当前位置:文档之家› gps系统的误差来源分析.

gps系统的误差来源分析.

gps系统的误差来源分析.
gps系统的误差来源分析.

GPS系统的误差来源分析

摘要:GPS 系统的定位误差直接影响着GPS定位精度,按其产生的来源、性质及对系统的影响等进行了介绍和初步分析,提出了相应的措施以便消除或削弱它们对测量结果的影响。

关键词:GPS误差精度卫星星历电离层对流层

一、GPS 定位技术

GPS 全球卫星定位系统是美国国防部为满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而建立的。该系统具有全球性、全天候、连续性等三维导航和定位能力,并具有良好的抗干扰性和保密性。它已成为美国导航技术现代化的最重要标志,并被视为20 世纪美国继阿波罗登月计划和航天飞机计划之后的又一重大科技成就。在航空、航天、军事、交通、运输、资源勘探、通信、气象等几乎所有的领域中,它都被作为一项非常重要的技术手段,用于导航、定时、定位和进行大气物理研究等。GPS 的主要特点有:

(1)全球覆盖连续导航定位:由于GPS 有24 颗卫星,且分布合理,轨道高达20200km,所以在地球上和近地空间任何一点,均可连续同步地观测4颗以上卫星,实现全球、全天候连续导航定位。

(2)高精度三维定位: GPS 能连续地为各类用户提供三维位置、三维速度和精确时间信息。GPS提供的测量信息多,既可通过伪码测定伪距,又可测定载波多

普勒频移、载波相位。

(3)抗干扰性能好、保密性强; GPS 采用数字通讯的特殊编码技术,即伪噪声码技术,因而具有良好的抗干扰性和保密性。

二、GPS 定位的误差来源分析

GPS 测量是通过地面接收设备接收卫星传送来的信息,计算同一时刻地面接收设备到多颗卫星之间的伪距离,采用空间距离后方交会方法,来确定地面点的三维坐标。因此,对于GPS卫星、卫星信号传播过程和地面接收设备都会对GPS 测量产生误差。主要误差来源可分为:与GPS卫星有关的误差;与信号传播有关的误差;与接收设备有关的误差。

1.与卫星有关的误差

(1)卫星星历误差

卫星星历误差是指卫星星历给出的卫星空间位置与卫星实际位置间的偏差,由于

卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。它是一种起始数据误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等。星历误差是GPS 测量的重要误差来源.

(2)卫星钟差

卫星钟差是指GPS卫星时钟与GPS标准时间的差别。为了保证时钟的精度,GPS 卫星均采用高精度的原子钟,但它们与GPS标准时之间的偏差和漂移和漂移总量仍在1ms~0.1ms以内,由此引起的等效误差将达到300km~30km。这是一个系统误差必须加于修正。

(3)SA干扰误差

SA误差是美国军方为了限制非特许用户利用GPS进行高精度点定位而采用的降低系统精度的政策,简称SA政策,它包括降低广播星历精度的ε技术和在卫星基本频率上附加一随机抖动的δ技术。实施SA技术后,SA误差已经成为影响GPS定位误差的最主要因素。虽然美国在2000年5月1日取消了SA,但是战时或必要时,美国可能恢复或采用类似的干扰技术。

(4)相对论效应的影响

这是由于卫星钟和接收机所处的状态(运动速度和重力位) 不同引起的卫星钟和接收机钟之间的相对误差。

2.与传播途径有关的误差

(1)电离层折射

在地球上空距地面50~100 km 之间的电离层中,气体分子受到太阳等天体各种射线辐射产生强烈电离,形成大量的自由电子和正离子。当GPS 信号通过电离层时,与其他电磁波一样,信号的路径要发生弯曲,传播速度也会发生变化,从而使测量的距离发生偏差,这种影响称为电离层折射。对于电离层折射可用3 种方法来减弱它的影响: ①利用双频观测值,利用不同频率的观测值组合来对电离层的延尺进行改正。②利用电离层模型加以改正。③利用同步观测值求差,这种方法对于短基线的效果尤为明显。

(2)对流层折射

对流层的高度为40km 以下的大气底层,其大气密度比电离层更大,大气状态也更复杂。对流层与地面接触并从地面得到辐射热能,其温度随高度的增加而降低。GPS 信号通过对流层时,也使传播的路径发生弯曲,从而使测量距离产生偏差,这种现象称为对流层折射。减弱对流层折射的影响主要有3 种措施: ①采用对流层模型加以改正,其气象参数在测站直接测定。②引入描述对流层影响的

附加待估参数,在数据处理中一并求得。③利用同步观测量求差。

(3)多路径效应

测站周围的反射物所反射的卫星信号(反射波)进入接收机天线,将和直接来自卫星的信号(直接波) 产生干涉,从而使观测值偏离,产生所谓的“多路径误差”。这种由于多路径的信号传播所引起的干涉时延效应被称作多路径效应。减弱多路径误差的方法主要有: ①选择合适的站址。测站不宜选择在山坡、山谷和盆地中,应离开高层建筑物。②选择较好的接收机天线,在天线中设置径板,抑制极化特性不同的反射信号。3.与GPS 接收机有关的误差

(1)接收机钟差

GPS 接收机一般采用高精度的石英钟,接收机的钟面时与GPS 标准时之间的差异称为接收机钟差。把每个观测时刻的接收机钟差当作一个独立的未知数,并认为各观测时刻的接收机钟差间是相关的,在数据处理中与观测站的位置参数一并求解,可减弱接收机钟差的影响。

(2)接收机的位置误差

接收机天线相位中心相对测站标石中心位置的误差,叫接收机位置误差。其中包括天线置平和对中误差,量取天线高误差。在精密定位时,要仔细操作,来尽量减少这种误差影响。在变形监测中,应采用有强制对中装置的观测墩。相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。这种偏差的影响可达数毫米至厘米。而如何减少相位中心的偏移是天线设计中的一个重要问题。在实际工作中若使用同一类天线,在相距不远的两个或多个测站同步观测同一组卫星,可通过观测值求差来减弱相位偏移的影响。但这时各测站的天线均应按天线附有的方位标进行定向,使之根据罗盘指向磁北极。

(3)接收机天线相位中心偏差

在GPS 测量时,观测值都是以接收机天线的相位中心位置为准的,而天线的相位中心与其几何中心,在理论上应保持一致。但是观测时天线的相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。这种偏差的影响可达数毫米至厘米。而如何减少相位中心的偏移是天线设计中的一个重要问题。

三、GPS的最新发展与改进

面对导航市场的迅速发展和强大的竞争压力,美国政府不得不作出反映,计划在未来10年内对GPS做一系列的调整和改进。对GPS的改进将对GPS系统的3个部分进行,其中对星座部分的改进最大。

1.GPS星座的改进

(1)改善星座的分布(2)增强卫星的自主导航能力(3)取消SA政策(4)增加民用频率(5)频率复用(6)增强卫星发射信号的功率

2.地面监控部分的改进

卫星位置的精度直接影响到用户的定位精度,而地面监控站的数量和分布部分地决定了GPS卫星定轨的质量。目前GPS共有5个监控站,卫星位置的精度为1m~2m。美国军方正计划将国家制图局(NIMA)的7个GPS监控站纳入目前的控制网,使将来的监控站的分布更加均匀、密度更大,为了计算卫星的位置提供更多的、更及时的高质量观测数据。预计在未来10年,卫星星历的精度将达到亚米级,甚至达到厘米级,同时,向卫星上传数据的频率也将更高。

3.用户接受部分的改进

由于用户的用途不同,用户接受机的改进也是多样化的。接收机的硬件部分正朝多样化、小型化、模块化、集成化、操作简单等方向发展,例如出现了一些新的接收机可根据用户的需求用软件设定单频GPS、双频GPS等模式。接收机的面板上只有一、两个按钮和若干个显示灯组成,可完成接收机的基本操作。GPS的数据解算软件将基于数据库,朝着图形化、智能化等方向发展。这些发展的最终的目的是让一般用户更方便的使用GPS。

参考文献

[1] 徐绍铨等.GPS测量原理及应用.武汉测绘科技大学出版社.1998.10.

[2] 张守信等.GPS技术与应用.国防工业出版社.2004.1.

[3] 张小红等.GPS定位技术在不同领域的应用[J].武汉:测绘信息与工程.2001,1.

分光光度计测量误差来源分析

分光光度计测量误差来源分析 分光光度计是利用物质对光的选择性吸收进行物质的定性或定量分析的仪器,在各行各业得到了广泛应用,主要用于物质纯度检查、定量分析、物质结构鉴别等。可测量结果总会出现可接受或不可接受的误差,误差来源于测量过程的各个方面,我认为主要来源于仪器本身性能和测量条件的选择两个方面。 1仪器本身性能带来的误差 1.1复色光对比耳定律的偏离 比耳定律成立的前提条件是人射光是单色光,但是精度再高的仪器,即使是双单色器的分光光度计,也只能获得近乎单色的光,无法获得纯单色光,它仍然含有狭窄光通带,具有复色光的性质。而复色光会导致比耳定律的正或负偏离。固定狭缝的紫外分光光度计光谱带宽一般为1nm或2nm,可调狭缝的可以做到0.Inm;可见分光光度计带宽6nm、snm,甚至十几纳米。光谱带宽应该是越小越好,但是随着光谱分辨率的提高,仪器的灵敏度降低,所以选择仪器时要综合考虑各种条件的影响。当溶液浓度较小且单色光较纯时,可近似认为符合比耳定律。 1.2杂散光的影响 杂散光是指进人检测器的处于待测波长光谱带宽范围外的其他波长组分,它是光谱测量中误差的主要来源。产生原因有:分光光度计的色散元件、反射镜、透镜及单色器内壁灰尘等。在分光光度计工作波段边缘波长处,由于单色器透光率、光源辐射强度、检测器灵敏度都较低,杂散光的影响更为显著。杂散光限制仪器的分析上限可引起严重的测量误差,实际工作中,在定量分析时,一般在吸收峰或其附近处测量样品吸光度,如果在分析波长处含有杂散光,这时样品的透光率较小,而杂散光大部分透过,使测量吸光度低于真实吸光度。 1.3仪器噪声对测t的影响 仪器噪声也是仪器的一个重要指标,它表征仪器做稀溶液的能力。是叠加在待测量的分析信号中的不需要的信号,扫描100%T和0%T线,可观察到分光光度计的绝对噪声水平,如果仪器噪声较大,会掩盖较小的测量信号,一般用噪音的二倍来表示仪器的灵敏度。 1.4波长和吸光度准确度 样品的每一个值都是在一定的波长下测得的,如果波长误差很大,测出的值肯定不准。吸光度准确度也是用户对仪器的直接要求,更应引起足够的重视。国家计量检定规程规定双光束紫外可见分光光度计透射比准确度为A级士0.6%,B级土1.0%。 2测量条件的选择

测距误差来源及其影响.

§4.3 测距误差来源及其影响 测距误差的大小与仪器本身的质量,观测时的外界条件以及操作方法有着密切的关系。为了提高测距精度,必须正确地分析测距的误差来源,性质及大小,从而找到消除或削弱其影响的办法,使测距获得最优精度。 4.3.1 测距误差的主要来源 由(4-3)式可知,相位式测距的基本公式为 )2(210π ?Φ+=N n c f D (4-23) 式中 n c c ?=0 将其线性化并根据误差传播定律得测距误差 2222202240Φ??? ? ?+????????????? ??+???? ??+???? ??=m n m f m c m D M n f c D πλ (4-24) 式中 0c ——光在真空中传播的速度; f ——测尺频率; n ——大气折射率; Φ——相位; λ——测尺波长。 上式表明,测距误差D M 是由以上各项误差综合影响的结果。实际上,观测边长S 的中误差S M 还应包括仪器加常数的测定误差K m 和测站及镜站的对中误差l m ,即 222222202240l K n f c S m m m n m f m c m D M ++??? ??+?? ??????????? ??+???? ??+???? ??=Φπλ (4-25) 上式中的各项误差影响,就其方式来讲,有些是与距离成比例的。如0c m ,f m 和n m 等,我们称这些误差为“比例误差”;另一些误差影响与距离长短无关。如Φm ,K m 及l m 等,我们称其为“固定误差”。另一方面,就各项误差影响的性质来看,有系统的,如0c m ,f m ,K m 及n m 中的一部分;也有偶然的,如Φm ,l m 及n m 中的另一部分。对于偶然性误差的影响,我们可以采取不同条件下的多次观测来削弱其影响;而对系统性误差影响则不然,但我们可以事先通过精确检定,缩小这类误差的数值,达到控制其影响的目的。 4.3.2 比例误差的影响

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

水准测量的误差来源及控制

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS 3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

测量误差产生的原因及其避免途径

测量误差产生的原因及其避免途径 作者:葛红 来源:《职业·下旬》2010年第10期 测量工作的实践表明,在任何几何量测量工作中,无论是测角、测高还是测量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。测量误差的来源与下列因素有关:基准件的误差、测量方法的误差、计量器具的误差、测量环境以及测量人员引起的误差等。 一、基准件的误差 任何基准都不可避免存在误差,当用它作基准时,其误差会带入测量值中。因此,在选择基准件时,一般都希望基准件的精度选高一些。但是,基准件的精度太高也不经济,在生产实践中一般取基准件的误差占总测量误差的1/5~1/3。 二、测量方法误差 方法误差是指测量时选用的测量方法不完善而引起的误差。测量时,采用的测量方法不同,产生的测量误差也不一样。例如,测量大型工件的直径,可以采用直接测量法,也可以采用测量弦长和弓高的间接测量法,其测量误差是不相同的。直接测量与间接测量相比较,前者的测量误差只取决于被测参数本身的计量与测量环境和条件所引起的误差;而后者则取决于被测参数有关的各个间接测量参数的计量器具与测量环境和条件所引起的误差,以及它们之间的计算误差。 三、计量器具的误差 1.理论误差 由于仪器设计时,经常采用近似机构代替理论上所要求的运动机构,用均匀刻度的刻度尺近似的代替理论上要求非均匀刻度的刻度尺,或者仪器设计时违背阿贝原则等,这样造成的误差称理论误差。 2.仪器制造和装配调整误差 仪器零件的制造误差和装配调整误差都会直接引起仪器误差。例如,仪器读数装置中刻度尺、刻度盘的刻度误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造误差以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差等。这些都会影响仪器的示值误差和稳定性。

GPS测量的主要误差来源及其影响(精)

第五章 GPS卫星定位系统误差来源及影响 第五章GPS卫星定位系统误差来源及影响了解卫星星历误差,卫星钟差及相对论效应。理解接收机钟误差,相位中心位臵误差的产生与消减方法。掌握电离层折射误差、对流层折射误差、多路径误差的产生与消减方法。 第五章GPS卫星定位系统误差来源及影响第一节GPS定位的误差概述 第二节与卫星有关的误差 第三节卫星信号传播误差 第四节接收设备误差 第五节卫星几何图形强度3 第一节GPS定位的误差概述4 第二节与卫星有关的误差 一、卫星星历误差二、卫星钟差 三、相对论效应 GPS卫星的发射 第二节与卫星有关的误差 一、卫星星历误差 1.星历来源 2.星历误差对定位的影响 3.减弱星历误差影响的途径 GPS卫星工作星座 第二节与卫星有关的误差 1.星历来源 卫星星历误差 某一瞬间的卫星位臵,是由卫星星历提供的,卫星星历误差就是卫星位臵的确定误差。 星历误差来源 其大小主要取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度。 第二节与卫星有关的误差 1.星历来源 星历 (1)广播星历 (2)实测星历广播星历根据美国GPS控制中心跟踪站的观测数据进行外推,通过GPS卫星发播的一种预报星历。

实测星历根据实测资料进行拟合处理而直接得出的星历。 7 第二节与卫星有关的误差 2.星历误差对定位的影响单点定位 星历误差的径向分量作为等价测距误差进入平差计算,配赋到星站坐标和接收机钟差改正数中去,具体配赋方式则与卫星的几何图形有关。 8 第二节与卫星有关的误差 2.星历误差对定位的影响 相对定位 利用两站的同步观测资料进行相对定位时,由于星历误差对两站的影响具有很强的相关性,所以在求坐标差时,共同的影响可自行消去,从而获得高精度的相对坐标。 第二节与卫星有关的误差 2.星历误差对定位的影响 根据一次观测的结果,可以导出星历误差对定位影响的估算式为: dbds b b ——基线长; db ——卫星星历误差所引起的基线误差;p ——卫星至测站的距离;ds ——星历误差; ds ——卫星星历的相对误差。 第二节与卫星有关的误差 3.减弱星历误差影响的途径 (1)建立自己的GPS卫星跟踪网独立定轨 (2)相对定位 (3)轨道松弛法 9 第二节与卫星有关的误差 二、卫星钟的钟误差卫星钟采用的是GPS 时,但尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),它们与理想的GPS时之间仍存在着难以避免的频率偏差或频率漂移,也包含钟的随机误差。这些偏差总量在1ms以内,由此引起的等效距离可达300km。 11 第二节与卫星有关的误差 二、卫星钟的钟误差卫星钟差的改正 卫星钟差可通过下式得到改正:ts a0a1(t t0)a2(t t0)2

测量误差的来源分析

龙源期刊网 https://www.doczj.com/doc/084973273.html, 测量误差的来源分析 作者:高军妮 来源:《价值工程》2011年第01期 摘要:在测量过程中,无论是直接测量还是间接测量,都无法做到完全消除测量误差。 测量误差的来源是多方面的,本文通过对测量误差主要来源的分析,以有效的对其产生来源进行控制,以减少测量误差的产生。 Abstract: In the measurement process, Whether it is direct measurement or indirect measurement, it can not be completely eliminated measurement error. There are many sources of measurement error, and this paper analysises the main source of measurement error to effectively control the sources of its production to reduce the measurement error generated. 关键词:测量误差;方法;环境 Key words: measurement error;method;environment 中图分类号:TH12 文献标识码:A文章编号:1006-4311(2011)01-0032-01 1测量误差的定义 在测量过程中,由于测量器具本身的误差以及测量方法、测量环境等因素制约,导致测得值与被测真值之间存在一定的差异,这种差异称为测量误差。 2测量误差来源分析及措施 测量误差的来源是多方面的,影响测量误差的产生,主要有下几个方面因素: 2.1 测量器具误差测量器具误差包括测量器具本身的原理误差和制造误差。①原理误差。测量器具在设计时,经常采用近似的实际工作原理代替理论的工作原理所造成的测量误差,称为原理误差。为了减少测量误差,一般在仪器设计时都进行了修正。②制造误差。测量器具一般是由多个零部件组成的,在制造和安装中不可避免的存在误差,这种误差即为制造误差。因此在测量工件时,要选择测量误差小的测量器具或带有修正值的测量器具,以减少测量误差。 2.2 测量方法误差测量方法误差主要包括对准误差、测量力误差、阿贝误差及定位安装方法误差四个方面。 2.2.1 对准误差对准误差分为被测量对准误差和读数对准误差两种。①被测量对准误差主 要是因定位不准确,测量方向偏离被测尺寸所造成的误差。例如:测量方向倾斜,侧头偏移

GPS测量误差来源

GPS组成及GPS测量误差来源 GPS的组成 GPS的整个系统由空间部分、地面控制部分和用户部分所组成。 空间部分 GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。 控制部分 GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星; 同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。 用户部分 GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。以上这三个部分共同组成了一个完整的GPS系统 GPS信号及观测值 GPS信:GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L11227.60HMz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和12倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种这些信号主要有:C/A码和P码 C/A码 C/A又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PR 码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。

测量误差的来源

测量误差的来源: 仪器误差,影响误差,理论误差和方法误差,人身误差,测量对象变化误差。 频率测量时的误差来源:量化误差,触发误差和标准频率误差。 绝对误差:实测值与真值的差相对误差:绝对误差与真值之比 测量系统的动态模型:微分方程,传递函数,频率响应函数。 测量的基本要素及相互作用:被测对象,测量仪器,测量技术,测量人员和测量环境。 测量的对象是被测的客体中取出的信息;测量仪器系统包括测量器具与标准器;测量技术是根据被测对象和测量要求采用的测量原理、方法及相应技术措施;测量人员是获取信息和实施测量的主体;测量环境是测量所处空间的一切物理和化学条件的总和。 扫描:示波器光点在锯齿波电压的作用下扫动的过程称为扫描。 扫描正程:光点自左向右的连续扫动称为扫描正程。 扫描回程:光点自荧光屏右端迅速返回起扫点称为扫描回程。 实时采样:在信号实际经历的时间内完成了全部采样,称为实时采样。 非实时采样:需经过若干次信号波形才完成采样,称为非实时采样。 自动测试系统是指在人工最少参与的情况下,能自动进行测量、数据处理,并以适当方式显示或输出测试结果的系统。 测量是以确定量值为目的的一组操作。在操作过程中常借助专门的设备,把被测对象直接或间接地与同类已知单位进行比较,取得用数值和单位共同表示的测量结果 计量是实现单位统一、量值准确可靠地活动。其主要特点是统一性,准确性和法制性。 测量与计量的联系:没有测量就谈不上计量,没有计量测量就失去了价值。 测量不确定度是表征合理的赋予被测量之值的分散性,与测量结果相联系的参数。 当用标准偏差表示不确定度时,称为标准不确定度。当规定一个区间,被测之值的分布大部分可望含于此区间时,把此区间定为扩展不确定度。 测量不确定度从评定方法上分可分为:不确定度的A类评定和B类评定。 扫频图示仪的基本原理:扫频信号发生器输出频率随扫频电压变化的扫频信号,该信号进入被测系统后,被测系统的输出信号经峰值检波,获得被测系统的幅频特性,经放大被加至显示器Y输入端。同时,扫描电压发生器产生的扫频电压被加至显示器的X输入端,用来显示代表频率的横轴。X,Y轴相互配合,即可得到被测系统的幅频特性曲线。 幅频特性曲线的增辉信号是幅频特性电压v2与光栅电压v1比较产生的。二者在比较微分器中比较,当二者幅值相等时,比较器输出的信号经微分产生窄脉冲信号,即幅频特性曲线的增辉信号。 频谱分析仪分辨力带宽:反映了该滤波器能够区分两个相同幅度、不同频率的信号的能力。模拟(通用)示波器的基本组成及工作原理 基本组成包括示波管(电子枪,偏转系统,荧光屏),Y通道(输入电路,Y前置放大器,延迟线,Y后置放大器)和X通道(触发电路,扫描电路,水平放大器)。 Y通道输入被测信号,经放大器放大后加到Y偏转板。 X通道通过扫描发生器环产生扫描信号,经放大器放大后加到X偏转板; 电子枪中阴极发射大量电子,由栅极和阳极调节电子密度、速度并进行聚焦。经偏转板后打在荧光屏上,利用荧光物质的余辉效应和人眼的视觉残留效应,可以看到荧光屏上连续的波形。

分光光度计测量误差来源浅析

分光光度计测量误差来源浅析 1仪器本身性能带来的误差 1.1复色光对比耳定律的偏离 比耳定律成立的前提条件是人射光是单色光,但是精度再高的仪器,即使是双单色器的分光光度计,也只能获得近乎单色的光,无法获得纯单色光,它仍然含有狭窄光通带,具有复色光的性质。而复色光会导致比耳定律的正或负偏离。固定狭缝的紫外分光光度计光谱带宽一般为1nm或2nm,可调狭缝的可以做到0.Inm;可见分光光度计带宽6nm、snm,甚至十几纳米。光谱带宽应该是越小越好,但是随着光谱分辨率的提高,仪器的灵敏度降低,所以选择仪器时要综合考虑各种条件的影响。当溶液浓度较小且单色光较纯时,可近似认为符合比耳定律。 1.2杂散光的影响 杂散光是指进人检测器的处于待测波长光谱带宽范围外的其他波长组分,它是光谱测量中误差的主要来源。产生原因有:分光光度

计的色散元件、反射镜、透镜及单色器内壁灰尘等。在分光光度计工作波段边缘波长处,由于单色器透光率、光源辐射强度、检测器灵敏度都较低,杂散光的影响更为显著。杂散光限制仪器的分析上限可引起严重的测量误差,实际工作中,在定量分析时,一般在吸收峰或其附近处测量样品吸光度,如果在分析波长处含有杂散光,这时样品的透光率较小,而杂散光大部分透过,使测量吸光度低于真实吸光度。 1.3仪器噪声对测t的影响 仪器噪声也是仪器的一个重要指标,它表征仪器做稀溶液的能力。是叠加在待测量的分析信号中的不需要的信号,扫描100%T和0%T线,可观察到分光光度计的绝对噪声水平,如果仪器噪声较大,会掩盖较小的测量信号,一般用噪音的二倍来表示仪器的灵敏度。 1.4波长和吸光度准确度 样品的每一个值都是在一定的波长下测得的,如果波长误差很大,测出的值肯定不准。吸光度准确度也是用户对仪器的直接要求,更应引起足够的重视。国家计量检定规程规定双光束紫外可见分光光度计透射比准确度为A级士0.6%,B级土1.0%。

测距误差来源及其影响.

§ 4.3 测距误差来源及其影响 测距误差的大小与仪器本身的质量, 观测时的外界条件以及操作方法有着密切的关 系。为了提高测距精度,必须正确地分析测距的误差来源, 或削弱其影响的办法,使测距获得最优精度。 4.3.1 测距误差的主要来源 式中 C o C n 将其线性化并根据误差传播定律得测距误差 式中 C o ——光在真空中传播的速度; f ――测尺频率; n ——大气折射率; ——相位; ――测尺波长。 上式表明,测距误差 M D 是由以上各项误差综合影响的结果。实际上,观测边长 的中误差M S 还应包括仪器加常数的测定误差 我们称这些误差为“比例误差”;另一些误差影响与距离长短无关。 我们称其为“固定误差” 。另一方面,就各项误差影响的性质来看,有系统的,如 m c, , m f , m K 及m .中的一部分;也有偶然的,如 m , m i 及m .中的另一部分。对于偶然 性误差的影响,我们可以采取不同条件下的多次观测来削弱其影响; 响则不然,但我们可以事先通过精确检定, 缩小这类误差的数值, 的。 4.3.2 比例误差的影响 性质及大小,从而找到消除 由(4-3 )式可知,相位式测距的基本公式为 1 C o (N D 2f n 厂) (4-23) 2 M D D 2 mc ^ C o m f f 2 m n n (4-24) S m K 和测站及镜站的对中误差 m i ,即 M S D 2 2 m^ m f C o f 2 m n n 2 2 —m 4 2 m K 2 m i (4-25) 上式中的各项误差影响, 就其方式来讲, 有些是与距离成比例的。 m c 0 , m f 和 m n 等, 如 m , m K 及m i 等, 而对系统性误差影 达到控制其影响的目

减小测量误差的方法总结

减小测量误差的方法总结 摘要:本文通过知识回顾法、查阅资料法、总结法,介绍了测量误差的基本概念和来源,从不同角度归纳出误差的分类,并从如何弥补仪器缺陷、减小系统误差和随机误差方面做详细介绍。 关键词:测量误差误差来源减小误差 一、测量误差的概念和来源 (一)测量误差的概念 在测量时,测量结果与实际值之间的差值叫误差。真实值是客观存在的,是在一定时间下体现事物的真实数据。测量值是测量所得的结果。这两者之间总是或多或少的存在一定的差异,就是测量误差。 (二)测量误差的主要来源 1.外界条件 外界的温度、湿度、大气折射等对观测结果都会产生影响。 2.仪器条件 仪器制造产生的精度缺陷。 3.观测者自身条件 每个人都有自己的鉴别能力,一定的分辨率和技术条件,在仪器安置、照准、读数等方面可能会产生误差。 二、测量误差的分类及简单介绍 (一)按表示方法 1.绝对误差:是示值与被测量真值之间的差值。 设被测量的真值为A0,器具的示值为x,则绝对误差Δx为: Δx=x-A0 (1)由于一般无法求得真值A0,在实际应用中,常用精度高一级的标准器具的示值A代替之。X与A之差常称为器具的示值误差。记为: Δx=x-A (2)通常以此值代表绝对误差。 绝对误差一般适用于标准器具的校准。 2.相对误差:是相对误差Δx与被测量的约定值之比,它较绝对误差更能确切地说明测量精度。 3.容许误差:是根据技术条件的要求,规定某一类器具误差不应超过的最大范围。

(二)按误差出现的规律分类 1.系统误差 其变化规律服从某种已知函数。系统误差主要由以下几个方面引起:材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其他外界干扰等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系统误差越小,测量就越正确。 2.随机误差 又称偶然误差,其变化规律未知。随机误差是由很多复杂因素的微小变化的总和所引起的,具有随机变量的一切特点,在一点条件下服从统计规律。因此,通过多次测量后,对其总和可以用统计规律来描述,则可从理论上估计对测量结果的影响。 随机误差表现了测量结果的分散性。在误差理论中,常用精密度一词来表征随机误差的大小。随机误差越小,精密度越高。 3.粗大误差 是指在一定条件下测量结果显着地偏离其实际值所对应的误差。在测量及数据处理中,如发现某次测量结果所对应的误差特别大或小时,应认真判断误差是否属于粗大误差,如是,该值应舍去不用。 三、测量误差的减小 下面将从测量误差的三个主要来源:仪器条件、外界条件、观测者自身条件,进行分析如何减小测量误差。 (一)弥补仪器缺陷 由于仪器本身的缺陷带来测量误差,如零点偏离,为了减小测量误差,首先就得考虑弥补仪器的缺陷。可以由以下的方法: 1.替代法 替代法是指在测量装置上对某一带测量进行测量后,立即将带测量与标准量进行交换,再次进行测量,利用函数关系,从而得出测量的值。即在测量装置上对某一带测量进行测量后,再次进行测量,并调到同样的情况,从而得出带测量等于标准量。例如,用电桥测量电阻时,调平衡后,把被测电阻用可变标准电阻替换,调标准电阻值使电桥再次达到平衡,则标准电阻的示值即为被测电阻的阻值。这样可消除用此电桥自身可能存在的误差。 2.对称观测法

分光光度计的测量误差来源

分光光度计的测量误差来源 嘉峪检测网2017-06-19 09:46 分光光度计是利用物质对光的选择性吸收的特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而对物质进行定性或定量分析的仪器。在使用过程中常常会出现测量误差,这些误差又是如何产生的呢? 一、仪器本身性能带来的误差 1 复色光对比耳定律的偏离 比耳定律成立的前提条件是入射光是单色光,但是精度再高的仪器,即使是双单色器的分光光度计,也只能获得近乎单色的光,无法获得纯单色光,它仍然含有狭窄光通带,具有复色光的性质。而复色光会导致比耳定律的正或负偏离。固定狭缝的紫外分光光度计光谱带宽一般为1nm或2nm,可调狭缝的可以做到0.Inm;可见分光光度计带宽6nm、snm,甚至十几纳米。光谱带宽应该是越小越好,但是随着光谱分辨率的提高,仪器的灵敏度降低,所以选择仪器时要综合考虑各种条件的影响。当溶液浓度较小且单色光较纯时,可近似认为符合比耳定律。 2 杂散光的影响 杂散光是指进入检测器的处于待测波长光谱带宽范围外的其他波长组分,它是光谱测量中误差的主要来源。产生原因有:分光光度计的色散元件、反射镜、透镜及单色器内壁灰尘等。在分光光度计工作波段边缘波长处,由于单色器透光率、光源辐射强度、检测器灵敏度都较低,杂散光的影响更为显著。杂散光限制仪器

的分析上限可引起严重的测量误差,实际工作中,在定量分析时,一般在吸收峰或其附近处测量样品吸光度,如果在分析波长处含有杂散光,这时样品的透光率较小,而杂散光大部分透过,使测量吸光度低于真实吸光度。 3 仪器噪声对测t的影响 仪器噪声也是仪器的一个重要指标,它表征仪器做稀溶液的能力。是叠加在待测量的分析信号中的不需要的信号,扫描100%T和0%T线,可观察到分光光度计的绝对噪声水平,如果仪器噪声较大,会掩盖较小的测量信号,一般用噪音的二倍来表示仪器的灵敏度。 4 波长和吸光度准确度 样品的每一个值都是在一定的波长下测得的,如果波长误差很大,测出的值肯定不准。吸光度准确度也是用户对仪器的直接要求,更应引起足够的重视。国家计量检定规程规定双光束紫外可见分光光度计透射比准确度为A级士0.6%,B 级土1.0%。 二、测量条件的选择 1 参比溶液和溶剂的选择 分光光度计的测量实际上是以通过参比池的光强度作为入射光强度来测定试样的吸光度,先调节仪器使透过参比池溶液的吸光度为零,然后让同一束光通过样品,使得吸光度比较真实地反映待测物质的浓度,所以参比溶液的选择非常重要。如果仅有待测物质与显色剂的反应产物有吸收,可用纯溶剂或蒸馏水作参比溶液。如果显色剂有颜色,并在测定波长下有吸收,则用显色剂溶液作参比溶液,

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

GPS测量的主要误差来源及其影响

1)相对定位:利用两台或多台接收机对同一组卫星的同步观测值求差时可以有效地减弱电离层折射的影响,即使不对电离层折射进行改正,对基线成果的影响一般也不 -6会超过1X10。 16 第三节卫星信号传播误差 2减弱电离层影响的有效措施 2)双接收:如分别用两个已知频率f1和f2发射卫星信号,则两个不同频率的信号就会沿同一路径到达接收机。公式中积分值虽然无法计算,但对两个频率的信号却是相同的。 第三节卫星信号传播误差 二、对流层折射 、对流层及其影响 2、减弱对流层影响的措施 3、用霍普非尔德公式进行对流层折射改正 17 第三节卫星信号传播误差 1、对流层及其影响 对流层是高度为50km以下的大气层,由于离地面更近,其大气密度比电离层更大,大气状态变化更复杂。对流层与地面接触并从地面得到辐射热能,其温度随高度的上升而降低。对流层中虽有少量带电离子,但对电磁波传播影响不大。 18 第三节卫星信号传播误差 2、减弱对流层影响的措施用改正模型进行对流层改正利用同步观测值求差 20 第三节卫星信号传播误差 2、减弱对流层影响的措施用改正模型进行对流层改正 该方法设备简单,方法易行,但由于水气在空间的分布不均匀,不同时间、不同地点水气含量相差甚远,用通一模型很难准确描述,所以,对流层改正的湿气部分精度较低,只能将湿分量消去80%~90%。 21 第三节卫星信号传播误差 2、减弱对流层影响的措施利用同步观测值求差 与电离层的影响类型相似,当两观测站相距不太远时(例如20km),由于信号通i 对流层的路径大体相同,所以,对同一卫星的同步观测值求差,可以明显地减弱对流层折射的影响。这一方法在精密相对定位中被广泛应用。

测距误差来源及其影响.

§ 4.3 测距误差来源及其影响 测距误差的大小与仪器本身的质量, 观测时的外界条件以及操作方法有着密切的关 系。为了提高测距精度, 必须正确地分析测距的误差来源, 性质及大小,从而找到消除 或削弱其影响的办法,使测距获得最优精度。 4.3.1 测距误差的主要来源 由(4-3 )式可知,相位式测距的基本公式为 D 丄 C 0(N 2f n 式中 C Q c n 将其线性化并根据误差传播定律得测距误差 2 2 2 2 m c o m f M D D - C O f ) (4-23) 2 2 2 m n 2 — m (4-24) n 4 式中 C O 光在真空中传播的速度; f ――测尺频率; n ——大气折射率; ——相位; ――测尺波长。 上式表明,测距误差 的中误差 上式中的各项误差影响,就其方式来讲,有些是与距离成比例的。如 m c 0 , m f 和m n 等, 我们称这些误差为“比例误差”;另一些误差影响与距离长短无关。如 m , m K 及m ]等, 我们称其为“固定误差” 。另一方面,就各项误差影响的性质来看,有系统的,如 m c 0 , m f , m K 及m .中的一部分;也有偶然的,如 m , m i 及m .中的另一部分。对于偶然 性误差的影响,我们可以采取不同条件下的多次观测来削弱其影响; 而对系统性误差影 响则不然,但我们可以事先通过精确检定, 缩小这类误差的数值, 达到控制其影响的目 的。 M D 是由以上各项误差综合影响的结果。实际上,观测边长 S M S 还应包括仪器加常数的测定误差 m K 和测站及镜站的对中误差 m i ,即 2 2 2 2 2 2 m C o m f m n 2 2 2 M S D m m K m i C O f n 4 (4-25)

相关主题
文本预览
相关文档 最新文档