当前位置:文档之家› 锻件、铸件、冲压件的认识

锻件、铸件、冲压件的认识

锻件、铸件、冲压件的认识
锻件、铸件、冲压件的认识

1、(锻件)是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。

锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。这种方法生产的元件,强度与重量比有一个高的比率。这些元件通常被用在飞机结构中。

锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。

2、(铸件)用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。

3、(冲压件)通过冲床和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件的成形加工方法,得到的工件就是冲压件。

冲压件是靠压力机和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。冲压和锻造同属塑性加工(或称压力加工),合称锻压。冲压的坯料主要是热轧和冷轧的钢板和钢带。

全世界的钢材中,有60~70%是板材,其中大部分是经过冲压制成成品。汽车的车身、底盘、油箱、散热器片,锅炉的汽包、容器的壳体、电机、电器的铁芯硅钢片等都是冲压加工的。仪器仪表、家用电器、自行车、办公机械、生活器皿等产品中,也有大量冲压件。

冲压件与铸件、锻件相比,具有薄、匀、轻、强的特点。冲压可制出其他方法难于制造的带有加强筋、肋、起伏或翻边的工件,以提高其刚性。由于采用精密模具,工件精度可达微米级,且重复精度高、规格一致,可以冲压出孔窝、凸台等。

冷冲压件一般不再经切削加工,或仅需要少量的切削加工。热冲压件精度和表面状态低于冷冲压件,但仍优于铸件、锻件,切削加工量少。

冲压是高效的生产方法,采用复合模,尤其是多工位级进模,可在一台压力机上完成多道冲压工序,实现由带料开卷、矫平、冲裁到成形、精整的全自动生产。生产效率高,劳动条件好,生产成本低,一般每分钟可生产数百件。

冲压主要是按工艺分类,可分为分离工序和成形工序两大类。分离工序也称冲裁,其目的是使冲压件沿一定轮廓线从板料上分离,同时保证分离断面的质量要求。成形工序的目的是使板料在不破坯的条件下发生塑性变形,制成所需形状和尺寸的工件。在实际生产中,常常是多种工序综合应用于一个工件。冲裁、弯曲、剪切、拉深、胀形、旋压、矫正是几种主要的冲压工艺。

五金冲压件

冲压用板料的表面和内在性能对冲压成品的质量影响很大,要求冲压材料厚度精确、均匀;表面光洁,无斑、无疤、无擦伤、无表面裂纹等;屈服强度均匀,无明显方向性;均匀延伸率高;屈强比低;加工硬化性低。

在实际生产中,常用与冲压过程近似的工艺性试验,如拉深性能试验、胀形性能试验等检验材料的冲压性能,以保证成品质量和高的合格率。

模具的精度和结构直接影响冲压件的成形和精度。模具制造成本和寿命则是影响冲压件成本和质量的重要因素。模具设计和制造需要较多的时间,这就延长了新冲压件的生产准备时间。

模座、模架、导向件的标准化和发展简易模具(供小批量生产)、复合模、多工位级进模(供大量生产),以及研制快速换模装置,可减少冲压生产准备工作量和缩短准备时间,能使适用于减少冲压生产准备工作量和缩短准备时间,能使适用于大批量生产的先进冲压技术合理地应用于小批量多品种生产。

冲压设备除了厚板用水压机成形外,一般都采用机械压力机。以现代高速多工位机械压力机为中心,配置开卷、矫平、成品收集、输送等机械以及模具库和快速换模装置,并利用计算机程序控制,可组成高生产率的自动冲压生产线。

在每分钟生产数十、数百件冲压件的情况下,在短暂时间内完成送料、冲压、出件、排废料等工序,常常发生人身、设备和质量事故。因此,冲压中的安全生产是一个非常重要的问题。

锻件与铸件简述与区别

锻件与铸件简述与区别 铸件法兰盘的特点是容易获得其他方法不易获得的形状复杂的工件;铸件法兰盘成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造法兰盘价格便宜;但铸件法兰盘内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证锻件的质量. 锻件法兰盘是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件法兰盘组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工,如阀座、阀芯、阀杆等,在高压及强腐蚀合金阀门中,锻件阀体也被大量采用。 尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到1类或2类接受标准的X射线/MT或PT 质量要求仍然是极端困难的,而这些都是核电站、热电站或石化工业内的苛刻环境所要求的标准。因此就需要进行焊接改进。但是,在焊补后,铸件阀门的整体质量和可靠性就变得难于保证。有时所有这些问题都遗留在铸件焊接金属框架里。测试杆通常针对每个温度,但是它们的分析可能是不确定的。即使圆形测试杆表明化学特性和物理特性是可接受的,逐渐本身仍然可能存在难于察觉的有损强度或防腐能力的内部缺陷。 铸件阀门或法兰内部的其它一些缺点是,凝固过程中,在不均匀收缩造成的应力集中和接近熔点温度下金属的低强度的综合作用下,出现的清晰裂缝和热撕裂。较低的铸造温度会形成冷疤,熔化金属出现的沙粒或炉渣的累积会导致污点。低级的铸造作业也可能造成其它缺陷。 铸件的改进要满足X射线质量的要求就要靠缺陷部位的磨削,焊补,热处理和重复测试和检验。即使在这种情况下,阀门的阀座和垫圈面或碰焊端可能会显示需要通过重焊和机加工的细线裂缝。 铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。

第6章 锻件与铸件超声波探伤

第六章锻件与铸件超声波探伤 锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。一些标准规定对某些锻件和铸件必须进行超声波探伤。由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。 第一节锻件超声波探伤 一、锻件加工及常见缺陷 锻件是由热态钢锭经锻压变形而成。锻压过程包括加热、形变和冷却。锻件的方式大致分为镦粗、拔长和滚压。镦粗是锻压力施加于坯料的两端,形变发生在横截面上。拔长是锻压力施加于坯料的外圆,形变发生在长度方向。滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。滚压既有纵向形变,又有横向形变。其中镦粗主要用于饼类锻件。拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。 为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。 锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。锻造缺陷主要有:折叠、白点、裂纹等。热处理缺陷主要有:裂纹等。 缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。 疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。 夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。内在夹杂主要集中于钢锭中心及头部。 裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。锻造和热处理不当,会在锻件表面或心部形成裂纹。 白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。白点在钢中总是成群出现。 二、探伤方法概述 按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。 原材料探伤和制造过程中探伤的目的是及早发现缺陷,以便及时采取措施避免缺陷发展扩大造成报废。产品检验的目的是保证产品质量。在役检验的目的是监督运行后可能产生或发展的缺陷,主要是疲劳裂纹。 1.轴类锻件的探伤 轴类锻件的锻造工艺主要以拨长为主,因而大部分缺陷的取向与轴线平行。此类缺陷的探测以纵波直探头从径向探测效果最佳。考虑到缺陪会有其它的分布及取向,因此辅类锻件探伤,还应辅以直探头轴向探测和斜探头周向探测及袖向探测。 (1)直探头径向和轴向探测:如图6.1所示,直探作径向探测时将探头置于轴的外缘,沿外缘作全面扫查,以发现轴类锻件中常见的纵向缺陷。 直探头作轴向探测时,探头置于轴的端头,并在轴端作全面扫查,以检出与轴线相垂直的横向缺陷。但当轴的长度太长或轴有多个直径不等的轴段时,会有声束扫查不到的死区,因而此方法有一定的局限性。

锻件、铸件、冲压件的认识

1、(锻件)是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。这种方法生产的元件,强度与重量比有一个高的比率。这些元件通常被用在飞机结构中。 锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。 2、(铸件)用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。 3、(冲压件)通过冲床和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件的成形加工方法,得到的工件就是冲压件。 冲压件是靠压力机和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。冲压和锻造同属塑性加工(或称压力加工),合称锻压。冲压的坯料主要是热轧和冷轧的钢板和钢带。 全世界的钢材中,有60~70%是板材,其中大部分是经过冲压制成成品。汽车的车身、底盘、油箱、散热器片,锅炉的汽包、容器的壳体、电机、电器的铁芯硅钢片等都是冲压加工的。仪器仪表、家用电器、自行车、办公机械、生活器皿等产品中,也有大量冲压件。 冲压件与铸件、锻件相比,具有薄、匀、轻、强的特点。冲压可制出其他方法难于制造的带有加强筋、肋、起伏或翻边的工件,以提高其刚性。由于采用精密模具,工件精度可达微米级,且重复精度高、规格一致,可以冲压出孔窝、凸台等。 冷冲压件一般不再经切削加工,或仅需要少量的切削加工。热冲压件精度和表面状态低于冷冲压件,但仍优于铸件、锻件,切削加工量少。 冲压是高效的生产方法,采用复合模,尤其是多工位级进模,可在一台压力机上完成多道冲压工序,实现由带料开卷、矫平、冲裁到成形、精整的全自动生产。生产效率高,劳动条件好,生产成本低,一般每分钟可生产数百件。 冲压主要是按工艺分类,可分为分离工序和成形工序两大类。分离工序也称冲裁,其目的是使冲压件沿一定轮廓线从板料上分离,同时保证分离断面的质量要求。成形工序的目的是使板料在不破坯的条件下发生塑性变形,制成所需形状和尺寸的工件。在实际生产中,常常是多种工序综合应用于一个工件。冲裁、弯曲、剪切、拉深、胀形、旋压、矫正是几种主要的冲压工艺。

锻造与铸造的区别

什么叫铸造?什么叫锻造? 悬赏分:10 - 解决时间:2006-1-16 10:13 两者之间有什么不同? 主要各用于什么地方?生产出来的产品特性都有些什么不同? 提问者:kaka_1982 - 四级 最佳答案 铸造 将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。 铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 锻造 利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压的两大组成部分之一。通过锻造能消除金属的铸态疏松,焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。锻造按成形方法可分为:①开式锻造(自由锻)。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。②闭模式锻造。金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻、冷镦、旋转锻、挤压等。按变形温度锻造又可分为热锻(加工温度高于坯料金属的再结晶温度)、温锻(低于再结晶温度)和冷锻(常温)。锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、

铸锻件毛坯的分类选择分析

铸锻件毛坯的分类选择分析 产品从原材料加工到成品一般要经过多道工序才能完成,对于金属制品,虽然可以应用少无切削加工新工艺直接从原材料制成成品。但目前大多数是通过铸造、锻造、冲压或焊接等加工方法制成毛坯,在经过切削加工制成。 毛坯的质量之机影响成品的质量。毛坯的选择是否合适,影响到成品的制造周期、成本、性能、以及使用寿命。因此正确的选择毛坯是机械设计与制造当中的首要问题。 毛坯种类的选择不仅影响毛坯的制造工艺及费用,而且也与零件的机械加工工艺和加工质量密切相关。为此需要毛坯制造和机械加工两方面的工艺人员密切配合,合理地确定毛坯的种类、结构形状,并绘出毛坯图。 一、常见的毛坯种类 常见的毛坯种类有以下几种: (一)铸件 对形状较复杂的毛坯,一般可用铸造方法制造。目前大多数铸件采用砂型铸造,对尺寸精度要求较高的小型铸件,可采用特种铸造,如永久型铸造、精密铸造、压力铸造、熔模铸造成和离心铸造等。各种铸造方法及工艺特点见表 3-9 。

(二)锻件 锻件毛坯由于经锻造后可得到连续和均匀的金属纤维组织。因此锻件的力学性能较好,常用于受力复杂的重要钢质零件。其中自由锻件的精度和生产率较低,主要用于小批生产和大型锻件的制造。模型锻造件的尺寸精度和生产率较高,主要用于产量较大的中小型锻件。其锻造方法及工艺特点见表 3-9 。 (三)型材 型材主要有板材、棒材、线材等。常用截面形状有圆形、方形、六角形和特殊截面形状。就其制造方法,又可分为热轧和冷拉两大类。热轧型材尺寸较大,精度较低,用于一般的机械零件。冷拉型材尺寸较小,精度较高,主要用于毛坯精度要求较高的中小型零件。 (四)焊接件 焊接件主要用于单件小批生产和大型零件及样机试制。其优点是制造简单、生产周期短、节省材料、减轻重量。但其抗振性较差,变形大,需经时效处理后才能进行机械加工。 (五)其它毛坯 其它毛坯包括冲压件,粉末冶金件,冷挤件,塑料压制件等。 二、毛坯的选择原则 选择毛坯时应该考虑如下几个方面的因素: (一)零件的生产纲领 大量生产的零件应选择精度和生产率高的毛坯制造方法,用于毛坯制造的昂贵费用可由材料消耗的减少和机械加工费用的降低来补偿。如铸件采用金属模机器造型或精密铸造;锻件采用模锻、精锻;选用冷拉和冷轧型材。单件小批生产时应选择精度和生产率较低的毛坯制造方法。 (二)零件材料的工艺性 例如材料为铸铁或青铜等的零件应选择铸造毛坯;钢质零件当形状不复杂,力学性能要求又不太高时,可选用型材;重要的钢质零件,为保证其力学性能,应选择锻造件毛坯。 (三)零件的结构形状和尺寸 形状复杂的毛坯,一般采用铸造方法制造,薄壁零件不宜用砂型铸造。一般用途的阶梯轴,如各段直径相差不大,可选用圆棒料;如各段直径相差较大,为减少材料消耗和机械加工的劳动量,则宜采用锻造毛坯,尺寸大的零件一般选择自由锻造,中小型零件可考虑选择模锻件。

铸件和锻件的区别

铸件和锻件的区别 关于铸件和锻件的区别主要有以下几点: 1.铸件是材料在模具中整体浇注成型,它的应力分布均匀,对受压 方向没有限制。 而锻件是由同一方向的力打压而成,它内部的应力就有方向性,只能承受有方向性的压力。 相同材料,相同壁厚的铸件和锻件,在强度和晶相结构上,锻件要优于铸件。 2.对阀门来说,相同磅级、相同材料的铸件阀门的壁厚要厚于锻件。 它的耐压强度是与锻件相等的。 3.铸件对于铸造工艺的要求比较高,最大的特点是可以做出比较复 杂的形状,阀门本体结构以及流道都是不规则的,铸造可以一次性成型,只要工艺过关,可以铸造出大口径的阀门本体。 锻件的致密性比较好,但是对于太复杂的流道和外形无法一次成型,往往需要模块化进行,分开锻造再焊接在一起,由此锻件的尺寸受到一定限制。 4.锻件往往不能加工出复杂,流线型的流道。流道的加工通过车削 而成,内部形成很多尖角过渡,在这些尖角处极易造成应力不均,产生开裂. 5.同时模块化焊接而成的设计, 锻造阀门的阀座口径相对固定,在 某些阀门尺寸上,它的口径就偏小,影响流通能力。造成阀门流阻的加大,整个系统效率的降低。 6.由于在大尺寸阀门锻造工艺的局限,同时为节约成本,目前许多厂 家通常采用阀体中心部分铸件,两端锻件的结构。 7.无论是铸件,锻件。在加工时,都有可能产品缺陷。 铸件的主要缺陷表现在沙眼,气泡等;锻件的主要缺陷表现在大晶粒,冷硬现象,裂纹,龟裂等。 为了获得合格的产品质量,相对应的铸件需要热处理消除铸造过程中的应力,同时采用X-射线,磁粉探伤,渗透检查等检测手段。 而对锻件来说,这就需要对焊缝的严格的热处理和相应的检测手段来保证。锻件往往需要超声波检查。另外,要提到的是焊接工艺制定非常严格,焊接工程师的资质也是保证产品质量的关键。 8. 无论阀门采用那种原材料,都需要制造商有严格的质量控制程序, 标准的检测程序来确保阀门的质量。

锻造冲压和铸造的区别

锻造,冲压和铸造的区别 1、锻造和铸造的区别 (1)铸造:是把没有形状的金属液变成有形状的固体。 锻造:是把一种形状固体变成另一种形状的固体。 铸造好比是你玩蜡,你买了蜡(废钢,或生铁)然后将这个蜡化为液体,放入一个什么模子,这样你就得到不同形状的东西。(固体-液体-固体)锻造,好比是做面饼的过程,你把小的面团揉,放到模子里面,做成不同形状的产品。差不多是固体在高温下,形状可变成别的形状(固体到固体)。 所谓铸造,是将熔融的金属浇铸到模型中获得铸件的过程。铸造专业侧重的是金属熔炼过程,以及浇铸过程中工艺的控制。 锻造是固态下的塑性成型,有热加工,冷加工之分,像挤压、拉拔、墩粗,冲孔等都属于锻造。 (2)锻造是慢慢成型,铸造是一次成型 铸造:熔融的液态金属填满型腔冷却。制件中间易产生气孔。 锻造:主要是在高温下用挤压的方法成型。可以细化制件中的晶粒。 2、自由锻和模锻的区别 自由锻是将加热好的金属坯料放在锻造设备的上,下砥铁之间,施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻件的一种加工方法. 自由锻由于锻件形状简单,操作灵活,适用于单件,小批量及重型锻件的生产.自由锻分手工自由锻和机器自由锻.手工自由锻生产效率低,劳动强度大,仅用于修配或简单,小型,小批锻件的生产,在现代工业生产中,机器自由锻已成为锻造生产的主要方法,在重型机械制造中,它具有特别重要的作用. 模锻全称为模型锻造,将加热后的坯料放置在固定于模锻设备上的锻模内锻造成形的。 模锻可以在多种设备上进行。在工业生产中,锤上模锻大都采用蒸汽-空气锤,吨位在5KN~300KN(0.5~30t)。压力机上的模锻常用热模锻压力机,吨位在25000KN~63000KN。 模锻的锻模结构有单模堂锻模和多模膛锻模。如图3-13所示为单模堂锻模,它用燕尾槽和斜楔配合使锻模固定,防止脱出和左右移动;用键和键槽的配合使锻模定位准确,并防止前后移动。单模膛一般为终锻模膛,锻造时常需空气锤制坯,再经终锻模膛的多次锤击一次成形,最后取出锻件切除飞边。 3、铸造,锻造,冲压,铸造的区别 (1)铸造是将原材料融化让其在成型模具中自然成型 锻造是将原材料加热到一定温度然后使用工具锻打成型 冲压是将原材料用合适的冲压模具冲压成型 压铸是在铸造的基础上采用压力将融化后的原料注入模具使其得到更高的密度或更精密的形状 铸造:熔融的液态金属填满型腔冷却。制件中间易产生气孔。 (2)锻造:主要是在高温下用挤压的方法成型。可以细化制件中的晶粒。 零件厚度基本相当的适于用板材成型的用冲压。 零件厚度悬殊,形状复杂的,不受热的,用压铸。

锻件与铸件区别有什么

钢制品中锻件和铸件的区别应用 金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。 一般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。 飞机锻件 按重量计算,飞机上有85%左右的的构件是锻件。飞机发动机的涡轮盘、后轴颈(空心轴)、叶片、机翼的翼梁,机身的肋筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。飞机锻件多用高强度耐磨、耐蚀的铝合金、钛合金、镍基合金等贵重材料制造。为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模锻压力机来生产。汽

车锻按重量计算,汽车上有1719%的锻件。一般的汽车由车身、车箱、发动机、前桥、后桥、车架、变速箱、传动轴、转向系统等15个部件构成汽车锻件的特点是外形复杂、重量轻、工况条件差、安全度要求高。如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。 柴油机锻件 柴油机是动力机械的一种,它常用来作发动机。以大型柴油机为例,所用的锻件有汽缸盖、主轴颈、曲轴端法兰输出端轴、连杆、活塞杆、活塞头、十字头销轴、曲轴传动齿轮、齿圈、中间齿轮和染油泵体等十余种。 船用锻件 船用锻件分为三大类,主机锻件、轴系锻件和舵系锻件。主机锻件与柴油机锻件一样。轴系锻件有推力轴、中间轴艉轴等。舵系锻件有舵杆、舵柱、舵销等。 兵器锻件 锻件在兵器工业中占有极其重要的地位。按重量计算,在坦克中有60%是锻件。火炮中的炮管、炮口制退器和炮尾,

铸造和锻造如何区别

个人收集整理仅供参考学习 铸造和锻造如何区别 铸造和锻造的区别: 1、铸造:就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机、铸铁平板等)较多,且会产生粉尘、有害气体和噪声而污染环境。铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。文档收集自网络,仅用于个人学习 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。文档收集自网络,仅用于个人学习 2、锻造:是利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压的两大组成部分之一。通过锻造能消除金属的铸态疏松,焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。文档收集自网络,仅用于个人学习 锻造按成形方法可分为:①开式锻造(自由锻)。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。②闭模式锻造。金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻、冷镦、旋转锻、挤压等。按变形温度锻造又可分为热锻(加工温度高于坯料金属的再结晶温度)、温锻(低于再结晶温度)和冷锻(常温)。锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、钛、铜等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属等。金属在变形前的横断面积与变形后的模断面积之比称为锻造比。正确地选择锻造比对提高产品质量、降低成本有很大关系。文档收集自网络,仅用于个人学习 1 / 1

锻件与铸件区别

1、铸件的特点是容易获得其他方法不易获得的形状复杂的工件;铸件成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造价格便宜;但铸件内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证锻件的质量. 锻件是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工,如阀座、阀芯、阀杆等,在高压及强腐蚀合金阀门中,锻件阀体也被大量采用。 2、尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到1类或2类接受标准的X射线/MT或PT质量要求仍然是极端困难的,而这些都是核电站、热电站或石化工业内的苛刻环境所要求的标准。因此就需要进行焊接改进。. 但是,在焊补后,铸件阀门的整体质量和可靠性就变得难于保证。有时所有这些问题都遗留在铸件焊接金属框架里。测试杆通常针对每个温度,但是它们的分析可能是不确定的。即使圆形测试杆表明化学特性和物理特性是可接受的,逐渐本身仍然可能存在难于察觉的有损强度或防腐能力的内部缺陷。. 根据锅炉法典第IX节定期检查的要求,在使用过程中需要定期进行检查的内容包括,铸件金属的补焊,管道焊缝。焊补位置的纪录因此必须保存,所以在工厂运行过程中,故障发生可能与原始的制造条件和标准有关。 在铸造过程中,浇铸到模腔内的金属在凝固过程中可能会产生收缩、分离或气孔,这些问题使得“浇铸”铸件无法被苛刻环境应用领域所接受。收缩发生在两个过程中,温度高于熔点的金属冷却时产生收缩,随后在凝固过程中进一步收缩。第一次增加熔化金属补偿,但是固态冷却过程中的补偿就要靠加大尺寸。. 分离,或熔化物的化学分离,是在模腔内壁固化出一层后的凝固过程中发生,在很长的温度变化期间,低流动性使得小固体颗粒-晶体-以树状结构形成和生长。最初的晶体,紧靠着模腔内壁,合金含量最少。在里面的核心部分,合金含量比较高,这使得预想的成分变得没有什么相似性。在每个晶体枝杈内,也存在着微观偏析。结果导致微孔、再生相沉淀和金属和非金属成分混杂。 在冷却过程中,溶液中的气体逸出造成多孔性,或被截留在晶体枝杈之间形成微小气孔。此外,作为晶体固化和量的收缩,熔化物的替代品一定会沿着交错的晶体网络流过一段曲折的路程。流动阻力可能太高,从而导致微孔和多孔。 铸件内部的其它一些缺点是,凝固过程中,在不均匀收缩造成的应力集中和接近熔点温度下金属的低强度的综合作用下,出现的清晰裂缝和热撕裂。较低的铸造温度会形成冷疤,熔化金属出现的沙粒或炉渣的累积会导致污点。低级的铸造作业也可能造成其它缺陷。. 铸件的改进要满足X射线质量的要求就要靠缺陷部位的磨削,焊补,热处理和重复测试和检验。即使在这种情况下,阀座和垫圈面或碰焊端可能会显示需要通过重焊和机加工的细线裂缝。 锻造的高温高压阀门具有更优异的性能

锻件与铸件质量的差别

在铸造过程中,浇铸到模腔内的金属在凝固过程中可能会产生收缩、分离或气孔,这些问题使得“浇铸”铸件无法被苛刻环境应用领域所接受。 收缩发生在两个过程中,温度高于熔点的金属冷却时产生收缩,随后在凝固过程中进一步收缩。第一次增加熔化金属补偿,但是固态冷却过程中的补偿就要靠加大尺寸。分离或熔化物的化学分离,是在模腔内壁固化出一层后的凝固过程中发生,在很长的温度变化期间,低流动性使得小固体颗粒-晶体-以树状结构形成和生长。最初的晶体,紧靠着模腔内壁,合金含量最少。在里面的核心部分,合金含量比较高,这使得预想的成分变得没有什么相似性。在每个晶体枝杈内,也存在着微观偏析。结果导致微孔、再生相沉淀和金属和非金属成分混杂。在冷却过程中,溶液中的气体逸出造成多孔性,或被截留在晶体枝杈之间形成微小气孔。此外,作为晶体固化和量的收缩,熔化物的替代品一定会沿着交错的晶体网络流过一段曲折的路程。流动阻力可能太高,从而导致微孔和多孔。铸件内部的其它一些缺点是,凝固过程中,在不均匀收缩造成的应力集中和接近熔点温度下金属的低强度的综合作用下,出现的清晰裂缝和热撕裂。较低的铸造温度会形成冷疤,熔化金属出现的沙粒或炉渣的累积会导致污点。低级的铸造作业也可能造成其它缺陷。 与铸件比较,锻件具有更加均匀结构,更好的密度,更好的强度完整性,更好的尺寸特性,和更小的尺寸误差。定向构造在整个强度和应力方面都比铸件具有更高的性能。高强度热锻造促进在结晶和

晶粒细化,使得材料能够达到最大可能的强度和一致性,并且件与件之间的变异最小。结构完整性锻造消除了内部缺陷,产生了连贯一致的金相组织,保证了优异的性能。在应力和晶体内腐蚀问题严重的地方,锻件都能够保证较长的使用寿命和无故障服务。锻件在温度变化很大的环境下,其蠕变的抗疲劳强度比铸件高出3倍多。 总体来说,锻件各个方面优于铸件,但是相对成本、异型的产品、加工难以程度等方面来说还是各有不同,各有有缺点。单单从密度来说,锻件的密度大于铸件的密度。国家标准还没有这方面的对照。

锻件和铸件的区别有哪些_铸件与锻件优缺点

锻件和铸件的区别有哪些_铸件与锻件优缺点 铸件法兰盘的特点是容易获得其他方法不易获得的形状复杂的工件;铸件法兰盘成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造法兰盘价格便宜;但铸件法兰盘内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证锻件的质量. 锻件法兰盘是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件法兰盘组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工,如阀座、阀芯、阀杆等,在高压及强腐蚀合金阀门中,锻件阀体也被大量采用。 尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到1类或2类接受标准的X射线/MT或PT质量要求仍然是极端困难的,而这些都是核电站、热电站或石化工业内的苛刻环境所要求的标准。因此就需要进行焊接改进。但是,在焊补后,铸件阀门的整体质量和可靠性就变得难于保证。有时所有这些问题都遗留在铸件焊接金属框架里。测试杆通常针对每个

温度,但是它们的分析可能是不确定的。即使圆形测试杆表明化学特性和物理特性是可接受的,逐渐本身仍然可能存在难于察觉的有损强度或防腐能力的内部缺陷。 铸件阀门或法兰内部的其它一些缺点是,凝固过程中,在不均匀收缩造成的应力集中和接近熔点温度下金属的低强度的综合作用下,出现的清晰裂缝和热撕裂。较低的铸造温度会形成冷疤,熔化金属出现的沙粒或炉渣的累积会导致污点。低级的铸造作业也可能造成其它缺陷。 铸件的改进要满足X射线质量的要求就要靠缺陷部位的磨削,焊补,热处理和重复测试和检验。即使在这种情况下,阀门的阀座和垫圈面或碰焊端可能会显示需要通过重焊和机加工的细线裂缝。 铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。这种方法生产的元件,强度与重量比有一个高的比率。这些元件通常被用在飞机结构中。

锻造和铸造的区别

锻造和铸造的区别 铸造:熔融的液态金属填满型腔冷却。制件中间易产生气孔。 锻造:主要是在高温下用挤压的方法成型。可以细化制件中的晶粒。 锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。 铸造:把金属加热熔化后倒入砂型或模子里,冷却后凝固成为器物。 性能的区别锻造时,金属经过塑性变形,有细化晶粒的做用,切纤维连续,因此常用于重要零件的毛丕制造,例如轴、齿论等。铸造对被加工才料有要求,一般铸铁、铝等的铸造性能较好。铸造不具备锻造的诸多优点,但它能制造形状复杂的零,因此常用于力学性能要求不高的支称件的毛丕制造。例如机床外壳等。 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压的两大组成部分之一。通过锻造能消除金属的铸态疏松,焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。锻造按成形方法可分为:①开式锻造(自由锻)。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。②闭模式锻造。金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻、冷镦、旋转锻、挤压等。按变形温度锻造又可分为热锻(加工温度高于坯料金属的再结晶温度)、温锻(低于再结晶温度)和冷锻(常温)。锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、钛、铜等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属等。金属在变形前的横断面积与变形后的模断面积之比称为锻造比。正确地选择锻造比对提高产品质量、降低成本有很大关系

锻造和铸造的区别

一、锻造、铸造的区别:词语意义不同: 锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。 铸造:将金属熔化成液体后浇入模子里,经冷却凝固、清理后获得所需形状的铸件的加工方法。能制成形状复杂的各类物件。 2.制作工艺不同:锻造:是一种利用锻压机械对金属坯料施加压力,使其产生塑性变 形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 铸造:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。 二、锻造、铸造用途:锻造一般用在一定形状和尺寸锻件的加工。铸造是比较经济的毛 坯成形方法,一般用在形状复杂的零件上。 二、锻造、铸造优劣势:锻造优点:通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺 陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 铸造优点:可以生产形状复杂的零件,尤其是复杂内腔的毛坯。2.适应性广,工业常用的金属材料均可铸造,几克到几百吨。3.原材料来源广,价格低廉,如废钢、废件、切屑等。4.铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工。5.应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。

锻造缺点:在锻造生产中,易发生的外伤事故。铸造缺点:1.机械性能不如锻件,如组织粗大,缺陷多等。2.砂型铸造中,单件、小批量生产,工人劳动强度大。3.铸件质量不稳定,工序多,影响因素复杂,易产生许多缺陷。扩展资料:锻造是金属塑性加工的重要方法之一。锻造的主要目的是:成形和改性(机械性能和内部组织的改善)。其中后者是其他工艺方法难以实现的,另外锻造生产还具有节约金属、生产效率高、灵活性大等优点。通过锻造能使铸造组织中的疏松、气孔压实,把粗大的铸造组织(树枝状晶粒)击碎成细小的晶粒,并形成纤维组织。当纤维组织沿着零件轮廓合理地分布时,能提高零件的机械性能。因而,锻制成的零件强度高,可承受更大的冲击载荷。在承受同样大小冲击载荷的情况下,锻制零件尺寸可以减小,即节省了金属。 例如,美国用315MN 水压机模锻F-102 歼272 个零件和3200 个螺钉,使飞机质量减轻了击机上的整体大梁,取代了45.5~54.5kg。铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。铸造是常用的制造方法,制造成本低,工艺灵活性大,可以获得复杂形状和大型的铸件,在机械制造中占有很大的比重,如机床占60~80%,汽车占25%,拖拉机占50~60%。由于现今对铸造质量、铸造精度、铸造成本和铸造自动化等要求的提高,铸造技术向着精密化、大型化、高质量、自动化和清洁化的方向发展,例如我国这几年在精密铸造技术、连续铸造技术、特种铸造技术、铸造自动化和铸造成型模拟技术等方面发展迅速.参考资料:锻造工艺_百度百科铸造工艺_百度百科

锻件比铸件好在哪里及主要的锻造设备

为什么很多零件用锻件不用铸件 1,锻件与铸件的成形原理: 锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。锻件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。铸件是用各种铸造方法获得的金属成型物件,即把冶炼好的液态金属,用浇注、压射、吸入或其它浇铸方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理等,所得到的具有一定形状,尺寸和性能的物件。 2,锻件比铸件性能好的原因: 金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。 3,生产锻件用到的主要设备: 锻件的生产设备主要包含锤和压机两类: 锻锤按照驱动介质的不同分为蒸汽锤,空气锤,皮带锤和液压锤;

按照锻件的成型方式可以分为模锻锤和自由锻锤;按照控制方式可分为数控锻锤和人工控制锻锤;由于蒸汽锤和空压机锤的能源利用率远不及电液锤/液压锤,因此很多锻锤厂商已经停止生产此类锻锤。近些年来有些锻锤厂家已经把模锻电液锤升级成为打击能力和公布PLC 控制,大大减少了对锻造工人操作经验的依赖,并为实现锻造自动化提供可能。 压力机按照动力传动方式不同大致可以分为曲柄压力机,螺旋压力机和液压机。曲柄压力机是偏心轴/曲轴通过连杆带动滑块进行上下运动,包括小吨位的开式冲床和闭式热模锻压力机;螺旋压力机是通过螺杆不停换方向的转动来带动滑块的上下运动,可分为摩擦螺旋压力机和电动螺旋压力机;螺旋压力机和热模锻压力机一般应用于模锻行业。液压机工作原理是由液压油推动活塞做上下运动,可应用于模锻或者自由锻。

锻造与铸造的区分

铸造 将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。 铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 锻造 利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压的两大组成部分之一。通过锻造能消除金属的铸态疏松,焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。锻造按成形方法可分为:①开式锻造(自由锻)。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。②闭模式锻造。金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻、冷镦、旋转锻、挤压等。按变形温度锻造又可分为热锻(加工温度高于坯料金属的再结晶温度)、温锻(低于再结晶温度)和冷锻(常温)。锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、钛、铜等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属等。金属在变形前的横断面积与变形后的模断面积之比称为锻造比。正确地选择锻造比对提高产品质量、降低成本有很大关系

相关主题
文本预览
相关文档 最新文档