当前位置:文档之家› 数值计算引论第4章答案

数值计算引论第4章答案

数值计算引论第4章答案
数值计算引论第4章答案

思考题:

1. (b) 错 (Newton Cotes 点多了就不是好条件了) (c) 错 (d)错

2. 不会,需要用复化公式

习题:

2. 确定下列数值积分公式中的参数,使它具有尽可能高的代数精度

(1) ()()()()1010h

h f x dx A f h A f A f h ??≈?++∫

解 令 ()1f x = ()2h h f x dx h ?=∫

故()()()10110102A f h A f A f h A A A h ???++=++= 令()f x x = ()0h

h f x dx ?=∫

故 ()()()1011100A f h A f A f h A h A h ???++=?+=

令()2f x x = ()323

h

h f x dx h ?=∫ 故 ()()()22310111203

A f h A f A f h A h A h h ???++=?+=

联立上面三式得 11014 33

A A h A h ?=== (2) 同理:11028 33

A A h A h ?=== (3) ()()()()1

1211233f x dx f f x f x ?≈?++????∫

解 令 ()1f x = ()112f x dx ?=∫

故 ()12332++= 令()f x x = ()1

10f x dx ?=∫

故 121230x x ?++=

令()2

f x x = ()1123f x dx ?=∫ 故 2212213x x ++=

联立上面二式得

115x ±= 2315

x =?

(4) ()()()()()1234b a f x dx f a f b f a f b ωωωω′′≈+++∫ 解 令 ()1f x = ()b

a f x dx

b a =?∫ 故12b a ωω+=?

令()f x x =

()()2212b a f x dx b a =?∫ 故 ()22123412

a b b a ωωωω+++=

? 令()2f x x = ()()3313

b a f x dx b a =?∫ 故 ()223312341223

a b a b b a ωωωω+++=? 令()3f x x = ()()4414

b a f x dx b a =?∫ 故 ()33224412341334a b a b b a ωωωω+++=? 联立上面四式得

()()()122122

233333224441110021112233314b a b a a b a b a b b a a b a b b a ωωωω?????????????????????????=????????????????????????

或者能解出具体的值也可以。

3. 略

6. 证明

(

)((

)1

1158059f x dx f f f ???≈++??∫ 解 令 ()1f x = ()112f x dx ?=∫

故((

)[]115805585299

f f f ??++=++=?? 令()f x x =

()110f x dx ?=∫ 故

(

1580509

?×+×+=? 令()2f x x = ()1123

f x dx ?=∫ 故

(

2212580593??×+×+×=????

令()3f x x = ()1

10f x dx ?=∫

故 (331580509??×+×+×=???? 令()4f x x = ()1125f x dx ?=∫

故 (4412580595??×+×+×=???? 令()5f x x = ()110f x dx ?=∫

故 (551580509??×+×+×=???? 令()6f x x = ()1127

f x dx ?=∫

故 (661258050.2497??×+×+×=≠?

???

得证

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

数值计算课后答案

习 题 四 解 答 1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。 设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为 1 01 1a b a b e -?+=???+=? 解之得11 1a e b -?=-?=? 则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 (1)(2) (2)011 ()()()()() (1)! 1()()2!1 ()()()2!1 (0)(1)((0,1))2n r x f x p x f x n f x f x x x x e x x ξξπξπξξ+-=-=+= =--=--∈ 所以 01 0101 ()max max (1) 2111248x r x e x x e ξξ-≤≤≤≤-≤-=??=。 2选用合适的三次插值多项式来近似计算f 和f 。 解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 23012323 012323 01232301 23(0.1)(0.1)(0.1)0.9950.30.30.30.995 0.70.70.70.7651.1 1.1 1.10.454 a a a a a a a a a a a a a a a a ?+?-+?-+?-=?+?+?+?=??+?+?+?=??+?+?+?=?

即 012301230123 123012312301230.10.010.0010.9950.10.010.0010.9950.30.090.0270.9950.40.080.02800.70.490.3430.7650.80.480.344 1.761.1 1.21 1.3310.454a a a a a a a a a a a a a a a a a a a a a a a a a a -+-=-+-=??+++=++=??? +++=++=??+++=?12301231232330.40.720.9880.3110.10.010.0010.9950.40.080.02800.320.288 1.760.384 3.831a a a a a a a a a a a a a ??????++=-? -+-=??++=??? +=? ?-=-? 解之得 01 230.416.293.489.98 a a a a =??=-?? =-??=? 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。 所以 2323 (0.2)0.41 6.290.2 3.480.29.980.20.91 (0.8)0.41 6.290.8 3.480.89.980.8 1.74f f =-?-?+?=-=-?-?+?=- 3、设(0,1,2,,)i x i n =L 是 n+1个互异节点,证明: (1)0()(0,1,2,,)n k k i i i x l x x k n ===∑L ; (2)0 ()()0(0,1,2,,)n k i i i x x l x k n =-==∑L 。 证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()n n i i i p x l x y ==∑, 而y i =x i k , 所以0 ()()()n n k n i i i i i i p x l x y l x x ====∑∑ 同时,插值余项 (1)(1)11 ()()()()()()0(1)!(1)! n k n k n r x x p x f x x x n n ξξππ++=-= ==++ 所以0 ()n k k i i i l x x x ==∑ 结论得证。 (2)取函数()(),0,1,2,,k f x x t k n =-=L 对此函数取节点(0,1,2,,)i x i n =L ,则对应的插值多项式为

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析参考答案(第二章)doc资料

数值分析参考答案(第 二章)

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算ln0.54的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.93147(0.6) 5.10826(0.5)x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5) x x x x x x =-?--+---?--2(0.54)0.615319840.615320L ∴=-≈- 3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,( )606018010800 x h ππ ===?=

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值计算第一二章答案

第一章数值计算中的误差 习题一 1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。 1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5?310. 答案:4,1,3,6,4,1. 1.2 设100>* x >10,x 是* x 的有五位有效数字的的近似数,求x 的绝对误差限。 答案:当10

数值分析丛书

作者:李庆扬,王能超,易大义编 出版社:清华大学出版社 出版时间:2008年12月 本书是为理工科大学各专业普遍开设 的“数值分析”课程编写的教材。其内容包 括插值与逼近,数值微分与数值积分,非 线性方程与线性方程组的数值解法,矩阵 的特征值与特征向量计算,常微分方程数 值解法。每章附有习题并在书末给出了部 分答案,每章还附有复习与思考题和计算 实习题。全书阐述严谨,脉络分明,深入 浅出,便于教学。 本书也可作为理工科大学各专业研究 生学位课程的教材,并可供从事科学计算 的科技工作者参考。 作者:徐萃薇,孙绳武编著 出版社:高等教育出版社 本书为普通高等教育“十一五”国家 级规划教材。本书从服务于多层次、多 专业、多学科的教学需要出发,在选材 上考虑普适性,涉及现代数字电子计算 机上适用的各类数学问题的数值解法以 及必要的基础理论,在材料组织安排上 给讲授者根据教学要求和学生情况适当 剪裁的自由,一些内容还可作为阅读材 料。 新版全书经过整理、润色,多处内容有 所修改,乃至重写。考虑到代数计算在 应用中所占份额较大,是比较活跃的领 域,六至十章改动较大;新增共轭斜量 法、预善共轭斜量法、拟Newton法等;改进了例题设置,增加数量,加强例题间联系;新 增习题参考答案;参考文献收集了国内外内容结构与本书相近的、有影响的、包括新近面世 的一些书籍,并按大学生教材和研究生教材或专著分列,可供读者加深理解和进一步提高使 用。有些对研究工作亦不无裨益。 本书算法描述不拘一格,或用自然语言,或用某种形式语言(以描述某些细节),便于理解, 也便于编程。本书可作为工科非计算数学专业本科生学习“计算方法”课程的教材。

数值计算方法答案

数值计算方法习题一(2) 习题二(6) 习题三(15) 习题四(29) 习题五(37) 习题六(62) 习题七(70) 2009.9,9

习题一 1.设x >0相对误差为2%4x 的相对误差。 解:由自变量的误差对函数值引起误差的公式: (())(())'()()()() f x x f x f x x f x f x δδ?= ≈得 (1)()f x = 11 ()()*2%1% 22x x δδδ≈ ===; (2)4 ()f x x =时 44 4 ()()'()4()4*2%8%x x x x x x δδδ≈ === 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。 (1)12.1x =;(2)12.10x =;(3)12.100x =。 解:由教材9P 关于1212.m n x a a a bb b =±型数的有效数字的结论,易得上面三个数的有效 数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352) 哪个较精确? 解:(1)31.97+2.456+0.1352 ≈2 1 ((0.3197100.245610)0.1352)fl fl ?+?+ =2 (0.3443100.1352)fl ?+ =0.3457210? (2)31.97+(2.456+0.1352) 2 1 (0.319710(0.245610))fl fl ≈?+? = 21 (0.3197100.259110)fl ?+? =0.34562 10? 易见31.97+2.456+0.1352=0.3456122 10?,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?

《徐翠微计算方法引论》

第二章 插值法 知识点:拉格朗日插值法,牛顿插值法,余项,分段插值。 实际问题中,时常不能给出f (x )的解析表达式或f (x )解析表达式过于复杂而难于计算,能采集的只是一些f (x )的离散点值{xi,f(xi)}(i=0,1,2,…n )。因之,考虑近似方法成为自然之选。 定义:设f (x )为定义在区间[a ,b]上的函数,x0,x1,…,xn 为[a ,b]上的互异点,yi=f (xi )。若存在一个简单函数?(x ),满足 (插值条件)?(xi )=f (xi ),i=0,1,…,n 。 则称 ?(x )为f (x )插值函数,f (x )为被插函数,点x0,x1,…,xn 为插值节点,点{xi,f(xi)},i=0,1,2,…n 为插值点。 于是计算f (x )的问题就转换为计算 ?(x )。 构造插值函数需要解决:插值函数是否存在唯一;插值函数如何构造(L 插值);插值函数与被插函数的误差估计和收敛性。 对插值函数 ?(x )类型有多种不同的选择,代数多项式常被选作插值函数。 P23(2.18)和(2.19)指出,存在唯一的满足插值条件的n 次插值多项式p n (x )。但是需要计算范德蒙行列式,构造插值多项式工作量过大,简单表达式不易得到,实际中不采用这类方法。 插值法是一种古老的数学方法,拉格朗日(Lagrange )、牛顿(Newton )等分别给出了不同的解决方法。 拉格朗日插值 拉格朗日(Lagrange )插值的基本思想:把插值多项式p n (x )的构造问题转化为n+1个插值基函数l i (x)(i=0,1,…,n)的构造。 (1)线性插值 ①构造插值函数 已知函数y =f (x )的两个插值点(x 0,y 0),(x 1,y 1),构造多项式y =p 1(x ),使p 1(x 0)=y 0,p 1(x 1)=y 1。 p n (x )≈f (x )

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值计算课后答案

习 题 三 解 答 1、用高斯消元法解下列方程组。 (1)1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 解:?4②+(-)①2,1 2 ?③+(-)①消去第二、三个方程的1x ,得: 1232323231425313222 x x x x x x x ? ?-+=? -=???-=?④⑤⑥ 再由5 2)4 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 1232332314272184x x x x x x ? ?-+=? -=???-= ? 回代,得: 36x =-,21x =-,19x = 所以方程组的解为 (9,1,6)T x =-- 注意: ①算法要求,不能化简。化简则不是严格意义上的消元法,在算法设计上就多出了步骤。实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。无论是顺序消元法还是选主元素消元法都是这样。 ②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。 要通过练习熟悉消元的过程而不是矩阵变换的技术。 矩阵形式错一点就是全错,也不利于检查。 一般形式或分量形式: 1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 矩阵形式 123213142541207x x x -?????? ??? ?= ??? ? ??? ???????

向量形式 123213142541207x x x -???????? ? ? ? ?++= ? ? ? ? ? ? ? ????????? ③必须是方程组到方程组的变形。三元方程组的消元过程要有三个方程组,不能变形出单一的方程。 ④消元顺序12x x →→L ,不能颠倒。按为支援在方程组中的排列顺序消元也是存储算法的要求。实际上,不按顺序消元是不规范的选主元素。 ⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。 (2)1231231231132323110 221x x x x x x x x x --=?? -++=??++=-? ①②③ 解:?23②+( )①11,1 11 ?③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ? --=?? ? -=? ? ? +=-??④⑤⑥ 再由25 11)5211 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 123233113235235691111111932235252x x x x x x ? ?--=? ? -=?? ? =-?? 回代,得: 32122310641 ,,193193193 x x x =- ==, 所以方程组的解为 41106223(,,)193193193T x =- 2、将矩阵 1020011120110011A ?? ? ?= ?- ???

计算方法_习题第一、二章答案..

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

计算方法课程教学大纲

《计算方法》课程教学大纲 课程编号: 学时:54 学分:3 适用对象:教育技术学专业 先修课程:高等数学、线性代数 考核方式:本课程考试以笔试为主70%,兼顾学生的平时成绩30%。 使用教材及主要参考书: 使用教材: 李庆扬.《数值分析(第四版)》, 清华大学出版,2014年。 主要参考书: 1.朱建新,李有法.《高等学校教材:数值计算方法(第3版)》,高等教育出版社,2012。 2.徐萃薇,孙绳武.《计算方法引论(第4版)》,高等教育出版社,2015。 一课程的性质和任务 计算方法是教育技术学专业学生的一门专业选修课。作为计算数学的一个重要分支,它是数学科学与计算机技术结合的一门应用性很强的学科,本课程重点介绍计算机上常用的基本计算方法的原理和使用;同时对计算方法作适当的分析。 教学任务:通过本课程的学习,要使学生具有现代数学的观点和方法,并初步掌握处理计算机常用数值分析的构造思想和计算方法。同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识分析和解决实际问题的能力。 二教学目的与要求 教学目的:通过学习使学生了解数值计算方法的基本原理。了解计算机与数学结合的作用及课程的应用性。为今后使用计算机解决实际问题中的数值计算问题打下基础。 通过理论教学达到如下基本要求。 1.了解误差的概念 2.掌握常用的解非线性方程根的方法 3.熟练掌握线性代数方法组的解法 4.熟练掌握插值与拟合的常用方法 5.掌握数值积分方法 6.了解常微分方程初值问题的数值方法 三学时分配

四教学中应注意的问题 本课程是一门理论性较强、内容较抽象的综合课程,因此面授辅导或自学,将是不可缺少的辅助教学手段,教师在教学的过程中一定要注意理论结合实际,课堂教学并辅助上机实验,必须通过做练习题和上机实践来加深对概念的理解和掌握,熟悉公式的运用,从而达到消化、掌握所学知识的目的。同时应注重面授辅导或答疑,及时解答学生的疑难问题。 五教学内容 第一章绪论(误差) 基本内容: 第一节数值分析研究的对象和特点 第二节数值计算的误差 1.误差的来源与分类 2.误差与有效数字 3.数值运算的误差估计 第三节误差的定性分析与避免误差的危害 1.病态问题与条件数 2.算法的数值稳定性 3.避免误差危害的若干原则 教学重点难点: 重点:数值运算的误差估计。 难点:误差的定性分析与避免误差的危害。

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]的近似根,要求误差不超过 10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]有唯一个实根;使用二 分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]有唯一实根.

由二分法的误差估计式21 1*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥ k ,因此取7=k ,即至少需二分 0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71, 718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=- x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=- x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=- x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171 .205 .0||222=<-= x x e r ε;

计算机操作系统(第四版)课后习题答案第五章

第五章 7.试比较缺页中断机构与一般的中断,他们之间有何明显的区别? 答:缺页中断作为中断,同样需要经历保护CPU现场、分析中断原因、转缺页中断处理程序进行处理、恢复CPU现场等步骤。但缺页中断又是一种特殊的中断,它与一般中断的主要区别是: ( 1)在指令执行期间产生和处理中断信号。通常,CPU都是在一条指令执行完后去检查是否有中断请求到达。若有便去响应中断;否则继续执行下一条指令。而缺页中断是在指令执行期间,发现所要访问的指令或数据不在内存时产生和处理的。 (2)一条指令在执行期间可能产生多次缺页中断。例如,对于一条读取数据的多字节指令,指令本身跨越两个页面,假定指令后一部分所在页面和数据所在页面均不在内存,则该指令的执行至少产生两次缺页中断。 8.试说明请求分页系统中的页面调入过程。 答:请求分页系统中的缺页从何处调入内存分三种情况: (1)系统拥有足够对换区空间时,可以全部从对换区调入所需页面,提高调页速度。在进程运行前将与该进程有关的文件从文件区拷贝到对换区。 (2)系统缺少足够对换区空间时,不被修改的文件直接从文件区调入;当换出这些页面时,未被修改的不必换出,再调入时,仍从文件区直接调入。对于可能修改的,在换出时便调到对换区,以后需要时再从对换区调入。 (3)UNIX 方式。未运行页面从文件区调入。曾经运行过但被换出页面,下次从对换区调入。UNIX 系统允许页面共享,某进程请求的页面有可能已调入内存,直接使用不再调入。 19.何谓工作集?它是基于什么原理确定的? 答:工作集:在某段时间间隔里,进程实际所要访问页面的集合。 原理:用程序的过去某段时间内的行为作为程序在将来某段时间内行为的近似。 24.说明请求分段式系统中的缺页中断处理过程。 答:在请求分段系统中,每当发现运行进程所要访问的段尚未调入内存时,便由缺段中断机构产生一缺段中断信号,进入操作系统后由缺段中断处理程序将所需的段调入内存。缺段中断机构与缺页中断机构类似,它同样需要在一条指令的执行期间,产生和处理中断,以及在一条指令执行期间,可能产生多次缺段中断。

相关主题
文本预览
相关文档 最新文档