可以支持的VGA视频格式,使用数模转换器将视频转换成模拟信号输出显示。本设计使用FPGA做控制器和运算器,SDRAM做图像存储器,ADV7123做数模转换器,搭建实时图像显示平台,接收Cameralink相机的数字视频信号,完成解码、制式变换等数字图像处理最终得以在外部显示器中显示。数字图像处理部分内容涉及到图像尺寸分辨率变换和帧率变换等基于图像输出的基础数字图像处理内容。

1.2数字图像处理的发展

数字视频转换属数字图像处理领域,数字图像处理最早的应用之一是报纸业,当时,图像第一次通过海底电缆从伦敦传往纽约。早在20世纪20年代曾引入Bartlane电缆图片传输系统,把横跨大西洋传送一幅图片所需的时间从一个多星期减少到3个小时。后随着计算机技术的进步,大规模存储和显示系统的跟进发展,使数字图像处理技术应用到更多的领域中。20世纪60年代早期,人类制造出第一台可以执行有意义的图像处理任务的大型计算机。空间项目的开发也使人们把注意力转移到数字图像处理技术的潜能上。1964年美国加利福尼亚的喷气推进实验室,就利用计算机技术改善空间探测器发回的月球图像,以校正航天器上摄像机中各种类型的图像失真。在20世纪60年代末和70年代初,数字图

像处理技术开始应用于医学图像、地球遥感检测和天文学领域。在医学领域上,Godfrey N.Hounsfield先生和Allan M.Cormack教授基于数字图像处理技术发明了断层技术,由此而共同获得了1979年的诺贝尔医学奖。从20世纪60年代至今,图像处理领域已得到了生机勃勃的发展。除了医学和空间项目的应用外,数字图像处理技术现在已应用在了更广泛的范围。计算机程序用于增强对比度或将亮度编码为彩色,以便于解释X射线和用于工业、医学及生物科学等领域的其他图像。地理学用相同或相似的技术从航空和卫星图像中研究污染模式。图像增强和复原过程用于处理不可修复物体的已损图像或者造价昂贵不可复制的实验结果。在考古学领域,使用图像处理方法已成功地复原模糊的图片,这些图片是丢失或损坏的稀有物品唯一现存的记录。在物理学和相关领域,计算机技术通常增强如高能等离子和电子显微镜方法等领域的实验图像。图像处理技术也成功的应用在天文学、生物学、核医学、法律实施、国防以及工业领域中。

作为图像处理技术的实现载体,处理系统的器件性能的不断提升,来满足各种复杂图像处理的应用需要。20世纪80年代中期,图像处理系统都是由主机及与主机箱配合的外设构成。20世纪80年代末90年代初,出现将图像处理硬件设计与工业标准总线兼容并能配合工程工作站机箱和个人计算机的单板形式。到目前为止,虽然针对大规模图像应用的大规模图像处理系统一直在不断销售,但随着技术进步,向着小型化和通用化的小机型并带有专用图像处理软件的混合型系统方向发展。

1.3 目的及意义

目前,基于CameraLink接口的各种相机都不能直接显示,只能通过专用采集卡连接到系统机上在系统机的屏幕上显示,系统比较庞大,使用不方便。针对上述不足,本文设计一个可以针对LVDS图像信号的实时显示装置。该装置可以将接入的相机数字信号解码成普通CRT显示器可以支持的VGA视频格式,使用数模转换器将视频转换成模拟信号输出显示。相比现有设备而言,成本降低,系统精简,便于携带。

1.4 国内外研究现状

图像处理是计算机应用领域中一个极为活跃的领域,它的发展己有40余年的历史,在此期间,随着计算机、集成电路等技术的飞速发展,图像处理无论在算法上、系统结构上,还是在应用上以及普及的程度上都取得了长足的进展。但是图像处理依然面临着许多挑战性的问题,其中最主要的问题就是如何提高解决实际复杂问题的综合能力,就当前的技术水平来说,这种综合能力包括图像处理的网络化、复杂问题的求解与图像处理速度的高速化。

图像处理的速度问题主要由图像数据的特点、图像处理算法的复杂性以及处理系统硬件结构和速度引起。为提高图像处理系统速度,一方面可以改变图像数据特点,但这种方法通常是不可取的,因为处理系统往往需要充分利用图像数据中的信息;其次是选用高速处理器件,并尽量减化图像处理算法;再者可以采用并行处理技术,这种技术选用多个高速处理器件来完成同一任务,使得处理速度得到成倍提高。

图像并行处理技术是图像处理中的一个重要方面,是提高图像处理速度的最有效技术,其发展水平一直受到图像界的关注。原因在于:一方面,图像并行处理技术的发展难度很大,这种难度不仅在于图像处理系统的硬件及系统结构本身,以及它对计算机技术和集成电路等技术的依赖关系,而且在于实际应用的复杂性和应用部门对系统价格的承受能力;另一方面,图像并行处理技术的发展所产生的效益也是十分显著的,它在处理速度上所获得的加速比是令人振奋的,其实际应用系统也将产生很大的经济效益和社会效益。

虽然许多实际的应用问题刺激着图像并行处理技术的发展,但实际应用的复杂性和图像并行处理系统昂贵的价格又制约着图像并行处理技术的实际应用,这是一对矛盾,也是一种挑战。

图1-1一种基于双TMS320C40的图像并行处理系统

此前,国内外一些科研院所已研制出了一些图像并行处理系统,如天津大学研制的双TMS320C40的高速图像处理系统。该系统的结实时图像处理构如图1-1所示:处理系统采用两个帧存储器,它们轮流对视频信号进行存储,其中每个帧存储器又分为前半帧和后半帧。当前半帧结束时,处于空闲状态的TMS320C40开始对前半帧图像数据进行处理,并将处理结果送入数据存储器。当它的工作完成后,它又处于等待状态,等待下一帧的前半帧图像数据的来临。当后半帧结束时,另一片TMS320C40开始对后半帧图像数据进行处理,并将处理结果送入数据存储器。它的工作完成后,就等待下一帧的后半帧图像数据的来临。从整个系统设计来看,它是采用多片处理器分担相同任务的方法来达到提高系统处理速度的目的。

此外,加拿大Matrox公司采用TMS320C80芯片设计的GENESIS图像处理系统、英国INMOS公司设计的IMS A100级联信号处理器和清华大学研制的GIEB微机高速图像处理系统都是图像并行处理结构的典范。但这些系统规模庞

制。

大,价格昂贵,使得在一些领域的应用受到限[1]

第2章视频显示原理和显示格式的转换算法综述

2.1视频显示的原理

在最理想的情况下,电视机上重现图像应该和原景物一样。就是说它的几何形状,相对大小、细节的清晰程度、亮度分布及物体运动的连续感等,都要与直接看景物一样。实际上要做到完全一样是不可能的。对于电视机来说,电视图像都要有一些参量来表示视频图像的几何形状,相对大小、细节的清晰程度、亮度分布及物体运动的连续感等特性的。

根据人眼视觉特性,视觉最清楚的范围是在垂直视角约15°、水平视角约20°的矩形面积之内。根据这一特点,目前各国电视机屏幕都采用矩形,宽高比为4∶3;但有些显象管为了节约扫描功率,采用5 ∶4的宽高比。在高清晰度电视中,普遍认为幅型比取16∶9更为适宜人眼的视觉特性,因为视觉周围的

度。

总视场在水平方向上大约为160度,在垂直方向上大约为80[2]

图像清晰度是指人主观感觉到的图像重现景物细节的可懂与逼真的程度。这要分别用人眼在水平方向或垂直方向所能分辨的象素数来定量描述,相对应的称为水平清晰度和垂直清晰度。有两块视网膜区满足电视:黄斑及其周围地区域。黄斑是视网膜上一个小的中心部分,可以感觉到图像精细的细节和边缘。黄斑视觉大约仅占视场的1度,而视觉周围的总视场在水平方向上大约为160度,在垂

度。

直方向上大约为80[2]

为了运动的连续性,视觉特性需要图像的快速重复,而为了避免闪烁,需要更快的图像重复率。为了获得两帧2次闪光,从1936年公共电视业务开始,就已经准备使用隔行扫描技术,这一技术将扫描图像分成两组(“奇”和“偶”)有间隙得行,按顺序显示,其中一组精确地拟合到另一组地间隙中。每组扫描行被称为一场,互相交织地两组行称为一帧。在模拟电视时代中,这一过程尽管是用来实现电视的必要技术,但是,它也是引起图像质量多方面降级的一个根源。当图像的整个区域以场扫描的频率闪烁时,该频率是帧扫描的两倍,但是各个行还是以较慢的帧频进行重复,这导致了相关的多种质量降级,其效应被称为行间闪烁。随着摄像机和摄像机的图像增强电路所提供的垂直分辨率的提高,这些效

【CN110020633A】姿态识别模型的训练方法、图像识别方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294734.8 (22)申请日 2019.04.12 (71)申请人 腾讯科技(深圳)有限公司 地址 518000 广东省深圳市南山区高新区 科技中一路腾讯大厦35层 (72)发明人 罗镜民 朱晓龙 王一同 季兴  (74)专利代理机构 北京派特恩知识产权代理有 限公司 11270 代理人 李梅香 张颖玲 (51)Int.Cl. G06K 9/00(2006.01) G06K 9/62(2006.01) G06N 3/08(2006.01) (54)发明名称 姿态识别模型的训练方法、图像识别方法及 装置 (57)摘要 本发明提供了一种姿态识别模型的训练方 法、图像识别方法及装置;姿态识别模型的训练 方法包括:将标注有人体关键点的样本图像,输 入所述姿态识别模型包括的特征图模型,输出对 应所述样本图像的特征图;将所述特征图输入所 述姿态识别模型包括的二维模型,输出用于表征 二维人体姿态的二维关键点参数;将从所述特征 图中剪裁出的目标人体特征图及所述二维关键 点信息,输入所述姿态识别模型包括的三维模 型,输出用于表征三维人体姿态的三维姿态参 数;结合所述二维关键点参数及所述三维姿态参 数,构建目标损失函数;基于所述目标损失函数, 更新所述姿态识别模型的模型参数。权利要求书3页 说明书16页 附图11页CN 110020633 A 2019.07.16 C N 110020633 A

权 利 要 求 书1/3页CN 110020633 A 1.一种姿态识别模型的训练方法,其特征在于,所述方法包括: 通过姿态识别模型包括的特征图模型,对标注有人体关键点的样本图像进行处理,获得对应所述样本图像的特征图; 通过所述姿态识别模型包括的二维模型,对所述特征图进行处理,获得用于表征二维人体姿态的二维关键点参数; 通过所述姿态识别模型包括的三维模型,对从所述特征图中剪裁出的目标人体特征图及所述二维关键点参数进行处理,获得用于表征三维人体姿态的三维姿态参数; 结合所述二维关键点参数及所述三维姿态参数,构建目标损失函数; 基于所述目标损失函数,更新所述姿态识别模型的模型参数。 2.如权利要求1所述的方法,其特征在于,所述方法还包括: 根据当前配置场景的类型获取相应类型的关键点集,并确定所述关键点集中的人体关键点; 基于所确定的人体关键点,参照所述关键点集对所述样本图像进行标注。 3.如权利要求2所述的方法,其特征在于,所述关键点集包括: 用于定位人体部位的基准关键点、与所述基准关键点协同表征所属部位的多种三维姿态的扩展关键点。 4.如权利要求1所述的方法,其特征在于,所述目标损失函数包括对应所述三维模型的第一损失函数;所述结合所述二维关键点参数及所述三维姿态参数,构建损失函数,包括:基于所述三维姿态参数,确定相应的二维关键点信息; 结合所述二维模型输出的二维关键点参数、以及基于所述三维姿态参数确定的二维关键点信息,构造对应所述三维模型的第一损失函数。 5.如权利要求4所述的方法,其特征在于,所述目标损失函数还包括对应所述二维模型的损失函数及对应所述三维模型的第二损失函数; 所述二维关键点参数包括:人体关键点的部分亲和字段参数及人体关键点的热力图,所述三维姿态参数包括:人体的形状参数及形态参数; 所述结合所述二维关键点参数及所述三维姿态参数,构建损失函数,包括: 结合所述二维模型输出的部分亲和字段参数与相应人体关键点在样本图像中的部分亲和字段参数的差异、所述二维模型输出的热力图与相应人体关键点在样本图像中的热力图的差异,构建对应所述二维模型的损失函数; 结合所述三维模型输出的形状参数与相应人体在样本图像中的形状参数的差异、所述三维模型输出的形态参数与相应人体在样本图像中的形态参数的差异,构建对应所述三维模型的第二损失函数。 6.如权利要求1所述的方法,其特征在于,所述方法还包括: 基于所述二维模型输出的所述二维关键点参数,确定所述特征图中的目标人体; 根据确定的目标人体对所述特征图进行剪裁,得到所述目标人体的特征图。 7.如权利要求1所述的方法,其特征在于,所述基于所述目标损失函数,更新所述姿态识别模型的模型参数,包括: 基于所述二维模型输出的所述二维关键点参数及所述三维模型输出的所述三维姿态参数,确定所述目标损失函数的值; 2

基于OpenCV识别库的面部图像识别系统的设计

基于OpenCV识别库的面部图像识别系统的设计 本系统采用J2EE技术并以OpenCV开源计算机视觉库技术为基础,实现一套具有身份验证功能的面部图像识别信息管理系统。系统使用MySQL数据库提供数据支撑,依托于J2EE的稳定性和Java平台的可移植性使得本系统可以在各个操作系统平台中运行,同时提供在互联网中使用面部识别技术的一套较为完备的解决方案。 标签:OpenCV;人脸识别;生物学特征 引言 随着信息技术的飞速发展以及互联网的深入普及,越来越多的行业和领域使用信息技术产品以提高工作效率和管理水平。但是由于人们隐私信息的保护意识薄弱,出现了许多信息安全的问题。在人们对于信息安全越来越重视的情况下,许多技术被应用到信息安全领域中来。较为先进的技术有虹膜识别技术、遗传基因识别技术以及指纹识别技术等。而论文采用的是当前热点的面部图像识别技术。 1 系统实现算法及功能分析 1.1 面部图像的生物学特征模型的建立 本系统是利用面部图形的生物学特征来识别不同的人。由于每个人的面部图像都有各自的特征但又具有一定的通性,需要应用生物学中相关知识加以解决。可以利用已有的生物学测量手段以及现有的算法构建人的面部图像生物学特征模型(简称:面部模型),并应用于系统中,面部模型的建立为面部图像识别的功能提供实现依据。 1.2 知识特征库及面部识别引擎的建立 在前述面部模型建立完成后,需要建立相应的知识库以及面部识别引擎方可进行身份的识别。可经过大量数据的采集和分析后建立知识库,并根据知识库的特点建立相应的识别引擎。此识别引擎对外开放,在本系统中提供其它外来程序的调用接口,其它系统能够通过本接口实现识别引擎的调用实现对于面部图形的识别,从而达到识别引擎的可复用性。在技术条件允许的情况下,提供知识库的智能训练以及半自动构建支持。 1.3 面部图像的采集与预处理 本系统中采用了预留API接口,利用USB图形捕获设备采集数据图像。经过USB设备的捕获,使用JMF(Java Media Framework)来处理已捕获的图像数据,对捕获的图像进行面部图行检测和实时定位跟踪。

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

CameraLink接口数字相机图像显示装置解读

Camera Link接口数字相机图像显示装置(技术)摘要:由于目前基于CameraLink接口的各种相机都不能直接显示,因此本文基于Xilinx公司的Spartan3系列FPGA XC3S1000-6FG456I设计了一套实时显示系统,该系统可以在不通过系统机的情况下,完成对相机CameraLink信号的接收、缓存、读取并显示。系统采用两片SDRAM作为帧缓存,将输入的CameraLink信号转换成帧频为75Hz,分辨率为1,024×768的XGA格式信号,并采用ADV7123JST芯片实现数模转换,将芯片输出的信号送到VGA接口,通过VGA显示器显示出来。设计的系统可以应用于各种基于CameraLink接口的相机输出信号的实时显示。 关键词:CameraLink; FPGA; SDRAM控制器;实时显示 Research on the Real-time Display Technology Based on CameraLink Abstract: All cameras based on the CameraLink interface cannot be displayed directly at present. Therefore, we designed a real-time display system based on the Xilinx Spartan3 FPGA XC3S1000-6FG456I.Our system could receive, store, read and display the CameraLink signal without the system computer. Two SDRAMs were used as frame storage. Input CameraLink signal was converted to XGA signal with 1024×768 pixles/frame at 75 frame/s. The ADV7123JST was used as D/A convertor. Its output signal was transmitted to the VGA interface and displayed on the screen of the VGA monitor. Our system could display the output signal of all cameras based on the CameraLink interface. Keywords: CameraLink; FPGA; SDRAM controller; real-time display

照相机的组成及工作原理

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/088116785.html,)照相机的组成及工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。 一、照相机的组成 镜头 取景器 快门和光圈 输片计数机构 机身 二、照相机的工作原理 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。 三、照相机的分类划分 1、照相机根据其成像介质的不同

可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性

图像处理和识别中的纹理特征和模型

纹理特征和模型 1,基于纹理谱的纹理特征 图像纹理分析中,最重要的问题是提取能够描述纹理的特征信息;这些特征可被用来分类和描述不同的纹理图像。在实际中常用到的方法有结构法和统计法;本文提出一种新的统计方法,每个纹理单元表征该位置及其领域象素的特征,整幅图像的纹理特征用纹理谱来表征,用这种方法进行分析较为简单。 定义纹理谱:纹理单元的频率分布。 基于纹理频谱的纹理特征: 3×3领域:权重: original reference calculate by myself (1)、黑白对称性 ()(3281) 1*100 () s i S i BWS S i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ 反映频谱的对称性,不随纹理单元中起始计数位置的不同而不同。 (2)、几何对称性 ()4() 1 1*100 4 2*() Sj i Sj i GS Sj i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ ∑ 反映图像旋转180度后,纹理谱的相似性; (3)、方向度

()()11*10062*()Sm i Sn i DD Sm i ?? -?? ??=-?????? ∑∑ ∑ 反映线性结构的角度。大的DD 说明纹理谱对图像的方向模式较为敏感;即图 像中有线性机构纹理单元存在。 以上三个特征都是图像的几何特征,可描述原始图像的宏观纹理;下面介绍几个描述图像微观纹理的特征。 (4)、方向特征 微观水平结构特征: ()*()MHS S i HM i =∑ ()(,,)*(,,)HM i P a b c P f g h = 同样,我们可以得到其它方向的方向纹理特征MVS ,MDS1,MDS2 (5)中心对称性 2()*[()]CS S i K i =∑ 2.常用统计特征: 把图像看成是一个二维随机过程的一次实现,可得到图像的直方图、均值、方差、偏度、峰度、能量、墒、自相关、协方差、惯性矩、绝对值、反差分等特征量。常用来描述纹理的统计特征的技术有子相关函数、功率谱、正交变换、灰度级同时事件、灰度级行程长、灰度级差分、滤波模板、相对极值密度、离散马尔可夫随机场模型、自回归模型、同时自回归模型等。 原图: 1、2、3、4阶矩

数码相机的成像原理

1.1 数码相机的成像原理 在对数码相机的特点和基本组件了解之前,下面来了解一下数码相机是如何工作的,这有利于更好地理解和掌握相机的各项关键参数,深入了解相机的性能。 当打开相机的电源开关后,主控程序芯片开始检查整个相机,确定各个部件是否处于可工作状态。如果一切正常,相机将处于待命状态;若某一部分出现故障,LCD屏上会显示一个错误信息,并使相机完全停止工作。 当用户对准拍摄目标,并将快门按下一半时,相机内的微处理器开始工作,以确定对焦距离、快门的速度和光圈的大小。当按下快门后,光学镜头可将光线聚焦到影像传感器上,这种CCD/CMOS半导体器件代替了传统相机中胶卷的位置,它可将捕捉到的景物光信号转换为电信号。 此时就得到了对应于拍摄景物的电子图像,由于这时图像文件还是模拟信号,还不能被计算机识别,所以需要通过A/D(模/数转换器)转换成数字信号,然后才能以数据方式进行储存。接下来微处理器对数字信号进行压缩,并转换为特定的图像格式,常用的用于描述二维图像的文件格式包括Tag TIFF(Image File Format)、RAW(Raw data Format)、FPX(Flash Pix)、JFIF(JPEG File Interchange Format)等,最后以数字信号存在的图像文件会以指定的格式存储到内置存储器中,那么一张数码相片就完成拍摄了,此时通过LCD(液晶显示器)可以查看所拍摄到的照片。 前面只是简单介绍了其大致的过程,下面结合图1-1来详细地介绍相片成像的整个过程。 图1-1 成像原理示意图 (1)当使用数码相机拍摄景物时,景物反射的光线通过数码相机的镜头透射到CD上。 (2)当CCD曝光后,光电二极管受到光线的激发而释放出电荷,生成感光元件的电信号。 (3)CCD控制芯片利用感光元件中的控制信号线路对发光二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电信号收集起来,统一输出到放大器。 (4)经过放大和滤波后的电信号被传送到ADC,由ADC将电信号(模拟信号)转换为数字信号,数值的大小和电信号的强度与电压的高低成正比,这些数值其实也就是图像的数据。 (5)此时这些图像数据还不能直接生成图像,还要输出到DSP(数字信号处理器)中,在DSP中,将会对这些图像数据进行色彩校正、白平衡处理,并编码为数码相机所支持的图像格式、分辨率,然后才会被存储为图像文件。 (6)当完成上述步骤后,图像文件就会被保存到存储器上,我们就可以欣赏了。 1.2 数码相机的基本部件 无论是哪种款式的数码相机,大都包括图1-2、图1-3出示的基本组件。

图像识别技术设计已完成

摘要 数字图像处理(Digital Image Processing)的任务是实现图像增强、复原、编码、压缩等,其主要为改善图像的质量,以人为对象,且以改善人的视觉效果为目的。目前,图像处理系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本设计的数字图像处理与识别技术系统以数字图像处理理论为基础,基于Matlab工具工作环境设计,能很好、快速的应用于识别本专业以后将要经常使用的电子元器件。主要作用为识别相同元器件的个数,相对于传统的机械识别具有安全性高,非接触性,高速度等特点。此种数字图像处理算法可以广泛应用于各个行业的相同或相近的物品识别,从而大大提高生产效率。 关键字:数字图像;图像处理; 图像识别; Matlab; 元器件. Abstract Digital Image Processing, the task is to realize the Image enhancement, recovery, coding, compression, its main for improving the quality of images, adhere to the object, and to improve the person for the purpose of visual effect. At present, image processing system is widely medicine, military and scientific research, business, etc. The design of the digital image processing and recognition technology in the digital image processing system based on the theory of the working environment, based on Matlab tool design, can be very good, rapid applied to identify the major often used electronic components. Main function for the same number of components, the identification of the traditional mechanical identification with a high level of security, non-contact, high speed, etc. The digital image processing algorithms can be widely used in various industries of the same or similar goods identification, which greatly improve the production efficiency. Keywords:Digital image, Image processing, Image recognition, Matlab, Components.

CameraLink接口时序控制

C a m e r a L i n k接口时序 控制 This manuscript was revised by the office on December 10, 2020.

CameraLink接口 1.CameraLink接口简介 1.1CameraLink标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1.1所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1.1 camera link接口电路 1.2CameraLink端口和端口分配 1.2.1端口分配 在基本配置模式中,端口 A 、 B 和 C 被分配到唯一的 Camera Link 驱动器 / 接收器对上;在中级配置模式中,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上;在完整配置模式中,端口 A 、 B 和 C 被分配到第一个驱动器 / 接收器对上,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上,端口 G 和 H 被分配到第三个驱动器 / 接收器对上。表1.1给出了三种配置的端口分配, Camera Link 芯片及连接器的使用数量情况。

相机工作原理

工作原理 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图像信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 单反相机取景器 单反相机的取景器称为TTL(Through The Lens)单反取景器。这是专业相机上必备的取景方式,也是真正没有误差、通过镜头的光学取景器。这种取景器的取景范围可达实拍画面的95%。惟一缺点就是如果镜头过小,取景器会很暗淡,影响手动对焦。不过现在都具备自动对焦,这一点已无大碍。当然,如用了TTL单反取景器,为了不使取景器过暗,厂家自会用大口径高级镜头,所以目前单反相机的镜头普遍较大,就是这个因素造成的。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图象信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 反光镜的翻起动作带来了一些问题: 拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。 反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。 相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。 使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦。 单反相机主要特点 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反就是指光线直接照到取景器上,而不用通过棱镜的反射! 光线损失的少!

基于.人工智能算法的图像识别及生成

基于人工智能算法的图像识别与生成 摘要:本次报告的工作是利用PCA,SVM以及人工神经网络(ANN)实现对人脸的特征提取、分类和预测。然后利用GAN(生成对抗网络)实现对手写数字的生成,并用SVM 做预测,验证生成效果。 本次报告采用的数据源自剑桥大学的ORL 人脸数据库,其中包含40个人共400张人脸图像。 关键词:人工智能;图像识别;数据 中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2018)13-0173-02 1 PCA降维 PCA(principal components analysis)即主成分分析,又称主分量分析。旨在利用降维的思想,把多指标转化为少数几个综合指标。 首先我们给出了数据库的平均脸的图像,并利用PCA对人脸降维,通过改变降低到的维度研究了保留维度的多少带来的影响。最后给出了每一个维度的特征脸图像,讨论了每一个维度所能够代表的人脸信息。 1.1 平均脸 首先,我们将数据库中400张人脸按行存储到一个矩阵

中,即每一行为一张人脸(10304像素),每张人脸共10304维特征。我们对每一个维度去平均,构成一个新的行向量,这就是平均脸。 平均脸反映了数据库中400张人脸的平均特征,可以看清人脸的轮廓,但无法识别人脸的局部细节。 1.2 降低至不同维度时还原脸的情况 从左到右从上到下依次是同一张脸降低至10,30,50,100,200,250,300,350,400的图像。可以看到,随着保留维数的增多,图像越清晰,与原图的差异越小。 1.3 提取单一维度的特征做还原 为了研究不同维度所代表的人脸的信息,我们把PCA之后的每一个特征向量单独提取出来对人脸做还原,还原的时候不加入平均脸并且做直方图均衡化。 结果如下: 每一张图像下方的数字代表了PCA之后按特征值从大到小排序的顺序,比如第一张图代表PCA之后最大特征值所对应的特征向量还原出的人脸。 特征累积图的纵坐标代表了所保留的特征占总特征的 比例。它是这样计算出来的,假设保留k维信息,则纵坐标值为这k个特征值的和除以总的400(400*10304的矩阵,最多有400个非零特征值)个特征值的和。 从图4可以看出,当保留维数为100维时,即能保留人

图像识别技术浅析

图像识别技术浅析 Analysis of Image Recognition Technology 刘峰伯软件学院2010544029 【摘要】:本文描述了图像识别系统的结构与工作原理,在对图像预处理、特征提取、分类、图像匹配算法进行深入研究和分析的基础上,分析和比较了各种算法的优缺点,并讨论了其中的关键技术。 【关键词】:图像识别;预处理;特征提取;匹配 【Abstract】This paper describes the structure and working principle of an image recognition system. The advantages and disadvantages of various a1gorithms are compared on the basis of in-depth analysis of the image pre-processing, feature extraction, classification and image matching algorithms, and discussed the key technology. 【Key Word】Image Recognition;Pre-Processing;Feature Extraction;Matchi ng. 一、引言 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。随着计算机技术与信息技术的发展,图像识别技术获得了越来越广泛的应用。例如医疗诊断中各种医学图片的分析与识别、天气预报中的卫星云图识别、遥感图片识别、指纹识别、脸谱识别等,图像识别技术越来越多地渗透到我们的日常生活中。 二、图像识别系统 1、概述 自动图像识别系统的过程分为五部分:图像输入、预处理、特征提取、分类和匹配,其中预处理又可分为图像分割、图像增强、二值化和细化等几个部分。 (1)图像输入 将图像采集下来输入计算机进行处理是图像识别的首要步骤。 (2)预处理 为了减少后续算法的复杂度和提高效率,图像的预处理是必不可少的。其中

CameraLink 图像采集接口电路1 (2)

CameraLink 图像采集接口电路 1.Camera Link标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1 所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路 LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1 camera link接口电路 2.Channel Link标准的端口和端口分配 2.1 .端口定义 一个端口定义为一个 8 位的字,在这个 8 位的字中,最低的 1 位( LSB )是 bit0 ,最高的 1 位( MSB )是 bit7 。 Camera Link 标准使用 8 个端口,即端口 A 至端口 H 。

单反相机的原理和结构

一单反相机的原理和结构 銅峰电子刘根 数码单反相机的全称是数码单镜头反光相机(Digital single lens reflex),缩写为DSLR。数码单反相机专指使用单镜头取景方式对景物进行拍摄的一种照相机,拍摄者使用相机背后的光学取景框进行观察,通过观察安装在相机前段的镜头所提供的视觉角度的大小进行拍摄。 在单反相机的结构中,作为重要的是照相的反光镜和相机上端圆拱结构内安装的五面镜或五棱镜。拍摄者正是使用这种结构从取景器中直接观察到镜头的影像。由单镜头反光相机的构造图可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏,并结成影像,透过接目镜和五棱镜,拍摄者就可以在取景器中看到外面的景物。这个过程有点像人们透过窗户看到外面的世界,窗户的大小便是人们看到外面景物的范围。

当拍摄者看到自己满意的角度和拍摄内容的时候,既可以按动快门。按动快门的过程就是一个拍摄和成像的过程,术语称为曝光。不管是胶片单反相机还是数码单反相机,曝光原理是完全相同的。在按下快门的瞬间,反光镜向上弹起,胶片前面的快门幕帘同时打开,通过镜头的光线(影像)投射到感光部件上,使胶片或数码相机的感光元件曝光。在按下快门的这一瞬间,光学取景器中会出现黑屏的情况(黑屏的时间根据快门的快慢而不同),之后反光镜立即恢复原状,取景器中再次可以看到影像(此时已经完成了一次曝光)。

单反相机的这种构造,决定了镜头在相机的结构中占有相当重要的地位。使用这种相机的最大优势是摄影师在光学取景器中看到的取景范围和感光元件的影像实际拍摄范围基本一致。摄影师使用不同的镜头配置可以达到很好的拍摄效果,从具有冲击力的7.5mm鱼眼镜头到长达1600mm以上的超级远摄远镜头,都可以安装在同一台相机上,从而拍摄出效果迥异的图片。此外,单反相机在一定程度上消除了旁轴相机的取景视觉差异,使摄影师可以更精确地控制取景范围,选择最完美的拍摄角度。

CameraLink接口 时序控制

CameraLink接口 1.CameraLink接口简介 1.1CameraLink标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找 到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1.1所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路 LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号 恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1.1 camera link接口电路

1.2CameraLink端口和端口分配 1.2.1端口分配 在基本配置模式中,端口 A 、 B 和 C 被分配到唯一的 Camera Link 驱动器 / 接收器对上;在中级配置模式中,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上;在完整配置模式中,端口 A 、 B 和 C 被分配到第一个驱动器 / 接收器对上,端口 D 、 E 和 F 被分配到第二个驱动器 / 接收器对上,端口 G 和 H 被分配到第三个驱动器 / 接收器对上。表1.1给出了三种配置的端口分配, Camera Link 芯片及连接器的使用数量情况。 表1.1 3种配置模式的端口分配 图1.2 各种配置下的端口连接关系

照相机的工作原理

照相机的工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。医学成像设备、天文观测设备等等。照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。分为一般的照相与专业的摄像。 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、数码照相机 文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。

任何一种分类方法都不能包括所有的照相机,对某一照相机又可分为若干类别,例如135照相机按其取景、快门、测光、输片、曝光、闪光灯、调焦、自拍等方式的不同,就构成一个复杂的型谱。 照相机利用光的直线传播性质和光的折射与反射规律,以光子为载体,把某一瞬间的被摄景物的光信息量,以能量方式经照相镜头传递给感光材料,最终成为可视的影像。照相机的光学成像系统是按照几何光学原理设计的,并通过镜头,把景物影像通过光线的直线传播、折射或反射准确地聚焦在像平面上。摄影时,必须控制合适的曝光量,也就是控制到达感光材料上的合适的光子量。因为银盐感光材料接收光子量的多少有一限定范围,光子量过少形不成潜影核,光子量过多形成过曝,图像又不能分辨。照相机是用光圈改变镜头通光口径大小,来控制单位时间到达感光材料的光子量,同时用改变快门的开闭时间来控制曝光时间的长短。 从完成摄影的功能来说,照相机大致

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

相关主题
文本预览
相关文档 最新文档