can总线温度控制(DOC)
- 格式:doc
- 大小:1.08 MB
- 文档页数:32
CAN总线多点温度采集节点硬件设计【摘要】随着科学技术的发展,温度监控系统的应用越来越广泛,本文阐述了一种基于CAN总线的多点温度采集系统,可以实现温度实时监测,该系统能应用于工农业生产的诸多场合。
系统以AT89C52单片机为微处理器,外接数字式温度传感器DS18B20获得现场环境的温度信号。
通过CAN总线控制器SJA1000和CAN总线驱动器PCA82C250将数据发送到CAN总线上,从而实现对温度的采集。
【关键词】CAN总线;节点;温度采集0 概述现场总线是安装在生产制造过程中的装置与控制室内的控制装置之间的一种数字式、串行、多点通信的数据线。
应用现场总线技术不仅可以降低系统的布线成本,还具有设计简单、调试方便等优点。
同时,由于现场总线本身还提供了灵活且功能强大的协议,这就使得用户对系统配置,设备选型具有强大的自主权,可以任意的将多种功能模块组合起来扩充系统的功能。
在众多的现场工业总线中。
随着温度控制技术在各个领域得到广泛地推广和应用,相关行业对温度控制技术的要求与日俱增。
目前市场上也有一些温度控制系统,但是这些系统在传送数据时实时性能实现的不是很好,而CAN总线的实时性强、成本低,而且还具备可靠性高、抗干扰强等特点。
综合多方面因素考虑,我们能够利用CAN总线的特点和优势设计温度控制系统。
1 设计方案1.1 系统功能要求系统能够接受数字式温度传感器DS18B20的温度信号,将温度信号传给单片机,完成单片机最小系统设计,并把此系统作为CAN的节点,节点的硬件包括AT89C52单片机、CAN总线驱动器PCA82C250、CAN总线控制器SJA1000、单片机的时钟和复位电路。
主要研究基于AT89C52单片机与DS18B20数字温度传感器的多点温度测量系统。
完成数字式温度传感器与CAN总线节点的接口设计及电路设计,实现具有数字式串行温度采集功能的CAN总线节点的硬件设计。
应用CAN总线控制器SJA1000及其总线收发器的工作原理,完成数字式温度传感器与CAN总线节点的接口设计。
基于CAN总线的温度控制系统前言CAN (Controller Area Network) 总线又称控制器局域网是Bosch 公司, 在现代汽车技术中领先推出的一种多主机局部网由于其卓越的性能极高的可靠性独特灵活的设计和低廉的价格现,已广泛应用于工业现场控制智能大厦小区安防交通工具医疗仪器环境监控等众多领域CAN, 已被公认为几种最有前途的现场总线之一CAN。
总线规范已被ISO 国际标准组织制订为国际标准,CAN 协议也是建立在国际标准组织的开放系统互连参考模型基础上的,主要工作在数据链路层和物理层。
用户可在其基础上开发适合系统实际需要的应用层通信协议,但由于CAN 总线极高的可靠性从而使应用层通信协议得以大大简化。
CAN总线的物理层是将ECU连接至总线的驱动电路。
ECU的总数将受限于总线上的电气负荷。
物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。
控制器局域网CAN是目前为止被批准为国际标准的少数现场总线之一。
CAN 网络可以采用多主方式工作。
它采用非破坏性的总线仲裁技术,其控制和信号传输采用短帧结构,因而具有低耦合性和较强的抗干扰能力。
它的传输介质可以是双绞线、同轴光纤或电缆,选择十分灵活;每帧信息都有CRC校验及其它检错措施,因此数据出错率极低,可靠性较高;当其传输的信息出错严重时,节点可以自动断开与总线的联系,以使其总线上其它的操作不受影响。
虽然目前USB、PCI等总线技术得到了快速发展,但是在大量应用的测试微机及工控机中,用的最多的还是ISA总线。
ISA总线具有16位数据宽度,其最高工作频率为8MHz,数据传输速率可达到16MB/s,地址总线有24条,可寻址16MB 的地址单元,其总线信号分为5类,分别为数据线、控制线、地址线、电源线和时钟线。
控制器局域网CAN属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。
前言20世纪90年代以来,汽车上由电子控制单元(ECU)控制的部件数量越来越多,例如:电子燃油喷射装置、防抱死制动装置、自动变速器、空气悬架等。
随着集成电路和单片机在汽车上的广泛应用,汽车上的ECU数量越来越多。
因此,一种新的概念—汽车控制局域网络CAN(Controller Area Network)的概念也就应运而生了。
CAN最早是由德国BOSCH公司为解决现代汽车机件中的控制模块与测试仪器之间的数据交换而开发的一种数据通信方式,CAN总线为汽车上各种电子设备、控制模块、测量仪器等提供了统一数据交换渠道,将是汽车电子技术发展的一个里程碑。
根据ISO(国际标准化组织)定义的通信协议,将世界各国不同的汽车生产厂商制定符合自身需要的各种专用总线统一到J1939通信协议上来,J1939协议是目前在大型汽车中应用最广泛的协议,它是美国SAE(Society of AutomotiveEngineer)组织维护和推广的。
目前北京公交使用车辆的欧Ⅲ、欧Ⅳ排放的发动机和自动变速箱的电控模块都遵循J1939通讯协议。
CAN总线应用在汽车上有很多优点:(1)数据共享(2)简化车身布线(3)取代以继电器为主体的常规逻辑电路(4)数据稳定可靠(5)有故障诊断和自动恢复能力(6)硬件方案的软件化实现(7)配置参数灵活。
在现代汽车设计中,CAN 已经成为必采用的技术。
学习、掌握、应用汽车局域网将会是今后汽车电控的关键技术。
下面是对CAN总线知识的一点肤浅理解,由于水平有限,没能全面地介绍各位所需的内容,其中内容有不妥之处,敬请各位批评指正。
CAN总线的概念和作用什么是CAN总线CAN全称为“Controller Area Network” ,即控制器局域网。
是国际上广泛应用的现场总线之一。
CAN总线是为解决现代汽车中众多电控模块(ECU)之间的数据交换而开发的一种串行数据总线。
名词解释:数据总线—数据总线是模块(ECU)之间运行数据的公共通道,它将各个功能部件的ECU连在一起,大量的数据信息和控制信息在总线上流动,实现各功能部件的ECU之间的信息交换。
CAN总线:CAN 是控制器局域网总线(CAN,Controller Area Network),是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。
CAN协议由德国的Robert Bosch公司开发,用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。
该协议的健壮性使其用途延伸到其他自动化和工业应用。
CAN 协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。
CAN总线是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电子干扰性,并且能够检测出产生的任何错误。
CAN总线可以应用于汽车电控制系统、电梯控制系统、安全监测系统、医疗仪器、纺织机械、船舶运输等领域。
CAN总线特点:(1) 数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,靠各个节点信息优先级先后顺序来决定通信次序,高优先级节点信息在134μs通信;(2) 多个节点同时发起通信时,优先级低的避让优先级高的,不会对通信线路造成拥塞;(3) 通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);(4) CAN总线传输介质可以是双绞线,同轴电缆。
CAN总线适用于大数据量短距离通信或者长距离小数据量,实时性要求比较高,多主多从或者各个节点平等的现场中使用。
CAN总线在工控领域主要使用低速-容错CAN即ISO11898-3标准,在汽车领域常使用500Kbps的高速CAN。
某进口车型拥有,车身、舒适、多媒体等多个控制网络,其中车身控制使用CAN网络,舒适使用LIN网络,多媒体使用MOST网络,以CAN网为主网,控制发动机、变速箱、ABS等车身安全模块,并将转速、车速、油温等共享至全车,实现汽车智能化控制,如高速时自动锁闭车门,安全气囊弹出时,自动开启车门等功能。
汽车CAN总线详解概述CAN(Controller Area Network)总线协议是由 BOSCH 发明的一种基于消息广播模式的串行通信总线,它起初用于实现汽车内ECU之间可靠的通信,后因其简单实用可靠等特点,而广泛应用于工业自动化、船舶、医疗等其它领域。
相比于其它网络类型,如局域网(LAN, Local Area Network)、广域网(WAN, Wide Area Network)和个人网(PAN, Personal Area Network)等,CAN 更加适合应用于现场控制领域,因此得名。
CAN总线是一种多主控(Multi-Master)的总线系统,它不同于USB或以太网等传统总线系统是在总线控制器的协调下,实现A节点到B节点大量数据的传输,CAN网络的消息是广播式的,亦即在同一时刻网络上所有节点侦测的数据是一致的,因此比较适合传输诸如控制、温度、转速等短消息。
CAN起初由BOSCH提出,后经ISO组织确认为国际标准,根据特性差异又分不同子标准。
CAN国际标准只涉及到 OSI(开放式通信系统参考模型)的物理层和数据链路层。
上层协议是在CAN标准基础上定义的应用层,市场上有不同的应用层标准。
发展历史1983年,BOSCH开始着手开发CAN总线;1986年,在SAE会议上,CAN总线正式发布;1987年,Intel和Philips推出第一款CAN控制器芯片;1991年,奔驰500E 是世界上第一款基于CAN总线系统的量产车型;1991年,Bosch发布CAN 2.0标准,分 CAN 2.0A (11位标识符)和 CAN 2.0B (29位标识符);1993年,ISO发布CAN总线标准(ISO 11898),随后该标准主要有三部分:ISO 11898-1:数据链路层协议ISO 11898-2:高速CAN总线物理层协议ISO 11898-3:低速CAN总线物理层协议注意:ISO 11898-2和ISO 11898-3物理层协议不属于BOSCH CAN 2.0标准。
can总线案例
CAN总线(Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。
以下是一些CAN总线的应用案例:汽车控制系统:CAN总线最初就是为了解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的。
在现代汽车中,CAN总线已经成为一种标准配置,用于连接各种控制单元,如发动机控制单元、制动系统控制单元、车身控制单元等。
这些控制单元之间通过CAN总线进行实时数据交换,以实现协同工作和优化车辆性能。
工业自动化:在工业自动化领域,CAN总线被广泛应用于各种传感器、执行器、控制器等设备之间的通信。
例如,在生产线上,可以通过CAN总线连接各种PLC、电机控制器、温度控制器等设备,实现自动化控制和监测。
船舶控制系统:在船舶控制系统中,CAN总线也被用于连接各种传感器、执行器和控制器。
由于船舶环境的特殊性,要求控制系统具有高度的可靠性和稳定性,而CAN总线的优秀性能和特点使其成为船舶控制系统的理想选择。
医疗设备:在医疗设备中,CAN总线也被用于连接各种传感器、执行器和控制器,如心电图机、呼吸机、输液泵等。
这些设备之间需要实时交换数据,以确保患者的安全和治疗效果。
以上案例仅供参考,如需更专业的信息,建议咨询CAN总线领域的专业人士或访问相关论坛。
同时,在使用CAN总线进行系统设计时,应充分考虑系统的实际需求和特点,选择合适的通信协议和硬件设备,以确保系统的稳定性和可靠性。
CAN总线CAN全称是Controller Area Network 即控制局域网。
CAN是国际上应用很广泛的一种现场总线。
它作为一种串行通信总线,最初被设计成为汽车工业中的微控制器通信用,由于它具有高可靠性和独特的设计、在多主系统中的优势及很高的实时性,现在CAN总线已经在汽车工业、航天工业等领域的控制系统中得到了很广泛的应用,并且是到目前为止唯一一种成为国际标准(ISO)的现场总线,被认为是目前最有前途的现场总线之一。
CAN总线概述CAN总线是德国Bosch公司于20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光纤,通信速率可达1Mbit/s,通信距离可达10km。
CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,使网络内的节点数在理论上不受限制。
由于CAN总线具有较强的纠错能力、支持差分收发,因而因而适合高干扰环境,并具有较远的传输距离。
CAN的特性如下:1)CAN是一种有效支持分布式控制和实时控制的串行通信网络。
2)CAN协议遵循ISO/OSI参考模型,采用了其中的物理层、数据链路层与应用层。
3)CAN可以多主方式工作,本质上也是一种CSMA/CD方式,网络上任意一个节点均可以在任意时刻主动地向网络上的其他节点发送信息,而不分主从,节点之间有优先级之分,因而通信方式灵活;CAN采用非破坏性逐位仲裁技术,优先级发送,可以大大节省总线冲突仲裁时间,在重负载下表现良好的性能;CAN可以点对点、一点对多点(成组)及全局广播等几种方式传送和接受数据。
4)CAN的直接通信距离最远可达10km(传输速率为5kbit/s);最高通信速率可达1Mbit/s 传输距离为40m)5)CAN上的节点数实际可达110个6)CAN数据链路层采用短帧结构,每一帧为8个字节,易于纠错;CAN每帧信息都有CRC 校验及其他检错措施,有效的降低了数据的错误率;CAN节点在错误严重的情况下,具有自动关闭的功能,使总线上其他节点不受影响。
祝你成功本系统以AT89S52单片机为核心部件,外加温度采集电路、及显示电路和越限报警等电路。
采用单总线型数字式的温度传感器DS18B20,使系统具有测温误差小、分辨率高、抗干扰能力强,动态显示的方式等特点。
本设计既可以对当前温度进行检测又可以对温度进行数码显示,两位整数两位小数的显示方式具有更高的显示精度,若超越极限温度则触发蜂鸣器报警。
利用功能强大的Keil和具有互动电路仿真的Proteus进行程序的编写和仿真。
关键词:仿真温度检测报警DS18B20I目录第一章选题依据 (1)1.1课题背景 (1)1.2研究设计内容 (2)第二章温度检测系统的硬件设计 (3)2.1电路总体原理框图 (3)2.1.1 AT89S52介绍 (4)2.2DS18B20的特性 (6)2.2.1 DS18B20的外形和内部结构 (6)2.2.2 DS18B20的使用方法 (7)2.3测温电路 (8)2.4单片机复位电路 (9)2.5LED显示电路 (10)2.6报警电路 (11)第三章温度检测系统软件设计 (12)3.1总流程图 (12)3.2延时设计 (13)3.3复位设计 (14)3.4显示设计 (14)第四章系统仿真调试 (16)4.1P ROTEUS7.1 (16)4.2K EIL UVISION2 (17)4.3仿真结果分析 (19)4.4硬件焊接及系统调试问题 (20)4.5结论 (22)致谢 (23)参考文献 (24)附录 (25)II第一章选题依据在科学技术突飞猛进的今天,温度检测、控制起不可忽视的作用。
温度控制无论在医疗电子领域还是工业控制领域应用都非常广泛,如在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制,医疗电子领域的生化分析仪等,内部都涉及到温度控制。
本课题它完成了从温度的采集、转换、显示以及报警的一系列任务。
本文介绍了以AT89S52单片机为核心的温度控制系统的工作原理和设计方法。
温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机,单片机进行温度的判断是否超越所设置的温度极限,若低于或高于所设温度,单片机将发出信号使蜂鸣器自动报警。
文中对每个部分功能、实现过程作了详细介绍。
整个系统的核心是进行温度监控报警,完成了课题所有要求。
1.1课题背景自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
采用单片机AT89S52来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
11.2 研究设计内容本系统采用的新型智能化温度传感器DS18B20,能以数字形式直接输出被测点温度值,具有测温误差小、分辨率高、抗干扰能力强、成本低,是研制和开发具有高性价比的新一代温度检测系统的核心器件。
本系统设计了一个由数字化测温元件构成的温度检测报警系统,本系统包括了温度检测、温度显示、温度越限报警等部分。
本系统主要运用了单片机AT89S52,高性能CMOS 8位单片机,片内含8K bytes 的可反复擦写的。
兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元等强大功能。
也采用了新型传感器DS18B20,利用它的体积小,高精度、强大的读写功能等特点进行温度的采集。
用PNP型三极管做驱动,采用4位共阴LED动态显示方式。
主要采用了手动复位操作。
2第二章温度检测系统的硬件设计2.1电路总体原理框图温度测量及显示、报警系统控制的总体结构如图2-1所示。
系统主要包括现场温度采集、温度显示、电路控制输出、与报警装置和系统核心AT89S52单片机作为微处理器。
图 2-1电路总体原理框图温度采集电路以数字量形式将现场温度传至单片机。
单片机结合现场温度与用户设定的目标温度,进行判断是否超越极限以此控制蜂鸣器自动报警。
32.1.1 AT89S52介绍1、AT89S52性质AT89S52单片机是美国ATMEL公司生产的AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8kBytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。
AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器256 bytes 的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。
AT89S52芯片有40条引脚,双列直插式封装引脚图如2-2图所示:2-2 AT89S52引脚图Vss(20): 接地。
Vcc(40):电源+5V。
PSEN(29):片外程序存储器选通信号,低电平有效。
(9):复位信号输入端。
AT89S52接能电源后,在时钟电路作用下,该脚上RST/VPD,即备用电源输入出现两个机器周期以上的高电平,使内部复位。
第二功能是VPD端。
ALE/PROG(30):地址锁存信号输出端。
P0口(39—32):双向I/O口,既可作地址/数据总线口用,也可作普通I/O口用。
4P1口(1—8):准双向通用I/O口。
P2口(21—28):准双向口,既可作地址总线口输出地址高8位,也可作普通I/O口用P3口(10—17):多用途口,既可做普通I/O口,也可按每位定义的第二功能操作。
ALE/PROG(30):地址锁存信号输出端。
主要功能特性:◆兼容MCS-51指令系统◆8k可反复擦写(>1000次)Flash ROM◆32个双向I/O口◆ 4.5-5.5V工作电压◆时钟频率0-33MHz◆全双工UART串行中断口线◆256x8bit内部RAM◆2个外部中断源◆低功耗空闲和省电模式◆中断唤醒省电模式◆3级加密位◆看门狗(WDT)电路◆软件设置空闲和省电功能◆灵活的ISP字节和分页编程◆双数据寄存器指针◆2个16位可编程定时/计数器AT89S52共有4个(P0、P1、P2、P3口)8位并行I/O端口,共32个引脚。
P0口双向I/O口,用于分时传送低8位地址和8位数据信号;P1、P2、P3口均为准双向I/O 口;其中P2口还用于传送高8位地址信号;P3口每一引脚还具有特殊功能,用于特殊信号的输入输出和控制信号。
AT89S52内部有一个可编程的、全双工的串行接口。
它串行收发存储在特殊功能寄存器SFR的串行数据缓冲器SBUF中的数据。
52.2 DS18B20的特性◆适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下由数据线供电。
◆独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
◆DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。
◆DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。
◆温范围-55℃~+125℃,在-10~+85℃时精度为0.5℃。
◆可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。
◆在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在你750ms内把温度值转换为数字,速度更快。
◆测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。
◆负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。
2.2.1 DS18B20的外形和内部结构DS18B20的外形结构及引脚排列图2-3 DS18B20 外形结构图DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
62.2.2 DS18B20的使用方法DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。
DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。
该协议定义了几种信号的时序:初始化时序、读时序、写时序。
所有时序都是将主机作为主设备,单总线器件作为从设备。
而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。
数据和命令的传输都是低位在先。
1、DS18B20的读时序DS18B20的读时序分为读0时序和读1时序两个过程。
DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。
DS18B20在完成一个读时序过程,至少需要60us才能完成。
图 2-4 DS18B20的读时序2、DS18B20的写时序DS18B20的写时序仍然分为写0时序和写1时序两个过程。
DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。
图 2-5 DS18B20的写时序72.3 测温电路DS18B20测温原理如图2-6所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图 2-6 DS18B20测温原理框图DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。