当前位置:文档之家› MapReduce海量数据并行处理总结

MapReduce海量数据并行处理总结

MapReduce海量数据并行处理总结
MapReduce海量数据并行处理总结

MapReduce海量数据并行处理

复习大纲

Ch. 1. 并行计算技术简介

1.为什么需要并行计算?

提高计算机性能有哪些基本技术手段

提高字长,流水线微体系结构技术,提高集成度,提升主频

迫切需要发展并行计算技术的主要原因

1)单处理器性能提升达到极限

2)爆炸性增长的大规模数据量

2)超大的计算量/计算复杂度

2.并行计算技术的分类

有哪些主要的并行计算分类方法?

1)按数据和指令处理结构:弗林(Flynn)分类

2)按并行类型

3)按存储访问构架

4)按系统类型

5)按计算特征

6)按并行程序设计模型/方法

1)按数据和指令处理结构:弗林(Flynn)分类

SISD:单指令单数据流

传统的单处理器串行处理

SIMD:单指令多数据流

向量机,信号处理系统

MISD:多指令单数据流

很少使用

MIMD:多指令多数据流

最常用,TOP500高性能计算机

基本都属于MIMD类型

2)按并行类型分类

位级并行(Bit-Level Parallelism)

指令级并行(ILP:Instruction-Level Parallelism)

线程级并行(Thread-Level Parallelism)

数据级并行:一个大的数据块划分为小块,分别由不同的处理器/线程处理

任务级并行:一个大的计算任务划分为子任务分别由不同的处理器/线程来处理

3)按存储访问结构分类

A.共享内存(Shared Memory)

所有处理器通过总线共享内存

多核处理器,SMP……

也称为UMA结构(Uniform Memory Access)

B. 分布共享存储体系结构

各个处理器有本地存储器

同时再共享一个全局的存储器

C. 分布式内存(Distributed Memory)

各个处理器使用本地独立的存储器

B和C也统称为NUMA结构

(Non-Uniform Memory Access)

4)按系统类型分类

多核/众核并行计算系统MC(Multicore/Manycore) 或Chip-level multiprocessing, CMP 对称多处理系统SMP(Symmetric Multiprocessing)

多个相同类型处理器通过总线连接并共享存储器

大规模并行处理MPP(Massive Parallel Processing)

专用内联网连接一组处理器形成的一个计算系统

集群(Cluster)

网络连接的一组商品计算机构成的计算系统

网格(Grid)

用网络连接远距离分布的一组异构计算机构成的计算系统

5)按并行程序设计模型/方法分类

共享内存变量(Shared Memory Variables)

消息传递方式(Message Passing)

MapReduce方式

3.并行计算的主要技术问题

并行计算有哪些方面的主要技术问题?

多核/多处理器网络互连结构技术

存储访问体系结构

分布式数据与文件管理

并行计算任务分解与算法设计

并行程序设计模型和方法

数据同步访问和通信控制

可靠性设计与容错技术

并行计算软件框架平台

系统性能评价和程序并行度评估

如何评估程序的可并行度(Amdahl定律)

程序能得到多大并行加速依赖于该程序有多少可并行计算的比例。经典的程序并行加速评估公式Amdahl定律:

其中,S是加速比,P是程序可并行比例,N是处理器数目

根据Amdahl定律:一个并行程序可加速程度是有限制的,并非可无限加速,并非处理器越多越好

并行比例vs加速比

50%=>最大2倍

75%=>最大4倍

90%=>最大10倍

95%=>最大20倍

4.MPI并行程序设计

Message Passing Interface,基于消息传递的高性能并行计算编程接口

5.什么是MapReduce概念

MapReduce是面向大规模数据并行处理的:

(1)基于集群的高性能并行计算平台(Cluster Infrastructure),(硬件层)

允许用市场上现成的普通PC或性能较高的刀架或机架式服务器,构成一个包含数千个节点的分布式并行计算集群(2)并行程序开发与运行框架(Software Framework) (逻辑层)

系统自动提供了一个庞大但设计精良的并行计算软件构架,能自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行子任务以及收集计算结果,将数据分布存储、数据通信、容错处理等并行计算中的很多复杂细节交由系统负责处理,大大减少了软件开发人员的负担

(3)并行程序设计模型与方法(Programming Model & Methodology) (用户层)

借助于函数式Lisp语言中的设计思想,提供了一种简便的并行程序设计方法,用Map和Reduce两个函数编程实现基本的并行计算任务,提供了完整的并行编程接口,完成大规模数据处理

6.为什么MapReduce如此重要?

1)高效的大规模数据处理方法

2)第一个不同于冯诺依曼结构的、基于集群而非单机的计算方式的重大突破

3)目前为止最为成功的基于大规模计算资源的并行计算抽象方法

CH.2. MapReduce简介

1.MapReduce的基本模型和处理思想

1)对大数据分而治之;

2)构建抽象模型-Map和Reduce,用户仅需要描述做什么,不需要关心怎么做3)提供统一的构架并完成以下的主要功能

·任务调度

·数据/代码互定位

·出错处理

·分布式数据文件管理

·Combiner和Partitioner(设计目的和作用)

https://www.doczj.com/doc/087800836.html,biner和Partitioner设计目的和作用

带宽优化(Combiner的设计目的和作用),不会改变key-value的形式

用数据分区解决数据相关性问题(Partitioner的设计目的和作用)

例如:有一个巨大的数组,其最终结果需要排序,每个Map节点数据处理好后,为了避免在每个Reduce节点本地排序完成后还需要进行全局排序,我们可以使用一个分区策略如:(d%R),d为数据大小,R为Reduce节点的个数,则可根据数据的大小将其划分到指定数据范围的Reduce节点上,每个Reduce将本地数据拍好序后即为最终结果

Ch.3. Google /Hadoop MapReduce基本构架

1.Google MapReduce的基本工作原理

1)Google MapReduce并行处理的基本过程

1.有一个待处理的大数据,被划分为大小相同的数据块(如64MB),及与此相应的用户作业程序

2.系统中有一个负责调度的主节点(Master),以及数据Map和Reduce工作节点(Worker)

3.用户作业程序提交给主节点

4.主节点为作业程序寻找和配备可用的Map节点,并将程序传送给map节点

5.主节点也为作业程序寻找和配备可用的Reduce节点,并将程序传送给Reduce节点

6.主节点启动每个Map节点执行程序,每个map节点尽可能读取本地或本机架的数据进行计算

7.每个Map节点处理读取的数据块,并做一些数据整理工作(combining, sorting等)并将中间结果存放在本地;同时通知主节点计算任务完成并告知中间结果数据存储位置

8.主节点等所有Map节点计算完成后,开始启动Reduce节点运行;Reduce节点从主节点所掌握的中间结果数据位置信息,远程读取这些数据

9.Reduce节点计算结果汇总输出到一个结果文件即获得整个处理结果

2)失效处理

主节点失效

主节点中会周期性地设置检查点(checkpoint),检查整个计算作业的执行情况,一旦某个任务失效,可以从最近有效的检查点开始重新执行,避免从头开始计算的时间浪费,主节点采用热备。

工作节点失效

工作节点失效是很普遍发生的,主节点会周期性地给工作节点发送检测命令,如果工作节点没有回应,这认为该工作节点失效,主节点将终止该工作节点的任务并把失效的任务重新调度到其它工作节点上重新执行。

3)计算优化

问题

如果有一个计算量大、或者由于某个问题导致很慢结束的Map节点,则会成为严重的“拖后腿者”。

解决方案

把一个Map计算任务让多个Map节点同时做,取最快完成者的计算结果

2.分布式文件系统GFS的基本工作原理

1)Google GFS的基本设计原则

廉价本地磁盘分布存储

多数据自动备份解决可靠性

为上层的MapReduce计算框架提供支撑

2)Google GFS的基本构架和工作原理

GFS Master

Master上保存了GFS文件系统的三种元数据:

命名空间(Name Space),即整个分布式文件系统的目录结构

Chunk与文件名的映射表

Chunk副本的位置信息,每一个Chunk默认有3个副本

前两种元数据可通过操作日志提供容错处理能力;

第3个元数据直接保存在ChunkServer上,Master 启动或Chunk Server注册时自动完成在Chunk Server上元数据的生成;因此,当Master失效时,只要ChunkServer数据保存完好,可迅速恢复Master上的元数据。

GFS ChunkServer

即用来保存大量实际数据的数据服务器。

GFS中每个数据块划分默认为64MB,这是因为处理的文件都比较大,所以设置成64MB比较合理

每个数据块会分别在3个(缺省情况下)不同的地方复制副本;

对每一个数据块,仅当3个副本都更新成功时,才认为数据保存成功。

当某个副本失效时,Master会自动将正确的副本数据进行复制以保证足够的副本数

GFS上存储的数据块副本,在物理上以一个本地的Linux操作系统的文件形式存储,每一个数据块再划分为64KB 的子块,每个子快有一个32位的校验和,读数据时会检查校验和以保证使用为有效的数据。

数据访问工作过程

1.在程序运行前,数据已经存储在GFS文件系统中;程序实行时应用程序会告诉GFS Server所要访问的文件名或者数据块索引是什么

2.GFS Server根据文件名会数据块索引在其文件目录空间中查找和定位该文件或数据块,并找数据块在具体哪些ChunkServer上;将这些位置信息回送给应用程序

3.应用程序根据GFSServer返回的具体Chunk数据块位置信息,直接访问相应的Chunk Server

优点:并发访问,解决mater拥堵。

3.分布式结构化数据表BigTable

1) BigTable设计动机和目标

需要存储管理海量的结构化半结构化数据

海量的服务请求

商用数据库无法适用

2)目标

广泛的适用性:为一系列服务和应用而设计的数据存储系统,可满足对不同类型数据的存储和操作需求

很强的可扩展性:根据需要可随时自动加入或撤销服务器节点

高吞吐量数据访问:提供P级数据存储能力,每秒数百万次的访问请求

高可用性和容错性:保证系统在各种情况下度能正常运转,服务不中断

自动管理能力:自动加入和撤销服务器,自动负载平衡简单性:系统设计尽量简单以减少复杂性和出错率

2) BigTable数据模型—多维表

通过行、列、时间戳

一个行关键字(row key)

一个列关键字(column key)

一个时间戳(time stamp)

进行索引和查询定位的。

行:

列:

时间戳:

3)BigTable基本构架

主服务器

新子表分配

子表监控:通过Chubby完成。

负债均衡:子表服务器负载均衡操作

子表服务器

BigTable 中的数据都以子表形式保存在子表服务器上,客户端程序也直接和子表服务器通信。

子表的基本存储结构SSTable ,一个SSTable 实际上对应于GFS 中的一个64MB 的数据块(Chunk),SSTable 中的数据进一步划分为64KB 的子块。一个子表服务器上的子表将进一步由很多个SSTAble 构成,每个SSTable 构成最终的在底层GFS 中的存储单位。

一个SSTable 还可以为不同的子表所共享,以避免同样数据的重复存储。

子表寻址

子表地址以3级B+树形式进行索引;首先从Chubby 服务器中取得根子表,由根子表找到二级索引子表,最后获取最终的SSTable 的位置

Index

64K block

64K block

64K block

SSTable

4.Hadoop 分布式文件系统HDFS 1)HDFS基本构架

2)HDFS数据分布设计

多副本数据块形式存储,按照块的方式随机选择存储节点,默认副本数目是3

3)HDFS可靠性与出错恢复

DataNode节点的检测

心跳:NameNode 不断检测DataNode是否有效

若失效,则寻找新的节点替代,将失效节点数据重新分布集群负载均衡

数据一致性: 校验和checksum

主节点元数据失效

Multiple FsImage and EditLog

Checkpoint

5.Hadoop MapReduce的基本工作原理

1)Hadoop MapReduce基本构架与工作过程

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧 疯狂代码 https://www.doczj.com/doc/087800836.html,/ ?:http:/https://www.doczj.com/doc/087800836.html,/DataBase/Article11068.html 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提 高了处理效率和处理的成功率。在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:一、数据量过大,数据中什么情况都可能存在。 ;如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用过高 对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。三、要求很高的处理方法和技巧。 这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。下面我们来详细介绍一下处理海量数据的经验和技巧:一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用 Oracle或者DB2,微软公 司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘,傲博知识库等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式 ,不过处理机制大体相同。例 如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志,索引等放于不同的分区下。四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复 合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合 操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。五、建立缓存机制 当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。六、加大虚拟内存 如果系统资源有 限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为

海量数据存储论文

海量数据存储 (----计算机学科前沿讲座论文 昆明理工大学信息院 计算机应用技术 2010/11 随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB到PB量级海量急速增长。存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。 一、海量数据存储简介 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。但是,存储容量的增长往往同存储性能并不成正比。这也就造成了数据存储上的误区和障碍。 海量存储技术的概念已经不仅仅是单台的存储设备。而多个存储设备的连接使得数据管理成为一大难题。因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。这样的产品无疑简化了用户的管理。 数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储

海量数据处理面试题

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。 s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。 s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。 方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。 2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 方案1: s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

(大数据)北邮大数据技术课程重点总结

(大数据)北邮大数据技术课程重点总结

5.数据化与数字化的区别 数据化:将现象转变为可制表分析的量化形式的过程; 数字化:将模拟数据转换成使用0、1表示的二进制码的过程 6.基于协同过滤的推荐机制 基于协同过滤的推荐(这种机制是现今应用最为广泛的推荐机制)——基于模型的推荐(SVM、聚类、潜在语义分析、贝叶斯网络、线性回归、逻辑回归) 余弦距离(又称余弦相似度):表示是否有相同的倾向 欧几里得距离(又称欧几里得相似度):表示绝对的距离 这种推荐方法的优缺点: 它不需要对物品或者用户进行严格的建模,而且不要求物品的描述是机器可理解的;推荐是开放的,可以共用他人的经验,很好的支持用户发现潜在的兴趣偏好。 数据稀疏性问题,大量的用户只是评价了一小部分的项目,而大多数的项目是没有进行评分;冷启动问题,新物品和新用户依赖于用户历史偏好数据的多少和准确性,一些特殊品味的用户不能给予很好的推荐。 7.机器学习:构建复杂系统的可能方法/途径 机器学习使用场景的核心三要素:存在潜在模式、不容易列出规则并编程实现、有历史的数据 8.机器学习的基础算法之PLA算法和Pocket算法(贪心PLA) 感知器——线性二维分类器,都属于二分类算法 二者的区别:迭代过程有所不同,结束条件有所不同; 证明了线性可分的情况下是PLA和Pocket可以收敛。 9.机器为什么能学习 学习过程被分解为两个问题: 能否确保Eout(g)与Ein(g)足够相似? 能否使Ein(g)足够小? 规模较大的N,有限的dVC,较低的Ein条件下,学习是可能的。 切入点:利用具体特征的,基于有监督方式的,批量学习的分析,进行二分类预测。 10.VC维: 11.噪声的种类: 12.误差函数(损失函数) 13.给出数据计算误差 14.线性回归算法:简单并且有效的方法,典型公式 线性回归的误差函数:使得各点到目标线/平面的平均距离最小! 15.线性回归重点算法部分:

海量数据处理笔试面试题4

海量数据处理专题(一)——开篇 2010-10-08 13:03 转载自08到北京 最终编辑08到北京 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含以下几个方面。 1.Bloom Filter 2.Hash 3.】 4.Bit-Map 5.堆(Heap) 6.双层桶划分 7.数据库索引 8.倒排索引(Inverted Index) 9.外排序 10.Trie树 11.MapReduce 海量数据处理专题(二)——Bloom Filter 2010-10-08 13:04 【 转载自08到北京 最终编辑08到北京 【什么是Bloom Filter】 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。 【适用范围】

海量数据处理小结

海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。 五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。 六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。 七、分批处理海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按

大数据存储方式概述

大数据存储方式概述 随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB 到PB量级海量急速增长。存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。 一、海量数据存储简介 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。但是,存储容量的增长往往同存储性能并不成正比。这也就造成了数据存储上的误区和障碍。海量存储技术的概念已经不仅仅是单台的存储设备。而多个存储设备的连接使得数据管理成为一大难题。因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。这样的产品无疑简化了用户的管理。 数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储容量的需求也有所不同,而应用所要求的存储空间往往并不能得到充分利用,这也造成了浪费。 针对以上的问题,重复数据删除和自动精简配置两项技术在近年来受到了广泛的关注和追捧。重复数据删除通过文件块级的比对,将重复的数据块删除而只留下单一实例。这一做法使得冗余的存储空间得到释放,从客观上增加了存储容量。 二、企业在处理海量数据存储中存在的问题 目前企业存储面临几个问题,一是存储数据的成本在不断地增加,如何削减开支节约成本以保证高可用性;二是数据存储容量爆炸性增长且难以预估;三是越来越复杂的环境使得存储的数据无法管理。企业信息架构如何适应现状去提供一个较为理想的解决方案,目前业界有几个发展方向。 1.存储虚拟化 对于存储面临的难题,业界采用的解决手段之一就是存储虚拟化。虚拟存储的概念实际上在早期的计算机虚拟存储器中就已经很好地得以体现,常说的网络存储虚拟化只不过是在更大规模范围内体现存储虚拟化的思想。该技术通过聚合多个存储设备的空间,灵活部署存储空间的分配,从而实现现有存储空间高利用率,避免了不必要的设备开支。 存储虚拟化的好处显而易见,可实现存储系统的整合,提高存储空间的利用率,简化系统的管理,保护原有投资等。越来越多的厂商正积极投身于存储虚拟化领域,比如数据复制、自动精简配置等技术也用到了虚拟化技术。虚拟化并不是一个单独的产品,而是存储系统的一项基本功能。它对于整合异构存储环境、降低系统整体拥有成本是十分有效的。在存储系统的各个层面和不同应用领域都广泛使用虚拟化这个概念。考虑整个存储层次大体分为应用、文件和块设备三个层次,相应的虚拟化技术也大致可以按这三个层次分类。 目前大部分设备提供商和服务提供商都在自己的产品中包含存储虚拟化技术,使得用户能够方便地使用。 2.容量扩展 目前而言,在发展趋势上,存储管理的重点已经从对存储资源的管理转变到对数据资源

(重点学习)海量数据处理方法总结

海量数据处理方法总结 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu,google,腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1 Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集。 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit 数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为

数据分析师常见的7道笔试题目及答案

数据分析师常见的7道笔试题目及答案 导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧 重于已有假设的证实或证伪。以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把 整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用 hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000 个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日 志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也 就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是: 第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N…logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一 个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N?*O(logK),(N为1000万,N?为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10 个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000 个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到 分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树 /hash_map等),并取出出现频率最大的100个词(可以用含100 个结点的最小堆),并把

常用 大数据量、海量数据处理 方法 算法总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

【精品】海量数据处理分析

海量数据处理分析 北京迈思奇科技有限公司戴子良 笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。 那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

海量数据的存储需求及概念

海量数据的存储需求及概念 海量数据的存储需求其实就是时下流行的云存储概念,使用NVR的集群技术作为基础搭建的海量数据存储系统,可称为音视频云存储系统,在此基 础上的各种新型的智能高效查询服务可以称为云查询。 云存储是以NVR为硬件基础,使用软件分布式技术搭建的一个虚拟存储服务,此方式的具体工作NVR硬件对用户透明,用户提出存储需求,云存储服务系统满足需求。此系统具有高性价比、高容错性、服务能力几乎可以无限伸缩。在云存储系统里面的单机NVR,对其可靠性要求很低,因此我们可以使用 大量廉价的NVR硬件(不带RAID功能)来搭建系统。由此大量减少了硬件成本。由于数据IO吞吐处理被分散到了很多单机上,对单机的处理器、硬盘IO的能 力要求也可变得很低,进一步降低硬件成本。另外,由于云管理系统做了大量 的智能管理工作,将使得安装维护变得更容易。 云查询就是音视频云存储系统里的云计算,由于数据是分散存储在各个 单机节点上,故大量的查询可以是并行的,使得可以实现一些以前很难做到的 密集型计算的查询应用,如视频内容检索,历史视频智能分析等。 云软件开发模式使用强大的分布式中间件平台,其开发难度可大大降低。例如,由某公司开发的分布式平台就是一款云开发的利器,它高效、易学易用、能力强大、跨平台和编程语言,内置了很多分布式开发的基本特性。 未来几年中国的家庭宽带将升级到光纤入户,企业数据网络将升级到万 兆网,在网络化高度发达的大背景下,IT行业正在改变传统的IT资源拥有模式。安防行业在完全融入IT的背景下,行业发展和IT行业的发展趋势是一致的, IT行业的主流趋势是资源正在向可运营、可服务的方向发展。视频监控在智能

2016年数据分析面试常见问题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+ N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map 等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。 4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个

大数据量,海量数据 处理方法总结

大数据量,海量数据处理方法总结 从目前大公司用的比较多的数据处理系统角度,你可以去看看关于Hadoop,Hbase,Hive的书,纯粹讲海量数据处理的没见过, https://www.doczj.com/doc/087800836.html,/~ullman/mmds.html,这个是关于海量数据挖掘的 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter 数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m 至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集

“大数据时代的海量存储”总结报告

“大数据时代的海量存储”总结报告 经过几周的学习,我们逐渐了解了大数据时代的存储技术的发展,通过各小组的介绍,初步了解了各种存储器的原理、应用和发展历程。这些知识也许不是那么精深,但对我们来说是一种启蒙,在学习这些知识的过程中,我们也学会了一种学习方法,这对我们未来的学习生活将会有莫大的帮助。下面就针对这几周的学习,对所掌握的知识和自己的思考进行一个总结。 一、各存储介质 1.磁盘 磁盘的基础是一个个磁片,磁片里有扇区和磁道。扇区是存储的最小单元,一 个扇区里只能存一个文件的数据,这意味着即使文件没有占用扇区的所有空间, 也不能存放其他文件了,而大的文件可能要占用多个扇区,因此在使用磁盘的 过程中,要经常进行碎片整理,使磁盘的空间能得到有效的利用。磁道则是决 定磁盘存储量的因素。一般来说,硬盘和软盘都是磁盘。 ①软盘:由单片磁盘构成,存储量小,容易物理损坏,但作为最早的移动存储 介质,在历史上占有无法磨灭的地位,也为早期的文件转移提供便利。 ②硬盘:由多个磁片组成,因此存储量大了许多,通过磁头将数据传输出去, 在计算机系统里属于外存,需要驱动器才能被识别和使用,能永久地 存储数据,在现阶段依然被广泛的运用在各个领域。 ③移动硬盘:将硬盘小型化,通过USB接口与电脑连接,传输数据,相对U 盘来说,容量也大了许多,为当代生活提供了便利。 2.U盘 U盘,全称USB闪存盘。它是通过识别浮动栅中电子的有无来判断二进制的0 和1,以此来存储数据。因为它的电子可以长时间存在,所以数据可以保存在 U盘内。因为U盘小巧轻便、价格便宜、存储量大、性能可靠,所以受到了欢 迎,成为当代移动存储介质中的重要一员。不过因为技术和结构的限制,它在 电脑中的读写速度仍比不上移动硬盘,但抗物理损坏能力强于移动硬盘,算是 各有千秋,为人们的数据转移带来了方便。 3.固态盘 固态盘有两种,一种是基于闪存的,另一种则是基于DRAM。用闪存作为介质 的固态盘一般擦写次数为3000次左右,而因为它的平衡写入机制,在实际运 用中,它几乎是可以无限利用的,读写速度又远超机械硬盘,所以现在大多数 笔记本电脑都将光驱的位置用来放置固态盘,使电脑性能得到了提高;而利用 DRAM的固态盘虽然速度也很快,但是需要一个独立电源来保存它里面的数据, 因此相对于前者来说,它有些不便,是一种非主流的固态盘。 4.光盘 光盘是用聚碳酸酯做成基板,通过激光烧录后来进行数据记录,虽然以现在的 眼光来看,光盘的使用有着种种不便,但是在以往为半结构化和非结构化的数 据的传输做出了巨大的贡献。但近年来,大多数笔记本电脑放弃了光驱,换上 了固态盘,光盘也逐渐退出了历史的舞台。 二、海量存储器 1.磁盘存储阵列

基于海量数据的数据分析方案设计

基于海量数据的数据分析方案设计 data analysis program design based on mass data 摘要:随着互联网,移动互联网和物联网的发展,谁也无法否认,我们来到了一个海量数据的时代。随着数据积累的越来越多,现在许多行业大多面临基于海量数据的分析问题,该文从基于海量数据挖掘的分析方法出发,利用河南省2005到2009年交通事故的数据,设计了一个数据分析方案。 关键词:海量数据,数据挖掘,回归模型,方案 Abstract: with the development of Internet, mobile Internet and development of Internet of things, nobody can deny that we come to a massive data era. As data accumulate more and more, many industries are facing problems based on large amounts of data analysis . This paper ibased on the analysis of mass data mining method of Henan province from 2005 to 2009, using the data of traffic accidents, designes a data analysis program. Key words: mass data, data mining, regression model, scheme 一、引言 随着信息技术的发展,人们积累的数据越来越多。事实上,数据本身是没有意义的,只有用以进行分析处理才真正起到作用。因此,可以说激增的数据背后更重要的是隐含的信息,人们希望能够对这些数据进行更高层次的分析,以便更好地利用这些数据。 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用过高;要求很高的处理方法和技巧。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处

相关主题
文本预览
相关文档 最新文档