当前位置:文档之家› 第4章 滴灌系统水力学原理

第4章 滴灌系统水力学原理

第4章 滴灌系统水力学原理
第4章 滴灌系统水力学原理

第4章 滴灌系统水力学原理

滴灌与喷灌相似,它们均采用为压力管道系统。但滴灌一般工作压力较低,用水率较小。滴灌管网通常由毛管、支管和干管构成。毛管是与支管连接的带滴头的小口径塑料管或直接由厂家生产的滴头和毛管合二为一的滴灌管和滴灌带。通过毛管设计对田块进行均匀地灌水;支管把水输送到毛管,它也需要适当设计,以使水能均匀地流入毛管;于管作为输水系统输送全部水并调节滴灌系统的水压。

理想的滴灌系统应当是所有的滴头在灌溉时出流量相等。以使每棵作物能在灌溉时吸收等量的水分。实际上完全达到上述要求是不可能的。因为滴头的出流量受到水压的变化和制造变差的影响。水压的变化可以通过水力设计来控制,制造变差则由生产厂家的工艺水平所决定。滴灌系统水力学原理则是进行滴灌系统水力设计的基础。

第1节 水力学基本方程

滴灌系统管网设计的理论基础是水力学,而水力学的许多分析计算均以自然界物质运动的普遍规律为依据,其中最主要的是牛顿运动定律以及质量、能量和动量守恒定律。质量既不能产生也不会消失;能量只能从一种形式转化为另一种形式;动量也只能随作用力和时间而变化。水力学中,质量守恒关系用液流的连续性方程表示;能量守恒方程具体表现为伯努利方程(D .Bernoulli ),在水力学上简称能量方程;确定水流动量变化和作用力之间的关系时,动量守恒原理特别有用。连续性方程、能量方程和动量方程是解决管流问题的最基本方程。

4.1.1水的主要物理性质

⑴密度

单位体积液体的质量通常用ρ表示。密度的法定计量单位为kg/m 3,一般情况下,水有不可压缩性,清水的密度受温度和压强变化的影响很小,实际上可视为常数,水的密度ρ=102(kg ·s 2/m 4)。

W

m

=

ρ (4-1)

式中:ρ——液体密度;

m ——液体质量;

W ——液体体积。 ⑵容重

单位液体的重量称容重,用γ表示,以kg/m 3计。液体的容重与密度的关系如下:

g ργ= (4-2)

式中:g ——重力加速度,一般可看作常数等于9.8m/s 2。

因此,水的容重=102kg ·s 2/m 4×9.8/s 2=999.6kg/m 3,即淡水的容重可近似地看作γ=1000kg/m 3。

⑶粘滞性

流动液体有抵抗剪切变形的性质即粘滞性。当液体流动时需克服内摩擦力而做功,这是液体运动产生机械能量损失的原因。水的粘滞性可用运动粘度ν表示,其单位是m 2/s 。

ρ

μ

ν

=

(4-3)

式中:μ——水的动力粘度;

ρ——水的密度。

不同温度下,水的动力粘度μ和运动粘度ν值见表4-1。

表4-1 水的动力粘度μ和运动粘度ν值

4.1.2 连续性方程

⑴质量通量

质量通量即单位时间通过的质量,以kg/s 计:

ρωυ

=m Q (4-4)

式中:ρ——水的密度,

(kg/m 3);

ω——垂直水流方向的断面积,(m 2);

υ——断面平均流速,(m 3/s )。

⑵质量守恒定律

根据质量守恒定律,恒定流时,经过同一管道任何两断面的质量通量应相等,即:

21m m Q Q = (4-5)

水是不可压缩的,因为21ρρ=,故:

2211υυm m = (4-6)

这就是水的恒定流连续方程,其实质是质量守恒定律。可以看出,流量恒定时,断面平均流速和过水断面面积成反比,如果沿流程的过水断面增大,流速必然相应减小,反之亦然。

4.1.3 能量方程

⑴位能、压能和动能

水流具有以下三种能量:

①因高程产生的单位质量水体的位能zg (z 是某一基准面以上的高程,g 为重力加速度); ②因压力产生的单位质量水体的压能p/ρ(p 为压力,ρ为水的密度); ③因运动产生的单位质量水体的动能v 2/2(v 为水流速度)。 因此总能量为:

2

2

υρ

+

+

=p

zg E (4-7)

⑵单位质量水体的总能量

因水具有粘滞性,当水流通过固定壁或边界时,由于阻力而使水流的部分能量转化为热能,从水力学观点,这部分能量为损失能量。取断面1和2,管流两断面的能量守恒关系为:

i E p gz p gz ++

+

=+

+

2

2

2

2

2

22

11

1υρ

υρ

(4-8)

式中:i E ——断面1和2之间的损失能量。

⑶能量方程

用质量和力的关系:ma F

=代入(4-8)式后可得:

∑++

+

=+

+

i h g

p z g

p z 2222

2

22

11

1υγ

υγ

(4-9)

这就是水力学中的能量方程,也称为伯努利(D.Bernoulli )方程。 式中:γ

p

z

+

——测压管水头,m ;

g

p

z 22

υγ

+

+

——总水头,m ;

∑i

h ——管线总水头损失,m 。

管线上各点的测压管水头和总水头连线,分别称为测压管水头线和总水头线。沿程任意两断面的总水头差值为两断面间的水头损失。总水头线的斜率称为水力坡度。

图4-1 测压管水头线和总水头线示意图

1—总水头线 2—测压管水头线

4.1.4 动量方程

动量方程表示水流动量变化和作用力之间的关系。在滴灌工程实践中,可用来计算水流对弯管的作用力,以便求出镇墩的尺寸。定位管道,承受管道中由于水流方向改变引起的推力。在滴灌系统的干、支管中,由于自重和温度变化会产生推力或拉力。三通、弯头等管件处都需设置镇墩。动量是物体质量m 和速度v 的乘积。单位时间内液流在某一方向动量的变化,等于同一方向作用在液流上外力的合力。因此可表示为:

t

m m 1

2-=

∑ (4-10)

式中:∑F ——作用在物体上的外力总和;

t ——时间;

m ——水体质量;

υ——水流速度。

恒定流动量方程的基本形式为:

)(1122υυρa a Q -=∑或

)(1122υυγa a g

Q

-=

∑ (4-11)

式中:a ——动量校正系数(一般取121

==a a )。

不难看出,动量方程实质上是牛顿第二定律在恒定流条件下的特殊形式。

第2节 滴头水力学

滴头是滴灌系统的心脏,一个滴灌系统工作的好坏,最终取决于滴头施水性能的优劣。从水力学上讲滴头是一个降压消能装置,将毛管上的有压水流经过滴头消能后以点滴状给作物根区土壤供水。通常,通过滴头的流量是由滴头工作压力和滴头流道形状、断面尺寸及流径长短来控制。滴头类型以往很多,现在变少并系列化。微管滴头、孔口或管嘴滴头已逐渐被淘汰或很少采用,目前主要为紊流型长流道滴头和具有压力补偿功能的滴头,且根据用户需要毛管和滴头合二为一,实现一体化生产。

4.2.1孔口或管嘴滴头

孔口或管嘴滴头通常具有固定的几何形状。所以其过水断面是不变的。流量与压力水头关系如下:

5.02ch gh a q == (4-12)

式中:q ——滴头流量; a ——过水断面面积;

c ——常数;

h ——压力水头。

4.2.2长流道滴头

长流道滴头可用水在微管内的流动来描述。如果流道断面和流程固定,流量与压力水头关系表示如下:

x ch q = (4-13)

式中:x ——流态指数。层流1=x ;光滑紊流57.0=x ;紊流5.0=x ;

其余符号同(4-12)式。

微管滴头流量与压力水头关系也可用下面的经验公式表示: 层流: 80.070.2)(272.1L h

d q = (4-14)

紊流:

56.070.2)(776.1L

h

d q = (4-15)

式中:q ——滴头流量,L/h ; d ——微管内径,mm ; h ——压力水头,m ;

L ——微管长度,m 。

长流道滴头的流道可以设计成不同形状的通道,以形成“迷宫”型滴头。“迷宫”型属紊流滴头,其x 值通常为0.5或稍大一些。x 值越小,流量变化相同时允许的压力变化越大,故x 值越小越好。从水力学观点讲,孔口滴头比微管滴头为好。

4.2.3特殊滴头

⑴压力补偿滴头

压力补偿滴头过流断面面积(孔口或管嘴、流道)是随着压力水头变化而自动调节的。当压力水头增大时,过流断面减小。过流断面与压力水头关系如下:

y bh a -= (4-16)

式中:a ——过流断面面积;

b 、y ——幂函数的两个常数。

将(4-16)代入(4-13)得: y y ch gh bh q --==5.02 (4-17)

由(4-17),当

y 值为0.5时,x 将是零;这就是说滴头流量不随压力水头的变化而变化。 ⑵涡流滴头

涡流滴头是具有圆环型结构的孔口滴头。水沿切线方向进入环型内腔的四周,在腔内以高速旋转。旋转运动的结果,产生与进入水流方向相反的离心力,对水流产生一个大的阻力。因此,当工作压力和滴头流量一定时,涡流滴头与一般孔口滴头相比,其孔口断面较大。

⑶滴灌管(带)

滴灌管(带)是目前使用最多的一种新型滴灌灌水设备。多年生作物株距较稀、不存在每年的重新耕作问题,多使用滴灌管;它实际是将结构较复杂的孔口滴头或“迷宫”型长流道滴头与毛管加工在一起的组合式滴灌设备。滴灌带也称线源滴头,多用在一年生作物上,它们实际上是一些水力性能得到大大改善,造价大大降低,将滴头和毛管合二为一的,结构较复杂的“迷宫”型长流道,孔口、缝隙出流滴头。

第3节 滴灌管路水力学

4.3.1管道水流的流态

水管内的水流可分两类。一类是有自由水面的重力流,在重力作用下流动;另一类是充满水的压力流,在压力作用下流动。由于水的粘滞性,使水在流动时具有不同的流态,即层流和紊流。相同液体在同一温度、同一管道内流动时,因为流速的差异,可以产生不同的流态。层流时,液体质点作规则的线状运动。紊流时液体质点相互混渗,各质点的运动轨迹没有规律,但总体上还是沿着水管向前流动。管道内层流和紊流时的流速分布规律不同,两者的水头损失和流速的关系也有差别。 在层流状态下,管壁处流速等于零,管子纵轴中心方向流速最大,平均流速等于最大流速的一半,流速在管内水流断面的分布呈抛物线规律。在紊流状态下,只有在近壁层流速像层流状态,水流断面其它地方的流速彼此相近。一般用雷诺数判别水流的流态,圆管满流时可根据下式算出雷诺数:

ν

υd

R e =

(4-18)

式中:e R ——雷诺数;

υ——管道中的水流速度,cm/s ; d ——管道内径,mm ;

ν——水流的运动粘度(运动粘滞系数),随水温而变化,cm 2/s ;

若将(4-18)式中的流速以流量和管道内径表示则: d

Q

R e ν2827.0=

(4-19)

式中:Q ——流量,L/h ; 其余符号同前。

表4-2 不同水温时的运动粘度(粘滞性系数)

e R <2300,层流;

e R >2300,过度流和紊流。

4.3.2沿程水头损失计算公式

滴灌管路一般均为塑料管,内壁光滑,为光滑管。常用的沿程水头损失计算公式有:

⑴达西—韦斯巴赫(Dacy-Weisbach )公式

5

2

1569.0d

LQ h f λ=

(4-20)

式中:f h ——水头损失,m ;

λ——阻力系数,随管道内水流流态的不同而不同; L ——管道长度,m ;

Q ——流量,L/h ;

d ——管道内径,mm 。

根据勃拉休斯(Blasius )大量光滑管试验数据、提出不同流态下阻力系数λ的经验公式如下: 层流

e

R <2320

e

R 64=

λ

(4-21)

过度流和紊流 e

R >2320

25

.03164.0e R =

λ

(4-22)

式中:e R ——雷诺数,由(4-18)或(4-19)式计算。

⑵勃拉休斯(Blasius )公式

实际使用的滴灌系统管路,其水流流态几乎均为光滑紊流。将(4-19)代入(4-22)再代入(4-20),经整理后得勃拉休斯(Blasius )公式:

L d

Q h f 75

.475

.125.047.1ν=

(4-23)

式中:f h ——水头损失,m ;

ν——水的运动粘度(运动粘滞系数),cm 2/s ;

Q ——流量,L/h ; L ——管道长度,m ; d ——管道内径,mm 。

⑶哈森—威廉斯(Hasen-Willians )公式

许多国家,广泛采用哈—威公式计算滴灌管道的水头损失。

852

.1871.4)(3137

C Q d L

h f =

(4-24)

式中:C ——沿程摩阻系数(哈—威系数),对于光滑塑料管,

C =150;

其余符号同前。

⑷通用公式

沿程水头损失计算公式的通式是: L aQ h m f =

(4-25)

式中:f h ——沿程水头损失,m ;

a ——随管径和流态而定的常数。层流4/128d g a πν=;光滑紊流(勃拉休斯公式)75.475.175.125.02/4314.0d g a πν=;哈—威公式

871.4852.1/3137d C a =;完全紊流5222/4gd C a π=(其中C 为常数;

Q ——流量,L/h ;

m ——流量指数,层流1=m ,光滑紊流(勃拉休斯公式)

75.1=m ,

(哈—威公式)852.1=m ,完全紊流2=m 。 L ——管道长度,m 。

⑸《微灌工程技术规范》推荐公式

《微灌工程技术规范》SL 103—95推荐公式为:

L

d

Q f h b m

f =

(4-26)

式中:f h ——沿程水头损失,m ; f ——摩阻系数; Q ——流量,L/h ; d ——管道内径,mm ; L ——管道长度,m ; m ——流量指数; b ——管径指数。

不同管材的f 、m 、b 值,可按表4-3选用。

表4-3 微灌管道沿程水头损失计算系数、指数表

注:①R e为雷诺数;

②微灌用聚乙烯管的f值相应于水温10℃,其他温度时应修正。

(4—17)和(4—18)式是计算滴灌管道沿程水头损失的两个常用基本公式。哈—威公式是经验公式,它的优点是计算方便,但它忽略了粘滞度的影响,实践证明它仅适用于内径大于50mm,流速小于3.1m/s的管道。达西—韦斯巴赫公式是由实验和理论推求出来的有压管道流沿程水头损失的基本公式,适用范围较广;勃拉休斯公式实际上就是光滑紊流时的达西—韦斯巴赫公式。《微灌工程技术规范》SL 103—95推荐公式是

根据我国微灌管道水力试验结果提出的公式,d >8mm 的微灌用聚乙烯管推荐用勃拉休斯公式,硬塑料管推荐公式与勃拉休斯公式差别很小,因此,除d <8mm 的管道外,建议一般滴灌管均采用勃拉休斯公式进行计算。

⑹多孔出流管的沿程水头损失计算

因为毛管和支管均属多孔出流管,为简化计算,先假设所有的水流都通过管道全长,计算出该管路的水头损失,然后再乘以多孔系数。目前,全等距、等流量多孔管的多孔系数近似计算通用公式是克里斯琴森(Christiansen )公式:

x

N x N

m N m N F +-+--+++=

11)61

2111(2

(4-27)

式中:F ——多口系数; N ——管道上出水口数目;

m ——流量指数,层流m =1,光滑紊流层流m =1.75,完

全紊流m =2;

x ——进口端至第一个出水口的距离与孔口间距之比。

表4-4 滴灌管道多口系数F 值表

张国祥用积分作近似计算的方法,推求得全等距、等出水量多孔管的多孔系数近似公式,当总孔数N ≥3时为:

1

)48.0(11+++=

m N

N m F

(4-28)

在滴灌系统管网设计中,一般推荐采用勃拉休斯公式计算干、支、毛管的沿程水头损失。

4.3.3滴灌管路的能量坡度线

⑴毛管、支管的能量坡度线

毛管和支管中,由于滴头从毛管中滴水和毛管从支管中分水,流量随管长而减小。把沿管道长度离散分布的孔口,简化为连续分布,即视孔数无穷多,孔距为零,其能坡线是一条光滑的指数型曲线。可用下面无因次能坡线表示:

(4-29)

式中:x R ——水头损失比,

)/()(end in l in H H H H --;

x ——管道长度l (从管道入口算起)与管道总长度L 之

比;

m ——流量指数,层流m =1,光滑紊流层流m =1.75,完全紊流m =2;

l in H H -——管道长度l 处的水头损失;

end in H H -——管道末端的水头损失。

不同流态的无因次能坡线如图4-2所示。

1

)1(1+--=m x x R

图4-2 不同流态的无因次能坡线 绘制无因次能坡线的步骤是: ①求end in H H -;

②对不同的x 求相应的x R ;

③)()(end in x l in H H R H H -=-,求出)(l in H H -,绘出能坡曲线(如图4-2)。

有限孔数离散分布情况下的实际能量坡度线如图4—3所示。一般情况下,毛管和支管均为等距多孔出流管,在相邻二个孔之间的管段上,流量为常数;当管道内径也为常数时,段内水力比降是常数。因此,相邻孔间的能坡线为直线,而且因流量逐段减小,能坡线的斜率也越来越接近水平线。在每个孔口处,由于连接件和分流的影响,将产生局部损失。又因为分

流口尺寸相对于孔距S是很微小的,所以在能坡线上反映出来的是在每个孔口处有一个水头跌落。因为管内流速上游大干下游,而局部损失与流速水头成正比,因此孔口处的水头跌落,上游孔大于下游孔。

图4-3 有限孔数离散分布情况下的实际能量坡度线

如以各孔口实际能坡线的中点来表示该孔口的能坡线高程,并把各中点相连,可得一条有(N-1)个折点的折线,如图4—3中虚线所示,它是一条以孔口中点为折点的多段下凹折线。可用下面近似公式表示:

1)48

.01(1++-

-=m j N j

R

(4-30)

式中:j R ——水头损失比;

j ——自管道口算起的出流孔编号;

N ——管道上出流孔总数。

⑵干管能量坡度线

干管设计是一系列管流设计。当它在田间的布置确定后,就可以计算各段的流量。一般用勃拉休斯公式计算管道尺寸。公式(4-17)可改写为:

75

.475

.125.047.1d Q L H ν=??

(4-31)

式中:L H ??/为能量坡度。

从(4-24)式可以看出,当能量坡度已知时,可以根据给定的流量Q 计算管径d 。也表明,对某一给定流量,当变换能量坡度时,可以有无数个解。

滴灌系统设计(以茶叶为例)

茶叶滴灌系统设计 系统简介: 本设计灌区茶叶种植面积为500亩。首先确定滴灌系统的各个设计参数,继而选用某公司一次成型薄壁滴灌带,内径16mm,壁厚0.31mm。通过计算滴灌的灌水定额、灌水周期、一次灌水延续时间来确定滴灌的灌溉制度;通过水量平衡计算,确定当地水源是否够用。根据设计参数把整个灌区划分为4个轮灌组,进行管网系统的布置,推算各级管道的流量,进行管网水力计算,确定各级管道的直径、长度,并选择水泵型号为D185-67×9。最后设计首部枢纽,进行材料统计和概预算。 第一章基本资料 一、项目概况 项目位于某某市某某县,属贫困地区。项目区位于某某县府城镇的某某村南茶北移示范区,规划滴灌茶叶滴灌面积500亩。 本项目将引进先进的农业生物技术,与小型灌溉工程相结合,建设生态型灌溉工程。从生产技术手段和使用方式两方面对当地的农业生产进行改进,主要建设内容是小型农田生态灌溉工程的建设。 二、地形地质概况 某某省某某市地处中国中部的黄土高原,是中国水土流失较严重的地区,生态环境脆弱,植被土壤中有益微生物缺失,沙土化严重。

某某县位于某某市东北方向,面积1965hm2,东部由北向南与晋东南的沁源、屯留、长子和沁水接壤,西邻古县和浮山。境内山岭起伏,沟壑纵横,地形复杂。整个地势北高南低,东部山峰有安太山、盘秀山等,海拔在1400m以上,西部有大东沟梁、牛头山等,海拔在千米以上。省内第二大河、唯一的一条无污染河流沁河纵贯境内95km。南部沁河谷地,地势较低,有小块平川,海拔在800m左右。 三、作物种植 1、作物名称:茶叶。 2、间距:株距0.4m,行距0.4m,畦距1m。 3、灌溉方式:滴灌。 4、滴灌设计补充强度为4mm/d。 5、茶叶滴灌面积500亩,种植株距0.4m,两行为一畦,行距0.4m,畦与畦距离1m,3畦建一个大棚,棚与棚间距1m,大棚选用简易竹木材料,单棚尺寸为长0.25-0.3m,宽5m,占地0.22亩。选取距离高位蓄水池最远的大棚作为典型地块,此地高程900m。 四、气象资料 某某县位于典型的黄土高原残垣沟壑区,区内生态环境脆弱,年度降雨和年内分配极不均匀,十年九旱,当地农业抵御自然灾害的能力较低。 示范区茶园位于沁河东的谷地,地形东高西低。区内气候温

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

滴灌典型设计书

滴灌系统设计示例 按照兵团水利局、兵团节水办“关于召开兵团节水灌溉规划设计研讨会的通知”的要求,根据农八师几年来在大田作物膜下滴灌技术上的实践和研究,此次滴灌系统典型设计综合农八师的具体情况做如下简要介绍: 一、基本资料 (一)地形 农八师垦区地处天山北麓中段,古尔班通古特沙漠南缘。全垦区土地面积7529平方公里。垦区地势由东南向西北倾斜。垦区地形由南向北依次为天山山区、山前丘陵区、山前倾斜平原、洪水冲积平原、风成沙漠区。 (二)土壤 农八师土壤缺氮面积大,全氮含量低于1%的面积占78%,碱解氮低于60ppm的面积占76%。土壤普遍缺磷,含量低于10ppm的面积占77.5%。土壤含钾丰富,约在100ppm 以上。 土壤多系灰漠土、潮土、草甸土,土质多系砾质土、沙质土、粘质土等。根据农八师土壤普查结果,本设计取占范围较广的砂壤土。 (三)作物 全垦区有效灌溉面积266万亩,其中以棉花为主。棉花种植面积占总播种面积的46.5%。本设计示例选棉花。种植模式采用:一膜两管四行--宽窄行30×60cm,滴灌带间距90cm;一膜一管四行--(25+30+25)×60cm,滴灌带间距140cm。 1、滴灌工程设计参数的确定 根据农八师目前棉花种植模式和多年实践,确定如下设计参数。 典型滴灌系统设计基本资料

(四)水源 垦区水资源来源主要为地表水(库水、河水)和地下水。目前垦区滴灌节水工程水源以井水为主,单井流量为80立方米/小时,动水位埋深在40米左右。 (五)气象 垦区平均海拔300-500米左右,呈典型的温带大陆性气候,冬季长而严寒,夏季短而炎热。年平均气温7.5℃-8.2℃,日照2318-2732小时,无霜期147-191天,年降雨量180-270毫米,年蒸发量1000-1500毫米。蒸发强烈,降水稀少,气候十分干燥,光照充足,热资源丰富。 (六)动力 原有机井泵大多为250QJ80-60/3或250QJ80-40/2,需更换水泵及变压器。但原有高压电线不需更换。 二、设计内容 按照农八师多数条田的规划布置方式,采用东西长800米,南北宽450米的条田进行规划设计。种植作物为棉花,种植模式采用宽窄行60×30cm与60×(25+30+25)cm,一膜两管四行与一膜一管四行,滴灌带间距0.9米与1.4m。作物东西方向种植。耕层土壤为砂壤土。 1.管道系统

自动化智能滴灌系统设计方案

自动化智能滴灌控制系统设计方案 陕西颐信网络科技有限责任公司 西安天汇远通水利信息技术有限责任公司

目录 一. 系统概述............................................................................................................ - 3 - 二. 系统组成............................................................................................................ - 4 - 三. 通信网络............................................................................................................ - 5 - 四. 功能设计............................................................................................................ - 6 - 4.1. 监测中心级设计 ...................................................................................... - 6 - 4.2. 首部控制级设计 ...................................................................................... - 6 - 4.3.1. 设计原则 ....................................................................................... - 7 - 4.3.2. 主要功能 ....................................................................................... - 7 - 4.3.3. 硬件设计 ....................................................................................... - 8 - 4.3.4. 软件设计 ..................................................................................... - 10 - 4.3. 田间控制级设计 .................................................................................... - 13 - 4.3.1. 田间控制器主要功能 ................................................................. - 13 - 4.3.2. 田间控制器性能指标 ................................................................. - 14 - 4.3.3. 田间路由器节点主要功能 ......................................................... - 14 - 4.3.4. 田间路由器节点性能参数 ......................................................... - 14 - 4.3. 5. 供电方式 ..................................................................................... - 14 - 五. 系统特性.......................................................................................................... - 15 - 六. 设计研究意义.................................................................................................. - 16 -

滴灌工程设计示例

6.4滴灌工程设计示例 6.4.1基本情况 某基地种植葡萄面积118亩,过去采用大水漫灌方式进行灌溉,灌水定额大,水肥损失严重,为此拟采用先进的滴灌灌水方法。 该地块地势平坦,地形规整,葡萄南北向种植,株距0.8m 、行距2m 。地面以下1m 土层为壤土,土壤干容重14kN/m 3,田间持水率24%。 地块西边距离地边50m 处有水井一眼(具体见平面布置图),机井涌水量为32m 3/h ,静水位埋深60m ,动水位80m ,井口高程与地面齐平。机井水质据周边村庄引水工程检验结果分析,水质满足《农田灌溉水质标准》,但含砂量稍高,整体看来,可作为滴灌工程水源。 380V 三相电源已经引至水源处。 6.4.2滴灌系统参数的确定 (1)灌溉保证率不低于85% (2)灌溉水利用系数95% (3)设计土壤湿润比 不小于40%。 (4)设计作物耗水强度Ea=5.0mm/d (5)设计灌溉均匀度 不低于80% (6)设计湿润层深0.6m 6.4.3选择灌水器,确定毛管布置方式 1.选择灌水器 根据工程使用材料情况比较,本工程采用以色列某公司生产的压力补偿式滴灌管,产品性能如下:滴灌毛管外径16mm ,滴灌毛管进口压力0.1MPa ,滴头间距0.5m ,滴头流量q=2.75L/h ,水平最大铺设长度90m 。 2.确定毛管布置方式 因葡萄种植方向为南北向,并且成行成列,非常规整,因此,毛管布置采用每行葡萄铺设一条滴灌管,根据地块实际长度和产品的最大水平铺设长度确定毛管的长度为80m ,毛管直接铺设在葡萄根部附近。 3.计算湿润比 根据公式: 式中: ——每棵作物滴头数,个; ——滴头沿毛管上的间距,m ; ωβU C % 100/?=)(R P e P S S W S N ωρP N e S

滴灌设计流程

滴灌设计流程 滴灌系统设计步骤 一、 简要了解农田滴灌供水系统的分布及运行情况,配图。 (一)农田滴灌供水系统的分布: 1.水源的选位一般在地块的高处并在地块的中间。 特点:a. 压力均衡,滴水均匀。 b. 节省主干管材料。 c.系统运行时节省电费。d. 根据地块实际需要也有例外。 2.排水井的位置在地势低处。 3.干、分干、支(含辅管)、毛管四级依次成正交。 4.尽量使分干管在主干管两侧布置。支管在分干管两侧布置并力求对称。 5.毛管 铺设走向与农作物方向一致,所以支管(含辅管)与作物种植方向垂直。分干管布设方向 与作物种植方向平行。 6.在平坡地形条件下,毛管与支(辅)管相互垂直,并在支(辅)管两侧对称布设。在均匀坡地地形条件下,毛管在在支(辅)管两侧对称布设并依据毛管水力物性,逆坡向短,顺坡向长。当逆坡向水力物性不佳时,则仅利用顺坡向铺设。 7.支管的实际铺设长 度决定着分干管的数,铺设长度长,分干管列数减少,对降 低管网成本造价起明显作用。 8.毛管的实际铺设长度决定着支管的列数,毛管长度长,支管间距大,支管的列数 就减少。对降低管网成本造价起一定作用。 9.管网系统中,干管,分干管采用PVC —U 管,应埋设在冻土层以下。 10.分干管布设尽量与道路,沟渠同向,以便运输,安装维护。 11.干管也应与道路,林带,电力线路平行布置,尽量少穿越障碍物,少转折。 (二)农田滴灌供水系统的一些数据及计算: 1.地面PE 管铺设长度(支管+辅管系统) ?90PE 支管≤240米?75PE 支管≤190米?63PE 支管≤120米 2.一膜单管及一膜双管的毛管间距。 3.毛管所需的流量:

滴灌典型设计实例(水科院)-葛岩

滴灌工程设计培训讲义 辽宁省水利水电科学研究院 2013年1月

1 滴灌概述 滴灌是通过安装在毛管上的滴头、孔口或滴灌带等灌水器将有压水和养分均匀地滴入作物根区附近土壤中的灌水形式。 1.1滴灌主要技术特点 (1)省水:滴灌是一种可控制的局部灌溉。滴灌系统又采用管道输水,灌水均匀,减少了渗漏和蒸发损失。在作物生长期内,比地面灌省水40%~60%。 (2)省肥:肥料可做到适时、适量随水滴灌到作物根系部位,易被作物根系吸收,且肥料无挥发、无淋失,提高肥料利用率30%以上。 (3)省农药:水在管道中封闭输送,避免了水对病虫害的传播。另外,地表无积水,田间地面湿度小,不利于滋生病菌和虫害。因而除草剂、杀虫剂用量明显减少,可省农药10%~20%。 (4)省地:由于田间全部采用管道输水,地面无常规灌溉时需要的农渠、中心渠、毛渠及埂子,可节省土地5%~7%。 (5)省工和节能:地面灌时,打毛渠、挖土堵口,劳动强度大。采用滴灌后,只观测仪表、操作阀门,劳动强度轻,田间人工作业(包括浇水、锄草、施肥、修渠、平埂、病害治理等)和中耕机械作业等大大减少,人工管理定额大幅度提高。 (6)局部压盐碱:滴灌向土壤中不断补充净水,农膜阻止了土壤中水分的蒸发,将土壤中部分水分提升到地表所形成的湿润区内,有一个脱盐区,(利于幼苗成活及作物生长)和集盐区。 (7)有较强的抗灾能力:作物从出苗起,得到适时、适量的水和养分供给,生长健壮,抵抗力强。同时能够及时调节小气候,具有一定抗御干旱和干热风的能力。 (8)增产:由于科学调控水肥,水肥耦合效应好,土壤疏松,通透性好,充分利用水、肥、土、光、热、气资源,使作物生长条件优越,作物普遍增产15%~50%。各种作物均进行缩行增株,提高种植密度。以玉米为例:采用常规灌,播种密度4000-4500 株/亩,采用滴灌,播种密度5000-6000 株/亩。 (9)品质、质量提高:滴灌营造了良好的生长和环境条件,因而,不但产量高,

太阳能自动灌溉系统设计(课程汇报)

类型:课程设计 名称:太阳能自动灌溉系统设计关键词:光伏发电原理;自动灌溉系统原理;自动跟踪系统原理

第一章前言 1.1论文的研究背景及意义 1.1.1 选题背景 全球普遍以不可再生的传统资源(如煤和石油)为主,以可再生资源(如风能和太阳能)为辅。随着不可再生资源的储能量越来越少,不可无限开采,开采的越来越艰难,同时在传统资源开采导致环境问题越来越严重的今天。于是,加大清洁能源的利用和使用是时事所需,已得到全球各国的共识。能源与国家和人民的生活息息相关,能源的短缺严重的影响国家科技经济和人民的日常生活和工作生产。 我国水资源的总量不够充足,人均水平更是低于世界平均水平,总量位居世界前十但是人均占有量仅2000多㎡,全球人均占有量是我国占有量的4倍。随着人民的生活水平的提高,导致绿地用水占城市用水的比例将越来越大。大力实施节约用水的绿地浇水方式有利于节约水资源的同时也可以绿化环境,而加大力度的解决城市绿地灌溉的问题是迫在眉睫的。 光伏发电系统的工作原理是利用太阳能电池组件(一种类似于晶体二极管的半导体器件)界面产生的光生伏打效应(物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的部分电荷分布状态发生变化而产生电动势和电流的一种效应)而将光能直接转变为电能,产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求情况下直接给负载供电,如果日照不足或者夜间则由蓄电池在控制器的控制下给直流负载供电,对于含交流负载的光伏系统而言,还需要增加逆变器将直流电变成交流电。 1.1.2研究意义 在传统的绿地灌溉中,大多采用人工浇灌的方式。这种灌溉方式不仅灌溉效率低,而且长期灌溉导致地表积盐会使植被生理受到很大的损害,同时也浪费了大量的水资源,据统计采用人工漫灌会造成80%的水资源浪费。近年来,很多城市采用了管网供水或者喷灌,有些较高级的场所使用滴灌,但是这些灌溉方式仍然会造成40%-60%的水资源浪费,这种方式虽然在某种程度上节约了一些水资源,但是仍然没有摆脱人工操作灌溉的方式。随着科技的进步和发展,越来越多的灌溉方式从传统的方式向自动灌溉的方式进行转变,自动灌溉设备的供电方式仍然依赖市网提供的电能,尤其是在夏季会为许多发达城市的市网供电加重负荷且有些灌溉区域根本无法采用市网供电。设计一款稳定、可靠、正常自动运转的自动灌溉装置已经成为农业和城市绿色化发展的重点需要解决的问题。

滴灌系统设计

滴灌系统设计

3.2滴灌系统 3.2.1项目基本资料调查 灌区面积((hm2)、作物、土壤(类型、容重、土层厚度)、作物种植间距(大棚长、宽,垄宽、株距、行距、垄间沟宽、深等)、水源(m3、m3/s、m3s-1/万亩)、降雨、气温、蒸发、风向风速、日照、动力等 3.2.2初定设计参数 1、系统需流量Qs(m3/h) 作物耗水强度E a(mm/d):参考表-2 设计供水强度Ia(mm/d)=E a-P0-S;P0有效降雨强度、S地下水补给量。 也可参考下表-12选定I a。 表-12 设计耗水强度参考值(mm/d) 作物滴灌微喷灌作物滴灌微喷灌葡萄、树、瓜类3~7 4~8 蔬菜(露 4~7 5~8 地) 粮、棉、油等植物4~7 ——冷季型草——5~8 蔬菜(保护地)2~4 ——暖季型草——3~5 注:干旱地区宜取上限值,对于在灌溉季节敞开棚膜的保护地,应按露地选取设计耗水强度 灌溉面积A(hm2):图上量取 日供水小时数t d(h/d):12~22 灌溉水利用系数η:不低于0.9 3.2.3初定系统毛管

依据作物种植株距、行距初定系统毛管型号。如: 3.2.4土壤湿润比P 1)沿毛管灌水器间距较小 参数: 一棵作物所占有的灌水器数目n(个) 滴头间距S e(m):毛管参数 湿润带宽度S w(m):依据表-13湿润比范围反推,再根据设计量取选定。 作物平均行距S r(m):毛管间距/毛管间作物行数 作物株距S t(m):设计取值 一棵作物所占有的灌水器数目n(个):该组的灌水器数目/ 一组作物的棵数。 P=n×S e×S w/(S r×S t) 2)沿毛管灌水器间距较大 参数: 滴头间距S e(m):毛管参数 毛管间距S L(m):毛管参数 湿润带直径D w(m):依据表-13湿润比范围反推,再根据设计量取选定。 P=0.785×D w2/(S L S e)×100%

自动化灌溉设计方案

目录 自动化灌溉与信息化管理系统方案 (2) 1、现场智能感知平台: (4) 1.1、井房首部设备智能监控系统 (5) 1.2、田间无线灌溉控制系统 (7) 1.3.无线土壤墒情监测系统 (10) 1.4.综合智能气象监测系统 (11) 2、无线网络传输平台 (14) 3、数据管理平台 (15) 4、应用平台(监控中心及移动管理控制端) (17) 5、主要技术参数 (20)

自动化灌溉与信息化管理系统方案 自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。 该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。 系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵

果园滴灌工程规划设计说明

果园滴灌工程规划设 引言 联合国环境与发展大会通过的《21世纪议程》强调:“水是一种有限的资源,不仅为维持地球上的一切生命所必需,而且对一切社会经济部门都具有生死攸关的重要意义”。随着世界性水资源、能源的日趋紧张,采用节水、节能的灌水方法已成为全世界灌溉技术发展的总趋势,推广节水灌溉也已成为世界各国为缓解水资源危机和实现农业现代化的必然选择。 摘要 水资源不足是制约我国经济、社会、生态可持续发张的主要因素,随着我国经济的持续稳定发张和自动化的加快,我国经济社会发展和生态建设所面临的供水危机将越来越严重,特别是遍原山区,农田果园、灌溉的建设供水问题,将会面临严峻的挑战。解决这些问题和迎接挑战迫切需,要偏远山区,农田,果园灌溉的建设供水理论和技术的创新。因此某果园灌溉提出以高效节水滴灌技术与当地水管理技术相结合,设计为滴灌灌溉。根据农田,果园灌水量,灌水周期,喷头布置形式以及滴灌制度等,确定了滴灌管道的水力计算设计,实现和达到农田,果园灌溉建设自动化节水灌溉的目的,并形成了良好的合理科学,才能真正实现和节水灌溉的目的。 为了解决水资源危机的问题,要从开源与节流两方面入手,一方面抓紧跨流域调水的规划设计工程,从根本上改变水资源紧缺的局面;而

另一方面要在节流上下功夫,且我国各级渠道的输配水和田间灌水过程中渗漏损失掉了,其数量惊人,从而导致农业减产,并恶化灌区生态环境。长期以来,我国自然资源,特别是农业水资源无偿使用,以造成水资源严重浪费。由于灌溉技术和管理水平落后,灌溉设施老化失修,为加快推进节水农业,农业持续发展为基础。节水灌溉技术的实施,对实现我国水资源可持续利用,保障我国经济社会可持续发展,具有十分重要的意义。 一.基本资料 项目区位西北地区某一果园,为了增产增效,节约灌溉用水,拟改变原来大水漫灌的灌水方式,采用先进的滴灌技术进行灌溉, 灌区面积约为194亩,(194×667平方米)地形平坦,土质为壤土,土层厚度为1、5米,1、0米土层平均干容重1、4cm g/3田间持水率(占土体干土中)为25%,盛掕期苹果树,株距,行距为3×3米,种植方向为东西,经田间试验该地苹果树最大耗水量为5mm/d该地区多年平均降雨量250mm,多年平均蒸发量1500mm果园南边有一水井,出水量为50h m/3动水位为20米。 (一)、地形地貌 某西北地区某一苹果园,南北宽100米,东西长324米,灌区面积约为194亩,约为(194×667平方米),果园内地势平坦。(二).气象条件 某西北地区属温带半干旱地区气候,温差大,夏季炎热,冬季干燥而寒冷且冬季较长,年降水少,该地区多年平均降雨量为250mm,大致

滴灌典型设计

滴灌典型设计 1、工程概况 一二二团场位于准噶尔盆地南缘,东经85°27′~85°41′,北纬44°37′~44°48′。海拔350~370m,地势由东向西北倾斜,南北坡降一般在 1.5‰,东西坡降一般在1‰。境内有两条南北走向的自然沟(古河床),是该地区土壤形成、地下水蕴藏和自然植被滋生的摇篮,并造成土壤、水源等农业资源的一定的差异。2002年122团计划实施滴灌面积20000亩,分布在全团九个连队,其中1连1800亩,23连200亩,5连4000亩,18连600亩,12连3600亩,2连4500亩,4连2400亩,3连2400亩,17连1000亩。详细分布情况见附图。 1.1土地利用情况 亩,六十年代初期最大播种到18万亩,现耕地为14.9万亩。近几年因水限制,不断压缩面积,每年播种面积10~11万亩。荒地(含撩荒三年以上)5.8万亩。 1.2土壤概况 土壤质地以壤质为主。在24.4万亩可耕地中,中壤占总面积的22.7%;轻壤占总面积的20.6%;砂壤占总面积的18.3%;重壤占总面积的3.3%。土壤盐渍化面积占总面积的20.8%,其中耕地中盐渍化面积占耕 地面积的18.4%。 1.3水源 122团水源主要为水库水和地下水。此次滴灌节水工程水源为水库水。 2、基本资料

典型设计选择12连61、62号地,控制面积1109亩,土壤类型为壤土,种植作物为棉花,种植模式采用:一膜一管四行--(10+66+10)×66cm ,滴灌带间距152cm ,为机采棉。由于122团所选地块均为标准条田,规划面积600亩。参照团场意见两块地一个系统,实播面积不大于1200亩。典型设计选择地块具有典型性,可以代表其它地块。 2.1滴灌工程设计参数的确定 2.1.1设计耗水强度(Ea ) 设计耗水强度采用设计年灌溉季节月平均耗水强度峰值,并由当地试验资料确定。由于122团无实测资料,所以设计耗水强度采用经验值。粮、棉、油等大田作物经验值为4~6mm/d ,考虑往年滴灌系统设计经验选取值及运行情况和节水目的,取经验值下限Ea=4 mm/d 。 2.1.2土壤设计湿润比(P ) 滴灌的土壤设计湿润比,是指被湿润土体占计划湿润层总土体的百分比。粮、棉、油等大田作物经验值为60%~90%,根据作物的需要、工程的重要性及当地自然条件等,取经验值P=65%。 2.1.3土壤湿润层深度(Z ) 粮、棉、油等大田作物经验值为0.3~0.6m ,设计取值Z=0.5m 。 2.1.4适宜的土壤含水率上下限及土壤容重 设计地块属中壤土,其容重在1.40~1.55g/cm 3,土壤容重取平均值γ=1.48g/cm 3。适宜的土壤含水率上限在22%~28%之间,设计取θmax =22%。适宜的土壤含水率下限取θmin =15%。 2.1.5滴灌水利用系数(η) 滴灌水利用系数一般采用0.9~0.95,设计采用η=0.90。 2.1.6设计灌水定额(m ) 设计灌水定额:可根据以上试验资料按下式计算确定。 m=0.1×γ×z ×P ×(θmax -θmin )/η m=0.1×1.48×0.45×60×7/0.95=37.41(mm) 设计取m=37.5mm 。 设计参数见表2.1 表2.1典型滴灌系统设计参数 3 、设计内容 3.1 系统水量平衡计算 122团河水滴灌水源供水流量稳定且无调蓄作用,用下式确定滴灌面积: A=(η×Q ×t)/10×I a I a =E a -P 0 式中:A —可灌面积,hm 2;

自动化智能滴灌系统设计方案

(此文档为Word格式,下载后可以任意编辑修改!)(文件备案编号:) 自动化智能滴灌系统 设计方案 工程名称: 编制单位: 编制人: 审核人: 批准人: 编制日期:年月日

目录 一. 系统概述............................................................................................................ - 3 - 二. 系统组成............................................................................................................ - 4 - 三. 通信网络............................................................................................................ - 5 - 四. 功能设计............................................................................................................ - 6 - 4.1. 监测中心级设计 ...................................................................................... - 6 - 4.2. 首部控制级设计 ...................................................................................... - 6 - 4.3.1. 设计原则 ....................................................................................... - 7 - 4.3.2. 主要功能 ....................................................................................... - 7 - 4.3.3. 硬件设计 ....................................................................................... - 8 - 4.3.4. 软件设计 ..................................................................................... - 10 - 4.3. 田间控制级设计 .................................................................................... - 13 - 4.3.1. 田间控制器主要功能 ................................................................. - 13 - 4.3.2. 田间控制器性能指标 ................................................................. - 14 - 4.3.3. 田间路由器节点主要功能 ......................................................... - 14 - 4.3.4. 田间路由器节点性能参数 ......................................................... - 14 - 4.3. 5. 供电方式 ..................................................................................... - 14 - 五. 系统特性.......................................................................................................... - 15 - 六. 设计研究意义.................................................................................................. - 16 -

水利灌溉典型工程设计方案

附件: 典型工程设计 二〇一七年四月

典型工程设计 1.1 典型设计说明 根据现有农田改造与新增农田灌溉不同、水源类型与单井出水量不同、耕地地形条件不同,选择不同的典型设计。地下水滴灌典型设计,选择坡耕地与平原耕地两种耕地类型和单井出水量及控制灌溉面积不同的四个组合类型。喷灌选择单机控制面积300亩、500亩两种控制灌溉面积和小型扬水站地表水水源、地下水水源两种水源类型组合的四个类型。畦田地面灌溉选择一种类型。实施方案共选择了滴灌、喷灌灌溉两种节水灌溉方式下的8个典型设计。8个典型区的主要指标详见表1.1-1。 表1.1-1 内蒙古“四个千万亩”典型工程设计类型 耕地类型 水源类型 节水灌溉方 式 典型类型 典型工程设计类型 类型 类型 方式 编号 单井出水量或单机供水量 (m 3 /h ) 单井或单机控制面积(亩) 坡耕地 地下水 滴灌 1 3 2 181 平原耕地 2 32 151 3 50 220 4 80 320 地下水 喷灌 5 (63+63)120 500 6 80 300 地表水 7 120 500 8 70 300 1.2 滴灌典型设计 1. 2.1水源工程设计 滴灌工程水源工程设计包括水源井设计和井房设计。 (1)更新水源井设计 更新机井依据《机井技术规范》(GB/T50625-2010)并参考周边机井的设计进行。 新打机井为混凝土管井和钢管井,混凝土管井主要分布在赤峰市和通辽市,新打水源井的原因是更新和重新布局调整。设计混凝土管井的内径为Φ300mm ,壁厚50mm ,下管深度为60m ,其中沉淀管5m ,滤水管40m ,井壁实管15m 。根据项目区水文地质情况,单井出水量分别为50 m 3/h 和80m 3/h 。

光伏水泵系统设计

摘要 光伏水泵系统是光伏技术的主要应用之一。光伏水泵可广泛应用于众多领域,偏远地区用水、灌溉、蓄电等。它具有无污染、少维修、不消耗其他能源等优点,得到人们的充分肯定。本论文主要的研究内容和结论如下: (1)讲述光伏水泵的原理,分析了泵站设计的一般要求和技术要求。 (2)泵站建设的条件分析和性能参数如扬程、流量的设计。 (3)光伏水泵的设计方案,包括日照数据处理、光伏组件的特性分析计算、电流电压的大小确定等。 在设计一个光伏水泵系统时有两个很重要的原则,一是选用最合适的系统配件,二是系统配件间达到最佳匹配。 【关键词】光伏水泵;性能参数;扬程

目录 第1章绪论 (1) 第2章光伏水泵简介 (2) 2.1光伏水泵的概述 (2) 2.2光伏水泵的背景 (2) 2.3光伏水泵的意义 (2) 第3章水泵系统 (4) 3.1系统组成及工作原理 (4) 3.1.2变频器主电路及硬件构成 (4) 3.1.3 DC/DC升压电路简述 (5) 3.2 光伏水泵最大功率点跟踪(MPPT)设计 (6) 3.3 系统的保护功能设计 (7) 3.4光伏水泵系统的几种结构形式 (8) 第4章光伏水泵系统设计 (9) 4.1 需水量计算 (9) 4.2 选择倾角并修正日照数据 (10) 4.3 数据处理 (10) 4.4 水泵的选择 (12) 4.5选择兼容的电动机 (13) 4.6 求出子系统的负载曲线 (13) 4.7 光伏系统的规格 (14) 4.8 电压大小 (14) 4.9 电流大小 (15) 参考文献 (16)

Abstract Photovoltaic photovoltaic water pump is one of the main applications of. Photovoltaic water pump is widely applied in many areas, remote areas, irrigation water, storage etc.. It has the advantages of no pollution, less repair, do not consume other energy a bit, have been fully affirmed. In this paper, the main research contents and conclusions are as follows: (1) Tells the story of photovoltaic water pump are analyzed the principle, general design requirements and technical requirements. (2) Pumping station construction condition analysis and parameters head, flow design. (3) The photovoltaic pump design, including the data processing, photovoltaic modules performance analysis, current and voltage size determination. In the design of a photovoltaic water pump system has two important principles, one is the most suitable system accessories choice, one is the matching system accessories. 【key words】Photovoltaic pump;Performance parameters;Lift

滴灌工程施工工程施工设计方案

滴灌系统一般由水源、首部枢纽;输水管道和滴头组成。 滴灌系统简图(3张) (1)水源:各种符合农田灌溉水质要求的水源,只要含沙量较小及杂质较少,均可用于滴灌,含沙量较大时,则应采用沉淀等方法处理。 (2)首部控制枢纽:首部控制枢纽一般包括水泵、动力机、过滤器、化肥罐、调节装置等。化肥罐用于灌水施肥施药,常用的化肥罐有压差式、开敞式、文丘里注入式和注射泵等四种形式,肥料罐一般安装在过滤器之前,以防造成堵塞。 施工组织设计 1、施工组织程序、施工工艺、工期、人力机械等依据当地 具体情况进行合理分工,合理布置的整体原则。 2、施工技术措施总原则 1、确保工期的原则 所有施工技术措施的制定均以各单位工程、分部工程的合同控制工期和合同总工期为基础,科学合理安排施工程序,抓好项目接口的工序衔接,采用先进合理、成龙配套的机构化施工技术方案,确保工期目标的实现。 2、安全第一原则 认真贯彻“安全第一、预防为主”的安全工作方针,施工方案均按照技术可靠、确保安全的原则制定,对管道开挖、基地人工平整、管顶上部回填、机械回填、蓄水池等重点安全施工项目均采取切实、有效的技术方案及措施,并严格实

施,在确保安全的前提下方可进行各项工作的施工,确保安全目标的实现。 3、技术优良的原则 严格按照技术规范的设计施工图施工,始终贯彻我公司“科学管理、精益求精、信守合同、追求更好”的质量方针和按照ISO9002质量保证体系组织施工,所采用的施工技术措施均要符合现行施工规程、规范和技术标准的要求,确保质量目标的实现。 4、高效施工的原则 积极采用先进的施工技术,提高机械化施工水平,组织平行流水作业,平行交叉作业,择优选用最佳施工方案、加快施工进度,努力提高技术经济效益。 5、布置经济合理的原则 施工总布置设计充分利用当地自然条件及已有的设施,因地制宜,在满足施工要求的条件下,节约用地合理布局。 6、以“均衡生产、文明施工、科学管理”为宗旨指导工作建设,制定措施要根据当地实际情况,贯彻执行各顶劳动保护和安全文明施工、环境保护法律、法规和规程,发送劳动条件,保障作业人员的健康和安全,确保环保及文明施工目标。 7、科学配置的原则 统筹兼顾,合理计划、安排,科学组织,做好人力、物

最新微喷、滴灌、喷灌典型设计

微喷、滴灌、喷灌典 型设计

2.2杂果树滴灌典型设计 根据项目区分布,项目区共完成杂果滴灌面积2053.3亩,由10眼机井控制,各井呈独立灌溉系统。现以现以官村JJ26#机井为例,设计单井控制面积约214亩,典型设计如下: (1)工作制度的确定 ①设计参数的选择 计划湿润层深度 h=60cm 适宜含水量上限 βmax=85%θ田 适宜含水量下限 βmin=65%θ田 田间持水量(重量比)θ田=24% 灌溉水利用系数 η=0.90 作物日耗水强度 Ep=4.0mm/d 土壤容重 γ=1.4g/cm 3 湿润比 P=0.6 2)设计灌水定额 m=1000γh θ田(βmax-βmin)P/ η =1000×1.4×0.6×24%×(85%-65%)×0.6/0.90 =26.88(mm )=17.92(m 3/亩) 3)设计灌水周期 T=η?Ep m =0.49 .088.26?=6.04(d) 取6天。

为了减少系统流量,降低工程投资,本系统采用轮灌工作制度。 (2)系统的规划布置 ①系统的规划 本系统技术方案采用水泵经过加压出流后,由UPVC干管、分干管输水,毛管选用Φ16PE-2升-0.33m滴灌管道。过滤选用120目4″组合式过滤器,施肥选用100L施肥灌。 ②管网布置 管网中管道总体为树状管网,按照垂直向原则布置。 a.毛管布置 按照每行果树布置1条毛管,灌水器间距为0.33m间距,其额定压力为0.1-0.15Mpa,流量为2L/h。毛管布置平行于等高线的果树行方向。 b.干、支管布置 干管按照从水源位置开始平行于等高线方向,分干管按照垂直于干管方向,即垂直于果树行的方向布置,毛管与支管垂直。 按照区域地形条件,共布置分干管3条,支管9条,单个控制区控制面积为23.77亩。 c. 控制、调节和保护设备布置 在干管的进口和每条分干管进口处各设置闸阀一个,以调节干、分干管的水量和压力;为了防止供水时造成气堵,放水时造成真空,在干管上端需安装进、排气阀。

相关主题
文本预览
相关文档 最新文档