当前位置:文档之家› 2018届 管道阻火器 课程设计

2018届 管道阻火器 课程设计

2018届 管道阻火器 课程设计
2018届 管道阻火器 课程设计

中北大学

课程设计说明书

学生姓名:学号: 1404

学院: 环境与安全工程学院

专业: 安全工程

题目: 乙烯/空气混合气体管道波纹阻火器设计

指导教师:职称:讲师

2018年1 月14日

目录

1 概论 (1)

2 机械阻火器 (2)

2.1 阻火器的工作原理 (2)

2.2 阻火器的种类 (4)

2.3 阻火器主要应用场所 (4)

2.4 阻火器特点 (5)

3 波纹型阻火器(乙烯/空气)设计 (6)

3.1 GZW-1型波纹型阻火器 (6)

3.2波纹型阻火器结构 (8)

3.3阻火器结构设计 (9)

3.4阻火器性能测试 (15)

4课程设计总结 (16)

参考文献 (17)

1概论

爆炸阻隔是一种利用隔爆装置将设备内发生的燃烧或爆炸火焰实施阻隔,使之无法通过管道传播到其他设备中去的一种防爆技术措施。隔爆技术措施按作用机制不同,分为机械隔爆和化学隔爆两种类型,隔爆装置主要有工业阻火器、主动式隔爆装置和被动式隔爆装置等几种类型。工业阻火器又分为机械阻火器、液封阻火器和料封阻火器等类型,主要用于阻隔燃烧和爆炸初期火焰蔓延;主动式隔爆装置通过传感器探到的爆炸信号实施制动;被动式隔爆装置则依靠爆炸波本身引发制动。本次设计产品为波纹型阻火器(乙烯/空气),为机械阻火器的一种。阻火器的作用是防止外部火焰窜入存有易燃、易爆物料的设备、管道、容器内,或者阻止火焰在设备和管道闻蔓延。

乙烯极易发生氧化爆炸,当乙烯气体浓度达到爆炸极限,遇到点火源,便可发生氧化爆炸。乙烯在空气中爆炸浓度范围大约为2.74~36.95%(体积)。同时乙烯爆炸所需点火能很低,约0.096 mJ。此外乙烯具有分解爆炸特性,其分解过程不需要助燃剂氧气的参与。一旦局部气体过热使少量气体分解而波及剩余气体,短时间内气体急剧膨胀并且放出大量热量,最终导致爆炸发生[1]。故通过高效、经济的阻火器来阻止乙烯爆炸,或进行爆炸阻隔很有必要。

防火、灭火技术是防火防爆课程的主要研究内容之一,通过本设计,进一步学习防火、灭火的基本理论知识,掌握各类阻火器的工作原理、规格、用途、效能以及使用方法。

2机械阻火器

2.1阻火器的工作原理

关于阻火器的工作原理,目前主要有两种观点:一种是基于传热作用;一是器壁效应。

(1)传热作用

阻火器能够阻止火焰传播并迫使火焰熄灭。燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止[2]。依照这一原理,只要将可燃物的温度降到着火点以下,使火焰熄灭就可以阻止火焰的蔓延。阻火器是由许多细小的空隙和通道组成。当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰流,由于通道或空隙的传热面积很大,火焰通过时立即进行热交换,温度降低极快。当火焰温度下降到一定温度时火焰便熄灭。在设计阻火器的内部阻火元件时尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度尽快降低到着火点以下,达到阻止火焰蔓延的目的。根据英国罗贝尔对阻火器进行实验表明:传热作用对阻火器熄灭火焰不是主要的,而是器壁效应起主要作用。

(2)器壁效应

根据燃烧与爆炸连锁反应理论[2],认为燃烧与爆炸现象的产生并不是分子直接作用的结果,而是受外来能源(热能、辐射能、电能、光能、化学反应能等)的激发,分子键受到破坏,产生具备反应能的分子(称为活化分子),这些活化分子在发生化学反应时,首先分裂出十分活跃而生命短促的自由基。化学反应就是靠这些自由基进行的。自由基与其他分子相撞,生成新的产物,同时也产生新的自由基再继续与其他分子发生反应。当燃烧的可燃气体通过阻火元件的狭窄通道时,自由基与通道壁的碰撞几率增大,参加反应的自由基减少。当阻火器的通道窄到一定程度时,自由基与反应分子之间的碰撞几率随之减少,自由基与通道壁的碰撞几率增大,当自由基与通道壁的碰撞占主导地位,由于自由基数量急剧减少,当化学反应自由基销毁速率大于产生速率时,反应不能继续进行,当通道尺寸减少到一定程度时,这种器壁效应就造成了火焰不能继续传播的条件,火焰

即被阻止,也即燃烧反应不能通过阻火器继续传播。但是在大多数情况下,阻火器的传热效应和碰撞效应同时存在。火焰发生淬熄的过程如图2.1所示爆燃火焰在狭缝中淬熄主要是由于火焰面的化学反应放热与散热条件不匹配引起的。火焰以速度v进入狭缝时火焰面内靠近狭缝冷壁处作为化学反应活化中心的自由基和自由原子与冷壁相碰撞放出其能量,这相当于反应区的热量流向冷壁边界,从而当火焰面到达一定距离时,在壁面附近产生了熄灭层。随着火焰面的运动,熄灭层厚度不断增大,以至于自由基进入熄灭层内就被复合成分子并放出能量,而仅有少量自由基能穿透熄灭层与冷壁相撞。在后续进程中,火焰在该狭缝内完全淬熄。能使火焰发生淬熄的通道直径称为淬熄直径,用D来表示。火焰在具有淬熄直径D的通道上传播到熄灭之前的那段距离称为淬熄长度,用l来表示。

图2.1 燃烧火焰淬熄原理模型[2]

2.2阻火器的种类

(1)按用途不同分类

隔爆型:主要用于阻隔可燃物燃烧或爆炸火焰的传播,且能承受一定的爆炸压力的作用。

耐烧型:主要用于阻止可燃物燃烧火焰的传播,且能承受一端时间的燃烧作用。

阻爆轰型:主要用于阻止可燃物从爆燃向爆轰转变火焰的传播,且能承受较大爆炸压力的作用。

(2)按阻火器安装位置分类

管端阻火器:安装在管子顶端;管中阻火器:安装在管子中间。

(3)按阻火器用途分类

油罐阻火器、加油站阻火器、车用阻火器、加热炉用阻火器、火炬阻火器、排风导管阻火器、船用阻火器、乙炔阻火器、氢气阻火器等。

(4)按阻火器结构分类

金属网型阻火器、波纹型阻火器、平行板型阻火器、多孔板型阻火器、泡沫金属型阻火器、充填型阻火器、水封型阻火器、复合型阻火器和星型旋转阀阻火器等。(5)按阻火器使用气体介质分类

Ⅰ级气体阻火器、ⅡA级气体阻火器、ⅡB级气体阻火器、ⅡC级气体阻火器。

2.3阻火器主要应用场所

(1)输送易燃或可燃气体管道;

(2)存储石油和石油产品油罐;

(3)爆炸危险系统通风管口;

(4)加热炉中的可燃气体网管;

(5)油气回收系统及内燃机排气系统。

2.4 阻火器特点

(1)阻火器是用来阻止易燃气体和易燃液体蒸汽的火焰蔓延的安全装置。

(2)当爆炸性混合气体或爆炸性液体形成的蒸汽与空气的混合物的火焰经过足够小的断面或狭缝时,由于壁面的冷却效应和碰撞效应,导致自由基或活性分子的复合消失,破坏了化学链式反应的条件,因而不能形成连续燃烧薄膜或燃烧通路,火焰在其中传播一段距离后便会自动熄灭。

(3)机械阻火器常由大量只允许火焰通过的细小通道或空隙固体材料组成。工业阻火器分为机械阻火器、液封阻火器和料封阻火器等类型,主要用于阻隔燃烧和爆炸初期的火灾火焰地蔓延;主动式隔爆装置通过传感器探测到的爆炸型号实施致动;被动式隔爆装置则依靠爆炸波本身来引发致动。

(4)阻火器的作用是防止外部火焰窜入存有易燃易爆气体的设备、管道内或阻止火焰在设备、管道间蔓延。阻火器是应用火焰通过热导体的狭小孔隙时,由于热量损失而熄灭的原理设计制造。

3波纹型阻火器(乙烯/空气)设计

3.1 GZW-1型波纹型阻火器

管道阻火器适用于加热炉、裂解炉、燃气锅炉等,因为这些炉子都用可燃气体作燃料,由于操作上的失误或泄漏,易于造成输气管道回火而引起工艺装置爆炸的危险。为防止回火爆炸应安装加热炉阻火器。它安装在燃气主管和油气输送管线上,其回火距离(火源至阻火器距离)不大于10 m。加热炉阻火器应用于管道上,因此亦属于管道阻火器,它有别于储罐阻火器。

图3.1 波纹型阻火器实物图

图3.2 波纹型阻火器结构图

GZW-1型波纹型阻火器零部件材料及外形尺寸如表3.1与表3.2:

表3.1 零部件材料

表3.2 国标法兰连接外形尺寸: GB 、JB

规格 D 2 D L H N-d DN50 110 140 220 235 4×14 DN80 150 185

280 270 4×18 DN100 170 205 325 275 4×18 DN150 225 260 425 290 8×18 DN200 280 315 495 305 8×18 DN250 335 370 595 320 12×18 DN300

395

435

655

405

12×23

3.2波纹型阻火器结构

波纹型阻火器主要由阻火器壳体、阻火层两部分组成。阻火器壳体如下图3.3所示:

阻火层

图3.3 阻火器壳体尺寸

如图3.4所示,阻火层芯件核心由两层超薄的不锈钢带制成:

一层钢带被压成波型;另一层为平面钢带。将两种钢带组成间隔围绕其与圆心轴缠绕而成,由无数个断面为三角形的直通流道组成。在芯件内部有一个支架,用来增强芯件的结合强度,避免芯件在阻燃过程中被介质产生的爆炸压力冲散。

图 3.4阻火层芯件结构

3.3阻火器结构设计

(1)气体熄灭直径和孔网直径

使火焰不能继续传播的阻火器最大通道直径称为气体熄灭直径。气体熄灭直径大小取决于气体种类,并直接关系到阻火器的阻火效能。在设计阻火器时,应根据可燃气体燃烧速度选取熄灭直径,这种估算方法对大多数饱和烃和易燃气体适用,但不适用燃烧速度更快的易燃气体。另外,由于乙烯气体是不饱和烃,具有不同于普通易燃气体的特性,不能按饱和烃来处理。

常态下几种常见气体的燃烧速率与熄火直径数据如表3.3:

表3.3 常态下气体燃烧速率及熄火直径数据[3]

一般来说,阻火层通道或孔隙直径可按气体熄灭直径来选取,但由于剥燃火焰速度远快于标准燃烧速度,因此,在实际设计中,阻火层通道或孔隙直径按半气体熄灭直径选取,当然也可以通过增加阻火层厚度来提高阻火器效能。阻火层孔隙大小是影响阻火效能的重要因素,易燃气体熄灭直径大小直接关系到阻火层的孔隙尺寸。熄灭直径可以通过试验来测定,也可通过熄灭间隙来近似估算:

0.403(3.1)

d0=4.53E mi n

D0=1.54d0(3.2)式中:d0——熄灭间隙,mm;

E min——最小点火能,mJ;

D0 ——熄灭直径,mm。

表3.4 典型气体-空气混合物最小点火能[3]

由表3.4可知乙炔最小点火能为0.096 mJ。

0.403 =4.53×0.0960.403 mm=1.762 mm

d0=4.53E mi n

D0=1.54d0=1.54×1.762 mm=2.713 mm

实验表明,对于波纹型和金属型阻火器和阻火层,其波纹高度和孔网直径一般不超过熄灭直径一半,即:

?m≤D0

(3.3)

2式中--?m为波纹(形状为等腰或等边三角形)高度或孔网直径,mm

由该式可得h m=1.357 mm

(2)阻火层厚度

一端开口的管道内,点火方式可以分为靠近开口端点火、靠近闭口端点火或靠近阻火器点火三种情形。无论何种点火方式,阻火器内火焰传播速度均取决于可燃气体的性质和点火与阻火器之间的距离(即点火距离)。由表3.5可以看出,在相同点火距离下,不同性质气体火焰传播速度并不相同;同一种气体火焰传播速度随点火距离的增大而迅速提高,当点火距离达到10 m时,火焰传播速度已达到爆轰速度(2133 m/s)。因此,为降低火焰传播速度,应尽可能缩短点火距离。一般来说,点火距离不超过10 m,在某种特殊情况下需超过10 m时,管道和阻火器应能承受5.5 MPa以上压力,并设有泄爆孔。火焰传播速度与点火距离关系如表3.5:

表3.5火焰传播速度与点火距离的关系[4]

对于金属网型和多孔板型阻火器,阻火层能有效阻止火焰传播的最大速度(不包括爆轰火焰速度)可以按以下经验公式进行计算:

v m =0.38ay

d m

2(3.4)

式中:v m ——阻火器能阻止火焰传播的最大速度,m/s ;

a ——有效面积比,即阻火层实际面积与阻火层空隙面积之比; y ——阻火层厚度,cm ; d m ——阻火层孔眼直径,cm 。

上式用于三角形孔眼的波纹型阻火层,d m 表示水力直径。

关于阻火层厚度与最大火焰速度关系如图3.5所示:

图3.5阻火层厚度与最大火焰速度关系[5]

25 50 75 阻火器厚度/mm 火焰速度/m·s -1 300 240 180 120 60 0

a =0.8

d =0.76 mm

d =1.00 mm

d=1.27 mm

①有效面积比a的确定:

d m值不得超过熄灭直径的50%。

又由于d=1.27远小于熄灭直径D0=2.713 mm。波纹型阻火器阻火层的厚度最小为13 mm,所以取a=0.8。

②阻火层厚度y的计算:

又几何知识可知?m=4S tr

P tr

式中S tr、P tr——分别为三角形孔眼的面积及周长,cm2,cm。

本次设计阻火层波纹为等边三角形,其边长:

l=

h m

cos300

=23

h m

3

又知S tr=1

2l?=3

3

?m2, p tr=3l=23?m

则可得d m=2

3

?m=0.905 mm=0.0905 cm

由表3.5,取乙烯/空气火焰传播速度152 m/s。根据式(3.4),得:

v m=0.38ay

d m2?152=0.380.8y

0.0905

?y=4.095125 cm=40.95 mm

为有一定的安全裕量,这里取y=41 mm

(3)壳体材质

阻火器必须满足耐腐蚀、耐高温、高强度等要求。其壳体可采用铸铁、铸铝、铸钢等材料来制造;在阻火器内部或其他设备组装时,不得使用动物皮革或植物纤维垫片。由表3.6可知,合金结构钢Cr40 满足要求。

表3.6 常用材料力学性能[6]

(4)壳体尺寸

①壳体厚度

在内部爆炸压力的作用下,阻火器壳体不得发生破裂或者永久性变形,并能够承受0.9 MPa以上的水压试验,在水压试验中,阻火器内部垫片及其他部位1 min内应该没有渗漏和破裂或塑性变形等发生。对于塑性材料的阻火器壳体,其厚度可以按照下面的公式来计算:

S B=pD

2.3σL?p

+C(3.5)式中:S B——阻火器壳体厚度,m;

D ——壳体中腔最大内径,cm;

σL——材料允许拉应力,MPa;

p ——设计压力,一般可取公称压力,MPa;

C ——附加裕量,cm。

设计要求壳体直径D为80 mm。由表3.6知,合金结构钢(型号40Cr)的抗拉强度σb=980 MPa,根据相关理论知识:

令D=8.0 cm ,σL=980 MPa ,p=5.0 MPa[7],

S B=S B=pD

2.3σL?p =5.0×8.0?2S B

2.3×980?5.0

S B=0.0177 m=1.77 cm

为安全起见留有一定的裕量,这里令S B=2.0 cm ,则有附加裕量

C=2.0-1.77=0.23 cm

②阻火层距离阻火器壳体前后端长度

阻火器壳体尺寸会直接影响流体阻力的大小。通常情况下,阻火器壳体直径D应比与其配合使用的管道公称直径d大4倍(即D≈4d),阻火层距离阻火器壳体前后端的长度分别为

L’ ≈(0.5~1.0)D

和L” ≈(0.5~1.5)D

则可得L’+L”=L-2S B-y=130-2×20-41=49 mm

可以取L’ =24 mm ,L”=25 mm;则满足上述条件。

3.4阻火器性能测试

在阻火器使用之前,必须经过阻爆和耐烧性能测试。阻爆试验是指在一定距离内将试验装置内的可燃气体点燃,使火焰或火花通过阻火器时被熄灭的一种试验。耐烧试验则是指在无回燃条件下,使可燃气体燃烧火焰持续通过阻火层时,阻火层能够承受一定时间内的火焰燃烧而不被烧坏的一种试验。

此外,一个性能优良的阻火器除了具有良好的阻火和耐烧性能,还要有尽可能小的流阻。阻火器压降的大小取决于其结构形式及气流速度不同阻火器的压降一般需要通过试验来测定,也可以利用经验公式进行估算。

4课程设计总结

通过以上的计算、设计等相关步骤,可以设计出一个形状为圆柱形壳体、材料为合金结构钢Cr40的乙烯/空气混合气体管道波纹阻火器设计。壳体的管道公称直径为20 mm,壳体直径为80 mm,壳体总长为130 mm,壳体厚度为20 mm,阻火层厚度为41 mm,阻火层距离阻火器壳体前端长度为24 mm,阻火层距离阻火器壳体后端长度为25 mm。

参考文献

[1] 王海福, 冯顺山. 防爆学原理[M]. 北京: 北京理工大学出版社, 2004: 119-121.

[2] 胡双启, 张景林. 燃烧与爆炸[M]. 北京: 兵器工业出版社, 1992.

[3] 王凤英, 刘天生. 防火防爆技术[M]. 北京: 兵器工业出版社, 2007.

[4] 宋占兵. 预混火焰在狭缝中的传播机理与熄灭条件的研究[D]. 大连: 大连理工大学, 2005.

[5] 孙少辰, 毕明树, 刘刚等. 阻火器性能测试方法试验性研究[J]. 化工学报, 2014, 65(Sl1): 441 450.

[6] 吴宗泽, 罗圣国. 机械设计课程设计手册[M]. 北京: 高等教育出版社, 2012.

[7] 徐鹏. 简明工程力学[M]. 北京: 电子工业出版社, 2010.

天然气输气管道设计与管理

一、天然气概况 1、天然气定义:从地下开采出来的可以燃烧的气体 2、天然气来源:气田气,油田气。 3、天然气组成:60%~90%为甲烷和乙烷,10%~40%的丙,丁,戊烷及重烃,在工标状态下只有甲、乙、丙、丁烷为气态,其余都为液态。 二、输气管道概况 1、输气管道分类:矿场集气管道,干线输气管道,城市配气管网 2、世界著名大型输气管道:前苏联乌连戈依——中央输气管道,全系统由6条输气干线组成,最著名的属亚马尔输气管道。该管道在苏联境内长4451km,建设了41座压缩机站和2座冷却站,经西西伯利亚地区穿越水域

945km,穿越河流700余处。 3、中沧线是中国第一次采用燃气轮机驱动离心压缩机输送油田伴生气的输气管线。 4、西气东输管线包括:青海涩北至甘肃兰州(2000年开工,02年竣工投产),重庆忠县至武汉(2000年开工),塔里木至上海(02年7开工,全长400多千米,管径1016mm,操作压力10MPa) 5、中国未来十年管网总体布局:两纵,两横,四枢纽(在北京,上海,信阳和武汉设立调度中心或分调度中心),五气库(在北京,上海,大庆,山东,和南阳建立地下储气库) 6、管道防腐技术:从简单的人工除锈刷漆发展到外涂层与阴极保护和牺牲阳极相结合的联合保护。自1964年开始使用阴极保护到今天,所有的输气管道上都建有阴极保护站,单站保护长度可达50~80km. 输气管道的主要工艺设备包括压缩机组,阀门,计量设备和调压设备。 三、天然气的性质 1、天然气的分类 (1)按矿藏特点分:纯气藏天然气(在天然气开发过程中,不论何阶段流体在地层中均成气体,采出地面后可能有部分液体析出),凝析气藏天然气(矿藏流体在地层原始状态呈气态,但开采到一定阶段,随地层压力减小有部分烃类在地层中呈液态析出),油田伴生天然气(与原油共存,开采时与原油同时被采出,经油气分离得到的天然气) (2)按烃类组分关系分:干气(地层中呈气态,开采出后在管线设备中也不会有液态烃析出),湿气(地层中呈气态,在一般地面设备的温度、压力

输气管道工程设计条件

一、基础资料 1 需业主提供的基础资料 开展输气管道工程设计前业主至少应提供下列资料,但不限于: 1.1 设计任务书或设计委托书; 1.2 资源与市场数据。 1.3 技术要求,至少应包括: 1)管道的起、终点、系统功能、建设水平、质量要求; 2)管输气体的来源及物性; 3)管道的任务输量、最小输量、最大输量; 4)管道沿线天然气的分输或注入要求; 5)管道用户用气特点及不均匀系数; 6)上游供气方不同年份供气量及供气压力; 7)不同年份用户用气量及用气压力需求; 8)工期要求。 1.4 管网规划及与拟建管道有关的已建的管道系统状况。 1.5 业主对工程管理的要求。 1.6 经济评价与概算资料 1)资金来源及贷款方式; 2)工程建设期及分年度投资比例; 3)类似工程投资及施工情况。 2 现场需要收集的外部接口资料 2.1 自然状况资料 1 管道沿线行政区划及地方志,沿线城市、乡镇发展规划。 2 管道沿线地形、地貌及植被分布情况; 3 管道沿线资源情况,包括:矿产、农业、林业、牧业、渔业、动植物、文物保护区分布等; 4 管道沿线重要设施分布,包括:军事设施、铁路枢纽、机场、码头、水库等的分布和发展计划; 5 管道沿线附近已建管线和构筑物的情况; 6 管道沿线重大项目的建设与规划; 7 基本气象资料。根据工程规模和建设水平的要求,气象资料宜为近10、20、30 年和50 年的统计数据。包括:全年平均气温、最冷月平均气温、极端最高温度、极端最低温度;管道埋深处最高、最低、和最冷月平均地温,标准冻土深度和最大冻土深度;降雨量(当地采用的降雨量计算公式,年和逐月的平均、最大、最小降雨量、最大强度降雨量、连续降雨最多的天数)、降雪量(初雪日、终雪日、连续降雪时间、最大积雪深度)、蒸发量,年平均日照、雷电日、沙尘暴天数,冰凌、冰雹强度;相对湿度;海拔高度;当地平均大气压;近年各月最大风速及各月风向、频率或全年的和夏季的风向频率玫瑰图、最大风速和风压值、静风出现的日期和持续时间、风暴和风沙出现的时间和状况。 8 沿线人文资料; 9 沿线水利设施、水利规划及水利部门的有关规定;

机械设计基础课程设计计算说明书模版.

机械设计基础课程设计 计算说明书 题目: 一级齿轮减速器设计 学院:生物科学与工程学院 班级:10级生物工程2班 设计者:詹舒瑶 学号:201030740755 指导教师:陈东 2013年 1 月16 日

目录 一、设计任务书……………………………………………………………………………… 1.1 机械课程设计的目的………………………………………………………………… 1.2 设计题目……………………………………………………………………………… 1.3 设计要求……………………………………………………………………………… 1.4 原始数据……………………………………………………………………………… 1.5 设计内容……………………………………………………………………………… 二、传动装置的总体设计…………………………………………………………………… 2.1 传动方案……………………………………………………………………………… 2.2 电动机选择类型、功率与转速……………………………………………………… 2.3 确定传动装置总传动比及其分配………………………………………………… 2.4 计算传动装置各级传动功率、转速与转矩……………………………………… 三、传动零件的设计计算…………………………………………………………………… 3.1 V带传动设计…………………………………………………………………………… 3.1.1计算功率…………………………………………………………………………… 3.1.2带型选择…………………………………………………………………………… 3.1.3带轮设计…………………………………………………………………………… 3.1.4验算带速…………………………………………………………………………… 3.1.5确定V带的传动中心距和基准长度……………………………………………… 3.1.6包角及其验算……………………………………………………………………… 3.1.7带根数……………………………………………………………………………… 3.1.8预紧力计算………………………………………………………………………… 3.1.9压轴力计算………………………………………………………………………… 3.1.10带轮的结构………………………………………………………………………… 3.2齿轮传动设计…………………………………………………………………………… 3.2.1选择齿轮类型、材料、精度及参数……………………………………………… 3.2.2按齿面接触疲劳强度或齿根弯曲疲劳强度设计………………………………… 3.2.3按齿根弯曲疲劳强度或齿面接触疲劳强度校核………………………………… 3.2.4齿轮传动的几何尺寸计算………………………………………………………… 四、铸造减速器箱体的主要结构尺寸……………………………………………………… 五、轴的设计………………………………………………………………………………… 5.1高速轴设计……………………………………………………………………………… 5.1.1选择轴的材料……………………………………………………………………… 5.1.2初步估算轴的最小直径…………………………………………………………… 5.1.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.2低速轴设计……………………………………………………………………………… 5.2.1选择轴的材料……………………………………………………………………… 5.2.2初步估算轴的最小直径…………………………………………………………… 5.2.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.3校核轴的强度…………………………………………………………………………… 5.3.1求支反力、弯矩、扭矩计算……………………………………………………… 5.3.2绘制弯矩、扭矩图………………………………………………………………… 5.3.3按弯扭合成校核高速轴的强度……………………………………………………

输气管道课程设计

输气管道课程设计 姓名:李轩昂 班级:油储1541 学号:201521054114 指导教师:任世杰

目录 前言------------------------------------------------------------------------------------------------- 4第一章设计概述---------------------------------------------------------------------------------- 5 1.1设计原则--------------------------------------------------------------------------------- 5 1.2 管道设计依据和规范----------------------------------------------------------------- 5 1.3长输气管道设计原始资料------------------------------------------------------------ 6 1.3.1天然气管道的设计输量 ------------------------------------------------------- 6 1.3.2气源特性 ------------------------------------------------------------------------- 6 1.3.3气源处理 ------------------------------------------------------------------------- 6 1.3.4管道设计参数 ------------------------------------------------------------------- 7 1.3.5基本经济参数 ------------------------------------------------------------------- 7第2章管道工艺计算---------------------------------------------------------------------------- 9 2.1天然气物性参数计算------------------------------------------------------------------ 9 2.1.1天然气的平均分子质量、平均密度和相对密度------------------------- 9 2.1.2天然气压缩因子的计算 ------------------------------------------------------- 9 2.1.3天然气粘度计算 -------------------------------------------------------------- 10 2.1.4定压摩尔比热 ----------------------------------------------------------------- 10 2.2输气管道水力计算------------------------------------------------------------------- 11 2.2.1雷诺数的计算 ----------------------------------------------------------------- 11 2.2.2管道内压力的推算 ----------------------------------------------------------- 12 2.2.3管道壁厚推算 ----------------------------------------------------------------- 12 2.3输气管道热力计算------------------------------------------------------------------- 12 2.3.1总传热系数 -------------------------------------------------------------------- 12 2.3.2天然气的平均地温 ----------------------------------------------------------- 13 2.3.3考虑气体的节流效应时输气管沿管长任意点的温度计算----------- 13 2.4管道工艺计算结果------------------------------------------------------------------- 14 2.4.1首站到分输站1 --------------------------------------------------------------- 14 2.4.2分输站1到分输站2 --------------------------------------------------------- 14 2.4.3分输点2到末点 -------------------------------------------------------------- 15

汽车设计课程设计--计算说明书..

汽车设计课程设计说明书 题目:曲柄连杆机构受力分析 设计者:侯舟波 指导教师:刘忠民吕永桂 2010 年 1 月18 日

一、课程设计要求 根据转速、缸内压力、曲柄连杆机构结构参数,计算发动机运转过程中曲柄连杆机构受力,完成计算报告,绘制曲柄连杆机构零件图。 1.1 计算要求 掌握连杆往复惯性质量与旋转离心质量折算方法; 掌握曲轴旋转离心质量折算方法; 掌握活塞运动速度一阶、二阶分量计算方法; 分析活塞侧向受力与往复惯性力及相应设计方案; 分析连杆力及相应设计方案; 采用C语言编写曲柄连杆机构受力分析计算程序; 完成曲柄连杆机构受力计算说明书。 1.2 画图要求 活塞侧向力随曲轴转角变化 连杆对曲轴推力随曲轴转角变化 连杆轴承受力随曲轴转角变化 主轴承受力随曲轴转角变化 活塞、连杆、曲轴零件图(任选其中两个) 二、计算参数 2.1 曲轴转角及缸内压力参数 曲轴转速为7000 r/min,缸内压力曲线如图1所示。 图1 缸内压力曲线 2.2发动机参数 本计算过程中,对400汽油机进行运动和受力计算分析,发动机结构及运动参数如表1所示。

表1 发动机主要参数 参数 指标 发动机类型 汽油机 缸数 1 缸径D mm 91 冲程S mm 63 曲柄半径r mm 31.5 连杆长l mm 117 偏心距e mm 0 排量 mL 400 活塞组质量'm kg 0.425 连杆质量''m kg 0.46 曲轴旋转离心质量k m kg 0.231 标定功率及相应转速 kw/(r/min ) 17/7500 最高爆发压力 MPa 5~6MPa 三、计算内容和分析图 3.1 运动分析 3.1.1曲轴运动 近似认为曲轴作匀速转动,其转角,t t t n 3 7006070002602π ππα=?== s rad s rad dt d /04.733/3700≈== π αω 3.1.2活塞运动规律 图2 中心曲轴连杆机构简图

排水工程课程设计 (1)

吉林师范大学环境科学与工程学院 课程设计报告 课程名称:排水工程 设计题目:某城市排水管网初步设计 姓名:傅浩然 专业:环境工程 班级:二班 学号: 指导教师:刘浩 2016年11 月7日

摘要:本次的排水管网课程设计任务是进行某城镇的污水管网的初步设计。根据课程设计任务书上所提供的各种数据及材料,并结合参考文献上的公式和经验数据,本次设计采用雨水污水分流制排放体系。具体内容包括污水干管及主干管的排水管网布置,首先在所提供的城市平面上进行排水管网的初步设计,此时需要考虑流量要求、施工条件、成本节约等因素。其后确定管网排布设计无误后,进行排水设计管段的水力计算,其中包括各

设计管段的管长、设计流量、管道数据的选取(流量、流速、管径、充满度)、管道输水能力、标高(地面、管内水面、管内底)、以及管道埋深等等。 关键词:主干管干管支管 目录 1 设计任务及设计资料 (1) 课程设计任务 (1) 1.2 课程设计原始资料 (1) 1.2.1 城市规划资料 (1) 1.2 .2课程设计原始资料 (1) 1.2 .3课程设计原始资料 (2) 1.3 课程设计原始资料 (2) 1.课程设计原始资料 (2) 1.3.2 课程设计原始资料 (3) 1.3.3 课程设计原始资料 (3)

2 污水管道设计计算 (4) 在小区平面图上布置污水管道 (4) 街区编号并计算其面积 (4) 划分设计管段,计算设计流量 (4) 水力计算 (7) 2.4.1水力计算 (7) 2.4.2水力计算 (7) 2.4.3水力计算 (8) 2.4.4水力计算 (8) 2.4.5水力计算 (8) 2.4.6水力计算 (9) 3 绘制管道平面图和纵剖面图见附录 (10) 4 结论 (10)

输气管道设计

天然气输气管道设计 1 管道材质及壁厚选择 壁厚 F D P S H H σδ2= H P —设计压力,MPa ; H D —管道的外径,mm ; S σ—所选钢材的最小屈服强度,MPa ; F —根据地区等级确定的设计系数; 2 管道轴向应力及稳定性验算 h l t t E μσασ+-=)(21 σ σ2Pd h = l σ—管道轴向应力,MPa ; E —钢材的弹性模量,为51006.2?MPa ; α—钢材的线性膨胀系数,取5102.1-?MPa ; 1t —管线安装温度,C 0; 2t —管线工作温度,C 0; μ—泊松比,取0.3;

h σ—管线的环向应力,MPa ; P —管道内压,MPa ; d —钢管内径,cm ; σ—钢管的公称壁厚,cm ; 应力满足如下条件: s l h σσσ9.0<- 敷设: 弯头的曲率半径大于等于4倍管外直径,并应满足清管器或检测仪器能顺利通过管道要求。 试压。

工艺说明,,, 1物理和热力性质(平均分子量,相对密度,平均密度,热值) 2压缩因子相关方程式。(Gopal 的相关方程式) 3定压摩尔比热(根据干线输气管道实用工艺计算方法) 4焦—汤系数(根据干线输气管道实用工艺计算方法) 二,水力计算 1雷诺数Re 2水力摩阻系数λ 三,输气管道内径 δ2-=H B D D

强度设计系数 地区等级 强度系数 一级地区 0.72 二级地区 0.6 三级地区 0.5 四级地区 0.4 2压力 (1)压缩机入口压力εH B P P = =设计压力/压比 (2)起点压力 211P P P P H δδ--= 1P δ—压缩机与干线输气管之间连接管线的压力损失,输气工作压力 为7.5~10MPa 时,1P δ≈0.05~0.07MPa 2P δ—天然气冷却系统的压力损失,按照“标准”取0.0588MPa (3)终点压力 32P P P B δ+= B P —压缩机入口压力;

输气管道设计规范 GB50251-2003

1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体 pipeline gas 通过管道输送的天然气和煤气。 2.O.2 输气管道工程 gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站 gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。

2.O.4 输气首站 gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站 gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站 gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站 gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站 compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。 2.0.9 地下储气库 underground gas storage 利用地下的某种密闭空间储存天然气的地质构造。包括盐穴型、枯竭油气藏型、含水层型等。 2.O.10 注气站 gas injection station 将天然气注入地下储气库而设置的站。 2.O.11 采气站 gas withdraw station 将天然气从地下储气库采出而设置的站。 2.O.12 管道附件 pipe auxiliahes 指管件、法兰、阀门、清管器收发筒、汇管、组合件、绝缘法兰或绝缘接头等管道专用承压部件。

机械课程设计计算说明书

机械课程设计 计算说明书 ——题目D4.机械厂装配车间输送带传动装置设计 机电工程学院机自11-8 班 设计者cqs 指导老师tdf 2014年1月15号 中国矿业大学

目录 第一章机械设计任务书 机械课程设计任务书 (2) 第二章机械课程设计第一阶段 2.1、确定传动技术方案 (3) 2.2、电动机选择 (4) 2.3、传动件的设计 (6) 第三章机械课程设计第二阶段 3.1装配草图设计第一阶段说明 (23) 3.2轴的设计及校核 (23) 3.3轴承的设计及校验 (28) 3.4键的设计及校验 (22) 第四章机械课程设计第三阶段 4.1、轴与齿轮的关系 (30) 4.2、端盖设计 (30) 4.3、箱体尺寸的设计 (32) 4.4、齿轮和轴承的润滑 (34) 第五章机械课程设计小结 机械课程设计小结 (34) 附1:参考文献

第一章机械设计课程设计任务书 题目D3.机械厂装配车间输送带传动装置设计 图1:设计带式运输机传动装置(简图如下) 一、设计要求 1、设计条件: 1)机器功用由输送带传送机器的零部件; 2)工作情况单向运输、轻度振动、环境温度不超过35℃; 3)运动要求输送带运动速度误差不超过5%; 4)使用寿命10年,每年350天,每天16小时; 5)检修周期一年小修;两年大修; 6)生产批量单件小批量生产; 7)生产厂型中型机械厂 2、设计任务 1)设计内容1、电动机选型;2、带传动设计;3、减速器设计;4、联轴器选型设计;5、其他。 2)设计工作量1、传动系统安装图1张;2、减速器装配图1张;3、零件图2张;4、设计计算说明书一份。 3、原始数据 主动滚筒扭矩(N·m):800 主动滚筒速度(m/s):0.9 主动滚筒直径(mm):300

给排水管道系统课程设计报告

《给水排水管道系统》课程设计 计算说明书 题目:杭州市给水排水管道工程设计 学院:市政与环境工程学院 专业:给排水科学与工程 姓名: 学号:02 指导老师:谭水成张奎宋丰明刘萍 完成时间:2013年12月25日

河南城建学院 2013年12月25日 前言 给水排水管道工程是给水排水工程的重要组成部分,可分为给水管道工程和排水管道工程两大类。 给水管道工程是论述水的提升,输送,贮存,调节和分配的科学。其最基本的任务是保证水源的原料水送至水处理构筑物及符合用户用水水质标准的水输送和分配到用户。这一任务是通过水泵站,输水管,配水管网及调节构筑物等设施的共同工作来实现的,它们组成了给水管道工程。设计和管理的基本要求是以最少的建中造费用和管理费用,保证用户所需的水量和水压,保证水质安全,降低漏损,并达到规定的可靠性。 给水排水管网工程是给水排水工程中很重要的组成部分,所需(建设)投资也很大,同时管网工程系统直接服务于民众,与人们生活和生产活动息息相关,其中任一部分发生故障,都可能对人们生活、生产及保安消防等产生极大影响。因此,合理地进行给水排水管道工程规划、设计、施工和运行管理,保证其系统安全经济地正常运行,满足生活和生产的需要,无疑是非常重要的。 室外给水排水工程是城镇建设的一个重要组成部分,其主要任务就是为城镇提供足够数量并符合一定水质标准的水;同时,把人们在生活、生产过程使用后的污水汇集并输送到适当地点进行净化处理,达到一定水质标准后,或重复使用,或灌溉农田,或排入水体。 室内给水排水工程的任务是将室外给水系统输配的净水组织供应到室内各个用水点,将用后的污水排除汇集到室外排水系统中去。 做为工程类专业学生,实践学习和设计是我们自身获取知识和经验的最好环节。学

输气管道工程设计规范2015

输气管道工程设计规范 1 总则 2 术语 3 输气工艺 3.1一般规定 3.1.1 输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计量。当采用年输气量时,设计年工作天数应按350d计算。 3.1.2进入输气管道的气体应符合现行国家标准《天然气》GB17820中二类气的指标,并应符合下列规定: 1 应清除机械杂质; 2 露点应比输送条件下最低环境温度低5℃; 3 露点应低于最低环境温度; 4 气体中硫化氢含量不应大于20mg/m3; 5 二氧化碳含量不应大于3%。 3.1.3 输气管道的设计压力应根据气源条件、用户需求、管材质量及管道附近的安全因素,经技术经济比较后确定。 3.1.4 当输气管道及其附近已按现行国家标准《钢质管道外腐蚀控制规范》GB/T21447和《埋地钢质管道阴极保护技术规范》GB/T21448的要求采取了防腐措施时,不应再增加管壁的腐蚀裕量。 3.1.5 输气管道应设清管设施,清管设施与输气站合并建设。 3.1.6 当管道采用内壁减阻涂层时,应经技术经济比较确定。 3.2工艺设计 3.2.1工艺设计应根据气源条件、输送距离、输送量、用户的特点和要求以及与已建管网和地下储气库容量和分布的关系,对管道进行系统优化设计,经综合分析和技术经济对比后确定。 3.2.2 工艺设计应确定下列内容: 1 输气总工艺流程; 2 输气站的工艺参数和流程; 3 输气站的数量及站间距; 4 输气管道的直径、设计压力及压气站的站压比。

3.2.3 工艺设计中应合理利用气源压力。当采用增压输送时,应结合输量、管径、输送工艺、供电及运行管理因素,进行多方案技术经济必选,按经济和节能的原则合理选择压气站的站压比和确定站间距。 3.2.4 压气站特性和管道特性应匹配,并应满足工艺设计参数和运行工况变化的要求。再正常输气条件下,压缩机组应在高效区内工作。 3.2.5 具有分输或配气功能的输气站宜设置气体限量、限压设施。 3.2.6 当输气管道起源来自油气田天然气处理厂、地下储气库、煤制天然气工厂或煤层气处理厂时,输气管道接收站的进气管线上应设置气质监测设施。 3.2.7 输气管道的强度设计应满足运行工况变化的要求。 3.2.8 输气站宜设置越站旁通。 3.2.9进、出输气站的输气管线必须设置截断阀,并应符合现行国家标准《石油天然气工程设计防火规范》GB50183的有关规定。 3.3 工艺设计与分析 3.3.1 输气管道工艺设计至少应具备下列资料: 1 管道气体的组成; 2 气源的数量、位置、供气量及其可变化范围; 3 气源的压力、温度及其变化范围; 4 沿线用户对供气压力、供气量及其变化的要求。当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据; 5 沿线自然环境条件和管道埋设处地温。 3.3.2 输气管道水力计算应符合下列规定: 1 当输气管道纵断面的相对高差Δh ≤200m 且不考虑高差影响时,应按下式计算: 5.052221)(1051???????-=TL Z d P P q v λ (3.3.2—1) 式中:v q ——气体(P 0=0.101325MPa ,T=293K )的流量(m 3/d ); P 1——输气管道计算段的起点压力(绝)(MPa ); P 2——输气管道计算段的终点压力(绝)(MPa ); d ——输气管道内径(cm ); λ——水力摩阻系数; Z ——气体的压缩因子; ?——气体的相对密度; T ——输气管道内气体的平均温度(K ); L ——输气管道计算段的长度(km )。 2 当考虑输气管道纵断面的相对高差影响时,应按下列公式计算: 5 .01152221)(21)1(1051??? ?????????????????++??+-=∑=-n i i i i v L h h L TL Z d h P P q αλα (3.3.2—2)

输气管道工程设计规范,gb50251-2015

输气管道工程设计规 范,gb50251-2015 篇一:输气管道设计规范GB50251-2003 1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体pipeline gas

通过管道输送的天然气和煤气。 2.O.2 输气管道工程gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 2.O.4 输气首站gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。

排水工程课程设计

排水工程课程设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

吉林师范大学环境科学与工程学院 课程设计报告 课程名称:排水工程 设计题目:某城市排水管网初步设计 姓名:傅浩然 专业:环境工程 班级:二班 学号: 指导教师:刘浩 2016年11 月7日

摘要:本次的排水管网课程设计任务是进行某城镇的污水管网的初步设计。根据课程设计任务书上所提供的各种数据及材料,并结合参考文献上的公式和经验数据,本次设计采用雨水污水分流制排放体系。具体内容包括污水干管及主干管的排水管网布置,首先在所提供的城市平面上进行排水管网的初步设计,此时需要考虑流量要求、施工条件、成本节约等因素。其后确定管网排布设计无误后,进行排水设计管段的水力计算,其中包括各设计管段的管长、设计流量、管道数据的选取(流量、流速、管径、充满度)、管道输水能力、标高(地面、管内水面、管内底)、以及管道埋深等等。

关键词:主干管干管支管 目录 1 设计任务及设计资料 (1) 课程设计任务 (1) 1.2 课程设计原始资料 (1) 1.2.1 城市规划资料 (1) 1.2 .2课程设计原始资料 (1) 1.2 .3课程设计原始资料 (2) 1.3 课程设计原始资料 (2) 1.课程设计原始资料 (2) 1.3.2 课程设计原始资料 (3)

1.3.3 课程设计原始资料 (3) 2污水管道设计计算 (4) 在小区平面图上布置污水管道 (4) 街区编号并计算其面积 (4) 划分设计管段,计算设计流量 (4) 水力计算 (7) 2.4.1水力计算 (7) 2.4.2水力计算 (7) 2.4.3水力计算 (8) 2.4.4水力计算 (8) 2.4.5水力计算 (8)

输气管道工程设计规范

输气管道工程设计规范 GB 50251-2003 ) 1、适用范围:本规范适用于陆上输气管道工程设计。 2、输气工艺: 1)输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计算,设 计年工作天数应按350d 计算(350d 是为冬夏平衡,同时最大输气量应以标态计算。)。 2)进入输气管道的气体必须除去机械杂质,且至少符合n级天然气标准(GB17820)。 3)当输气管道及其附件已按照国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》 SY0007和《埋地钢质管道强制电流阴极保护设计规范》SY/T0036的要求采取了防腐措施时, 不应再增加管壁的腐蚀裕量。 4)工艺设计应确定的参数有:输气总工艺流程;输气站的工艺参数和流程;输气站的数量和站间距;输气管道的直径、设计压力及压气站的站压比。 5)管道输气应合理利用气源压力。当采用增压输送时,应合理选择压气站的站压比和 站间距。当采用离心式压缩机增压输送时,站压比宜为~,站间距不宜小于100km。 6)具有配气功能的分输站的分输气体管线宜设置气体的限量、限压设施。 7)输气管道首站和气体接收站的进气管线应设置气质监测设施。 8)输气管道的强度设计应满足运行工况变化的要求。 10)输气站应设置越站旁通。进出站管线必须设置截断阀。截断阀的位置应与工艺装置区保持一定距离,确保在紧急情况下便与接近和操作。截断阀应当具备手动操作的功能。 11)输气管道工艺设计应具被以下资料:管输气体的组成;气源数量、位置、供气量及可调范围;气源压力及可调范围,压力递减速度及上限压力延续时间;沿线用户对供气压力、供气量及其变化的要求,当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据;沿线自然环境条件和管道埋设处地温。 12)输气管道的水力计算见本标准6?9页以及简化标准的附录。 13 )输气管道安全泄放 ( 1 )输气站应在进站截断阀上游和出站截断阀下游设置泄压放空设施。 (2)输气站存在超压可能的受压设备和容器,应设置安全阀。安全阀泄放的气体可引入同级压力的放空管线。 (3)安全阀的定压(P o)应根据管道最大允许操作压力(P)确定,并应符合下列要求: a 当P W时,P o= P+; b 当v P W时,P o=; c 当P>时,P o=。 (4)安全阀泄放管直径应按照下列要求计算:

给水排水管道系统课程设计4635559

《给水排水管道系统》 设计说明 系 ? 别:环境与市政工程系 专业:给水排水工程专业

前言 给水排水管道工程是给水排水工程的重要组成部分,可分为给水管道工程和排水管道工程两大类。 给水管道工程是论述水的提升,输送,贮存,调节和分配的科学。其最基本的任务是保证水源的原料水送至水处理构筑物及符合用户用水水质标准的水输送和分配到用户。这一任务是通过水泵站,输水管,配水管网及调节构筑物等设施的共同工作来实现的,它们组成了给水管道工程。设计和管理的基本要求是以最少的建造费用和管理费用,保证用户所需的水量和水压,保证水质安全,降低漏损,并达到规定的可靠性。 给水排水管网工程是给水排水工程中很重要的组成部分,所需(建设)投资也很大,一般约占给水排水工程总投资的50%~80%。同时管网工程系统直接服务于民众,与人们生活和生产活动息息相关,其中任一部分发生故障,都可能对人们生活、生产及保安消防等产生极大影响。因此,合理地进行给水排水管道工程规划、设计、施工和运行管理,保证其系统安全经济地正常运行,满足生活和生产的需要,无疑是非常重要的。 室外给水排水工程是城镇建设的一个重要组成部分,其主要任务就是为城镇提供足够数量并符合一定水质标准的水;同时,把人们在生活、生产过程中使用后的污水汇集并输送到适当地点进行净化处理,达到一定水质标准后,或重复使用,或灌溉农田,或排入水体。 室内给水排水工程的任务是将室外给水系统输配的净水组织供应到室内各个用水点,将用后的污水排除汇集到室外排水系统中去。 做为工程类专业学生,实践学习和设计是我们自身获取知识和经验的最好环节。学生通过设计,综合运用和深化所学的基本理论、基本技能,培养我们独立分析和解决问题的能力,通过设计能使我们具有掌握查阅规范、标准设计图集,产品目录的方法,提高计算、绘图和编写设计说明的水平,作好一个工程师的基本训练。熟练城镇给水排水工程系统的详细计算和培养一定的理论分析和设计的能力。提高方案的比较、技术经济、环境、社会等诸方面的综合分析和论证能力。培养计算机操作和应用能力。熟练专业软件应用。

输气管道设计过程 万

输气管道设计过程 1)在确定输气管道计算流量时要考虑年平均输气不均衡性,确定输气管评估性通过能力利用系数H K : 959.0=??=?πH P H K K K K 2)计算输气管评估性通过能力q : 857.43501017365108 2 =?=??=H K Q q 106m 3/d 8856.3350 106.1336510820=?=??=H K Q q 106m 3 /d 3)设定3个设计压力H P :5.5,6.0,6.5 a MP ; 4)对每个设计压力H P 设定3个压比ε,一般压力比为1.26—1.5之间,我取压力比为:1.3、1.4、1.5; 5) 设定管径(711㎜)为例,与3个设计压力(H P )和3个压比(ε)组成9个输气工艺方案;以下各项计算仅以其中的一个方案(H P =6a MP ,ε =1.3)作为示范,其余各方案的计算列入计算成果表(表1-3)。 6)设计管材的钢种等级为X60,其最小屈服强度σs =413 a MP ; 7)计算钢管的壁厚δ(初定地区等级为Ⅲ类,设计系数F=0.5):

mm F D P s H H 1.113.105 .041327115.62→=???==σδ 8)确定输气管内径: mm D D H B 8.6881.1127112=?-=-=δ 9)根据设计压力H P =6a MP (即压缩机出口压力)和压比ε=1.3,计算压缩机入口压力B P : a H B MP P P 62.43 .16===ε 10)确定输气管计算段的起点压力(即压气站出站压力)1P : a H MP P P P P 90.50588.00412.05.6211=--=--=δδ (天然气在压气站出口端的工艺管线和设备中的压力损失定为0.1 a MP ,小于附录Ⅰ中所列的数值0.11a MP ) 11)确定输气管计算段的终点压力(即下一压气站进站压力)2P : a B MP P P P 70.408.062.42=+=+=δ (天然气在压气站进口端的一级除尘装置和连接管线中的压力损失定为0.08a MP ,小于附录Ⅰ中所列的数值0.10 a MP ) 12)计算输气管计算段的平均压力CP P :

排水工程课程设计修订版

排水工程课程设计修订 版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

吉林师范大学环境科学与工程学院 课程设计报告 课程名称:排水工程 设计题目:某城市排水管网初步设计 姓名:傅浩然 专业:环境工程 班级:二班 学号: 指导教师:刘浩 2016年11 月7日

摘要:本次的排水管网课程设计任务是进行某城镇的污水管网的初步设计。根据课程设计任务书上所提供的各种数据及材料,并结合参考文献上的公式和经验数据,本次设计采用雨水污水分流制排放体系。具体内容包括污水干管及主干管的排水管网布置,首先在所提供的城市平面上进行排水管网的初步设计,此时需要考虑流量要求、施工条件、成本节约等因素。其后确定管网排布设计无误后,进行排水设计管段的水力计算,其中包括各

设计管段的管长、设计流量、管道数据的选取(流量、流速、管径、充满度)、管道输水能力、标高(地面、管内水面、管内底)、以及管道埋深等等。 关键词:主干管干管支管 目录 1 设计任务及设计资料 (1) 1.1 课程设计任务 (1) 1.2 课程设计原始资料 (1) 1.2.1 城市规划资料 (1) 1.2 .2课程设计原始资料 (1) 1.2 .3课程设计原始资料 (2) 1.3 课程设计原始资料 (2) 1.3.1 课程设计原始资料 (2) 1.3.2 课程设计原始资料 (3) 1.3.3 课程设计原始资料 (3)

2 污水管道设计计算 (4) 2.1在小区平面图上布置污水管道 (4) 2.2街区编号并计算其面积 (4) 2.3划分设计管段,计算设计流量 (4) 2.4水力计算 (7) 2.4.1水力计算 (7) 2.4.2水力计算 (7) 2.4.3水力计算 (8) 2.4.4水力计算 (8) 2.4.5水力计算 (8) 2.4.6水力计算 (9) 3 绘制管道平面图和纵剖面图见附录 (10) 4 结论 (10)

输气管道施工组织设计

遂宁地区中低压天然气集输管道工程 (新桥~太和段) 施工组织设计 编制人: 审核人: 批准人: 四川凌众建设工程有限公司

目录 第一章工程概况 -----------------------------------------------------------------3 1.1工程简介 ---------------------------------------------------------------------3 1.2本次工程投标范围 -------------------------------------------------------------4 1.3.本公司及发包人发包专业工程,以及本公司及发包人供应的材料和设备的供应商之间的工作界面划分 -------------------------------------------------------------------------12 1.4主要经济技术指标 -------------------------------------------------------------12 第二章编制依据及施工规范 -------------------------------------------------------14 2.1编制依据 ----------------------------------------------------------------------14 2.2主要遵循法律、法规及标准、规范 ------------------------------------------------14 第三章施工组织部署 --------------------------------------------------------------16 3.1施工组织机构及管理职责

相关主题
文本预览
相关文档 最新文档