当前位置:文档之家› 电路与信号处理

电路与信号处理

电路与信号处理
电路与信号处理

数字信号处理和无线电收放机

数字信号处理(DSP)和无线电收发机 Justin Smith 开发工程师/微波数据系统前言术语“DSP”可能指两个不同的事情。数字信号处理是一般领域用的术语,在这样的领域中,用做为离散(在时间和幅值两个方面)的采样数据集来表示和处理信号和系统。这是一个相对老的领域,在出版的书和杂志中有大量的这方面的研究和数学算法。最初,大多数数字信号处理是在主机和其它通用数字计算机上离线完成的。这就是所谓的数字数据的“后处理”。随着在最近的二十多来年集成电路的复杂性和集成度的飞速增加,开发出专用处理芯片器,它能实时或“在线”进行数字信号处理。这些芯片被称为数字信号处理器(DSPs),并在半导体工业中成为最大的增长市场。

从1988年至今,DSP的市场每年增长40%。这就意味着将引入更高性能的DSPs(及与DSP 有关的产品),并以较低的价格销售。结果有双重意义:第1,随着时间的推移,更多的信号处理可在更快和更复杂的处理器内完成。第2,便宜的DSPs进入更多产品,这些产品如,手持电话、无磁带电话录答机、寻呼机(pager)、高保真度立体声设备和汽车中的主动悬挂系统(active suspension systems in cars)。为什么用DSP?如上所述,在大量的新产品中使用DSP技术。为什么?1) 数据信号处理允许很复杂的算法在实时中使用并可被嵌入产品内。DSP能够从一个信号、加密信号信息中滤掉噪音,把波形变换为数字域进行分析,压缩数据,或甚至自动地,根据情况改变系统的处理过程;2) 因为DSP和DSP相关的芯片是软件控制的,在不改变硬件的情况下,可在系统内改变它们的性能和/或任务。这意味着在产品售出后的升级或另增加的特性可加到产品上,不必把装置返回到制造厂;3) DSP技术可实现高精度的控制。因为处理在软件内实现,功能的精度可得到更精密地控制。没有与模拟量元件有关的误差问题;4) 由于软件控制,因而在制造中能有很高的重复性。可把每个装置调到或校准到按最高性能运行;5) 由于信号处理是由数字处理完成的,因此所使用的算法和方法可在数字计算机上被仿真(模拟)和完善。所做的仿真可精确地与系统中的实现进行比较。这个仿真工具极大地降低了产品的设计周期,并向设计者提供研究更复杂算法的方法;6) 如前节所述,DSP技术的成本在继续下降。这就允许产品制造厂以低的价格提供更复杂的产品。模拟无线电收发机为了讨论DSP技术怎样用于改进无线电收发机的设计,让我们首先看一看无DSP技术的无线电收发机的结构。由于无更佳的术语,我们把它称为“模拟无线电收发机”。这个术语有点误称,因为即使DSP收发机也有重要的“模拟量”部分,但我们将这样理想化的称呼它。下面是模拟量收发机结构。全部调制、解调、滤波和纠错由模拟量处理完成(模拟量滤波器,检测等等)如果需要进行数据的任何其它处理,那么附加的部件、专用的芯片、或微处理机必须加到设计中。因为收发机相当多的功能是在硬件中完成,任何校准或无线电的整定必须在硬件级上进行;例如,扭动一个螺丝调整或更换部件。又因为设计是以硬件为基础的,因而它是一个固定的设计。这就是说,不改变硬件就不能改变功能和性能。

DSP无线电收发机现在让我们来看一看以DSP为基础的收发机设计的结构。我们展示出的是有传统DSP功能和可能的DSP限定任务的DSP设计结构。现在让我们先讨论一个无线通讯设备的传统DSP功能。然后我们将涉及设计其它的部分中使用DSP 更多新颖的和灵活的方法。

传统上,大多数数字信号处理是在载波频率上的信号解调后或调制前按基频带进行。为了进行数字处理信号,必须首先把信号变换为数字信号。连续时间信号必须按离散瞬时时间和离散幅值级进行“脉冲调制”。为此原因,经常把这些类型的DSP系统称为“脉冲调制系统”,因而可把它们与连续时间系统区分开。模拟/数字(A/D)转换器模拟量变换为数字量的换器(A/D)取输入连续信号,并把它变换为脉冲调制信号,然后馈送给DSP进行处理。A/D

的工作很象一个摄影机,它摄下一系列快照,当把它们串联起来时,则近似于一个实际事件的连续流。在这个变换中涉及的关键概念是速率,即脉冲调制的速率必须至少是输入连续信号的最高频率部件的两倍。这就是Nyquist采样定理。违反了这个定理将导致称为假频的结果,在这种情况下,脉冲调制信号可能失真和没有任何复原希望。数/模(D/A)转换器 A/D 转换器让我们把连续信号变换为脉冲调制的数字信号,因此DSP可在该信号上运行。在另一个方向上如何?我们怎样获得在DSP内的脉冲调制信号,并把它变换为可被调制的或发送给音频话筒的现实世界的信号?数字量到模拟量的转换器(D/A,或DAC)完成这个工作,同时必须再次确保按“Nyquist速率”将调制脉冲发送给它,因此输出的模拟量被精确的表现出来。滤波器(FIR和IIR) 现在在DSP内我们已经有了脉冲调制信号,用它我们能做什么呢?滤波是通讯设备中的基本操作,以便去掉噪音,或放大或减弱信号的某些特殊方面(例如,消除反射或高音调环流)。有两个基本算法用于数字滤波器信号。最通用的是限定脉冲响应滤波器(FIR)。为完整描述一个系统或滤波器的特征,所需要的一切是它的脉冲响应,它是滤波器对脉冲的响应(是很短的峰值或声脉冲)。FIR滤波器用滤波器的脉冲响应很简单地计算输入信号的卷积(Convolution)。因此,为了改变滤波器,在软件中改变脉冲响应。事实上,许多算法可相应地改变滤波器的形状,以最好地适于期望的结果。连续卷积运算涉及两个信号乘积的积分。然而,在数字学处理中,积分是简单的和,FIR滤波器运算涉及两个调制脉冲的相乘,然后加到先前的结果上。DSP很善于做这个相乘和累积运算(MAC),并且在一个指令周期内许多都可做到这一点。事实上,许多人认为做快速MAC的能力是DSP 与通用微控制器的主要区别。第二种类型的数字滤波器是不限定脉冲响应滤波器(IIR)。这种滤波器用滤波的调制脉冲的反馈完成它的滤波任务。这种类型的结构接近于模拟量滤波器(反馈路径),所以这些类型的滤波器常常代替存在的模拟量滤波器。用IIR滤波器结构以加在DSP的小量负荷就只用DSP很小的一点能力就构成IIR滤波器的结构,并实现很简单的低阶滤波器。符号编码和检测使用DSP为基础的符号编码和检测的解决方法在无线收发机设计中提高了性能和灵活性。因为DSP的软件特性,可利用自适应算法跟踪进入信号的不同测量值,并提供优化检测性能。符号时间控制的定时采集和跟踪将从DSP算法提供的复杂性获得益处。自适应通道的均衡和估算可减轻由于衰减和改变通道特性带来的影响。

DSP方法证明是很灵活的方法。可“在运行中”改变调制形式和速度以抵抗干扰或扩展范围。例如,可把16QAM改变为QPSK调制,以提供更好的灵敏度并牺牲一些速率。在调制解调器市场中可证实设计中的这种灵活性。某些制造厂家广告宣传这样的事实,即他们可在近期向客户销售调制解调器中的带有硬件平台和将来升级的软件,以达到更高速度。数据传输层(DLL) 数据传输层功能并不专门是DSP任务时,但DSP内包括通讯设备的这个层往往是有益处的。例如,DSP物理层任务包括数据结构(data framing)和向前错误校正功能这一点证明比其它的更有效和灵活。两个层能更紧密地耦合,同时来自每个层的结果和数据为了增加功能而传递到另外的层。因为DSP善于快速地做复杂数学运算,所以超前错误校正方案(块代码,卷积代码),以及错误检查(CRC)可由DSP有效地执行。可能的DSP任务随着快速和更精确的A/D转换器的出现,更快的数字信号处理器,用DSP技术的固定功能的通讯集成电路(IC)和越来越多的无线收发机的设计可由数字域完成。数字中频(IF)块变得越来越普遍。这些部分可从载波进行数字下转换(Down-Convert)和解调数据。其益处如上所述,即灵活性、一致性、复杂性和价格。一个有意义的设计是宽带软件无线电通讯设备。在这类设计中,宽带前端(front-end)射频(RF)部分在按MHz范围下转换为相对高的中频(IF)后送入数字信号处理部分。从这个部分开始,全部处理由数字完成,包括通道频率选择,通道滤波,解调,均衡和检测。这种设计在灵活性上达到了最高点,几乎任何类型的收发机都可用这种硬件平台完成,如跳频的扩频,直接顺序的扩频,或窄频带。结束语数字信号处理技术和高性能,低价格数字信号处理器正在使通讯市场发生革命性变化。DSP和无线电技术的结合

已被证实是自然的配合,两者的发展都将促进另一个而继续增长。微波数据系统公司有着这方面的专门技术,并被努力致力于新产品和解决方案中使用和开拓DSP技术。MDS已经有大量的点对多点和点对点的无线电通讯设备投入市场,这些产品为增加性能和功能使用了这项激动人心的技术。MDS将继续使用数字信号处理硬件和技术,以提供高性能和灵活性的新产品。

软件无线电是近年提出的一种无线通信的体系结构,是继从模拟技术到数字技术后,无线通信领域的又一突破性新技术。它主要的特点是在一个通用硬件平台上利用软件编程实现标准化、模块化硬件电路的功能,通过软件加载的方式实现各种类型的无线电通信系统,具有灵活性、开放性和兼容性的特点。在无线网络飞速发展的当代,软件无线电技术有利于实现无线通信网络的低成本升级,提高系统兼容性。本文从软件无线电的基本概念出发,介绍了其发展背景、功能结构、关键技术、先进特点和存在问题及应用与发展前景等。重点研究了中频软件无线电接收机的实现,将软件无线电中频接收机分两大模块实现即中频信号处理部分和基带信号处理部分,给出了两模块硬件实现及芯片选择的理论依据和实际具体考虑因素。根据理论,在中频信号处理模块,选用AD6654作为中频处理的核心芯片,主要对中频信号进行数字化及数字下变频处理,完成了接收平台的电路设计和硬件实现;在基带信号处理模块选用TMS320C5509,主要完成基带信号多种调制方式的正交数字解调。介绍了中频处理技术所涉及到的采样定理、数字下变频、多速率信号处理以及正交解调等基本理论。并在此基础上,制定了软件的程序框架,针对WCDMA和TD-SCDMA系统实现不同速率数据的信道提取和数字下变频,完成了多种调制方式的信号在DSP上的解调算法的软件实现。

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

数字信号处理滤波器

1.设计物理可实现的低通滤波器 设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。程序如下: clc;clear all; omga_d=pi/5; omga=0:pi/30:pi; for N=3:4:51; w1= window(@blackman,N); w2 = window(@hamming,N); w3= window(@kaiser,N,2.5); w4= window(@hann,N); w5 = window(@rectwin,N); M=floor(N/2); subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]); legend('Blackman','Hamming','kaiser','hann','rectwin'); n=1:M; hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi; hd=[fliplr(hd),1/omga_d,hd]; h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5'; m=1:M; H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1); H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1); H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1); H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1); H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1); subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]); legend('Blackman','Hamming','kaiser','hann','rectwin'); subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_ d5)])'); pause(); end 程序分析: 整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N变为它的一半,即为2M+1个长度。窗长设置为从3开始以4为间隔一直跳动51。则长度相同的不同窗函数在时域[-M,M]的形状如第一个图所示。 对窗函数进行傅里叶变换时,将零点跳过去先构造一个一半的理想滤波器的脉冲响应hd,再将零点位置求导得出的数赋值进去。将生成的hd左右颠倒形成了一个理想的滤波器的脉冲响应。将构造的理想滤波器的脉冲响应依次与之前定义的窗函数相乘,相乘出来的为列向量,用转置将其变成行向量,形成的h_d就是非理想的低通滤波器的脉冲响应序列。因为h_d为对称奇数长度序列,它的DTFT 可以是二倍的离散余弦变化,而零点的位置则直接带入求出,两者相加则是H_d。则第二个图表示的是五个矩阵向量在频域的变化,而第三个图表示的是五个非理想低通滤波器的傅里叶变换,图三FFT给出的结果永远是对称的,因为它显示

数字信号处理实验——维纳滤波器设计..

实验一 维纳滤波 1. 实验内容 设计一个维纳滤波器: (1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。 (2) 估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。 2. 实验原理 滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。对信号进行滤波的实质就是对信号进行估计。滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。下图就是观测信号的组成和信号滤波的一般模型。 观测信号()()()x n s n v n =+ 信号滤波的一般模型 维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。它根据()()(),1, ,x n x n x n m --估计信号的当前 值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。 维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设 ()()()h n a n jb n =+ 0,1, n = 考虑系统的因果性,可得到滤波器的输出 ()()()()()0 *m y n h n x n h m x n m +∞ ===-∑ 0,1, n = 设期望信号()d n ,误差信号()e n 及其均方误差()2 E e n ???? 分别为 ()()()()()e n d n y n s n y n =-=- ()()()()()()22 2 0m E e n E d n y n E d n h m x n m ∞=?? ????=-=--????? ????? ∑ 要使均方误差为最小,需满足: ()() 2 0E e n h j ?????=? 整理得()()0E x n j e n *??-=??,等价于()()0E x n j e n * ??-=?? 上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。 将()()0E x n j e n * ??-=??展开,得 ()()()()00m E x n k d n h m x m +∞ *** =????--=?? ???? ?∑ 整理得 ()()()0 dx xx m r k h m r m k +∞ *=-=-∑ 0,1,2, k = 等价于()()()()()0 dx xx xx m r k h m r k m h k r k +∞ ==-=*∑ 0,1,2, k = 此式称为维纳-霍夫(Wiener-Holf )方程。解此方程可得到最优权系数 012,,, h h h ,此式是Wiener 滤波器的一般方程。 定义

数字信号处理

数 字 信 号 处 理 发 展 和 应 用 学院:通信学院 专业:电子信息工程 班级:电信1103 姓名:XXX 学号:XXX

数字信号处理发展和应用 【摘要】数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。本文概述了DSP 技术的发展历史,各个领域的应用状况,以及在未来的发展趋势。 【关键词】数字信号处理;数据处理;信息技术;发展趋势 一、数字信号处理(DSP)的发展历史 数字信号处理技术的发展经历了三个阶 段。 70 年代DSP 是基于数字滤波和快速傅立叶变换的经典数字信号处理,其系统由分立的小规模集成电路组成,或在通用计算机上编程来实现DSP 处理功能,当时受到计算机速度和存储量的限制,一般只能脱机处理,主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展,理论和技术进入到以快速傅立叶变换(FFT) 为主体的现代信号处理阶段,出现了有可编程能力的通用数字信号处理芯片,例如美国德州仪器公司(TI 公司) 的TMS32010 芯片,在全世界推广应用,在雷达、语音通信、地震等领域获得应用,但芯片价格较贵,还不能进入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人,理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段,能够用高速的DSP 处理技术提取更深层的信息,硬件采用更高速的DSP 芯片,能实时地完成巨大的计算量,以TI 公司推出的TMS320C6X芯片为例,片内有两个高速乘法器、6 个加法器,能以200MHZ频率完成8 段32 位指令操作,每秒可以完成16 亿次操作,并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X、C3X、C5X、C6X 不同应用范围的系列,使新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用,数字化的产品性能价格比得到很大提高,占有巨大的市场。 二、数字信号处理(DSP)的主要应用领域 1·DSP在电力系统自动化中日益渗透 1.1数字信号处理(DSP)技术在电力系统模拟量采集和测量中的应用 计算机进入电力系统调度后,引入了EMS/DMS/SCADA的概念,而电力系统数据采集和测量是SCADA的基础部分。传统的模拟量的采集和获得,通过变送器将一次PT和CT的电气量变为直流量,再进行A/D转换送给计算机。应用了交流采样技术以后,经过二次PT、CT的变换后,直接对每周波的多点采样值采用DSP处理算法进行计算,得到电压和电流的有效值和相角,免去了变送器环节。这不仅使得分散布置的分布式RTU很快地发展起来,而且还为变电站自动化提供了功能综合优化的手段。 1.2数字信号处理(DSP)在继电保护中的应用 到目前为止,应用于我国电力系统的微机保护产品采用的CPU大多为单片机,由于受硬件资源及计算功能的限制,其采样能力及采样速度很难令人满意。因此,对非正常运行条件下的系统参数测量,在速度和精度上无法满足要求,一些复杂原理和算法的实现,基于常规CPU的保护产品也都难以胜任。基于DSP 的数据采集和处理系统由于其强大的数学运算能力和特殊设计,都使得它在继

杭电数字信号处理实验7

信号、系统与信号处理实验Ⅱ 实验报告 姓名:王健 学号:14072119 班级:14083413 上课时间:周五-六七八

实验名称:用双线性变换法设计IIR数字滤波器 一、实验目的 熟悉模拟巴特沃兹滤波器设计和用双线性变换法设计IIR数字滤波器的方法 二、实验原理与要求 实验原理 利用双线性变换法设计IIR数字滤波器,首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得要设计的IIR数字滤波器的系统函数H(z),如果给定的指标为数字滤波器的指标,直接利用模拟滤波器的低通原理,通过式子 到式子 的频率变换关系,可一步完成数字滤波器的设计。式中是低通模拟滤波器的截止频率 实验要求 (1)编写用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。 (2)用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db; 阻带临界频率0.3Hz,阻带内衰减大于25dB。 (3)以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。 (4)在屏幕上打印出H(z)的分子,分母多项式系数。 三、实验程序与结果 1. 用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。 clear;clc;close all; Rp=1; Rs=10; Fs=1; Ts=1/Fs

信号处理电子电路图全集

信号处理电子电路图全集 一.波形发生器电路图 交流驱动电路实现的基本要求是要在选通像素点两端施加交变脉冲信号,而在非选通端加零偏压或负偏压。为了增加电路应用的灵活性,并且为研究OLED的驱动信号变化对于其性能的影响提供方便,要求交流驱动电路的相位和占空比可调。为此,本文设计了一个可以灵活控制的波形信号发生器,其结构为图1所示的一个由双D型触发器构成的振荡器。该振荡器的起振、停止可以控制,输出波形的相位和占空比也可以调节,其工作波形如图2所示。 二.红外接收头的构造 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 · [图文] T形R-2R电阻网络D/A转换电路

· [图文] KD9561组成的开关式警音发生器电路 · [图文] 石英晶体矩形波振荡器电路 · [图文] 方波振荡器电路 · [图文] 8031与DAC0832双缓冲方式接口电路 · [组图] 矩形波电压发生器 · [组图] 用DAC0832产生锯齿波电路 · [图文] 功率变换电路 · [图文] 数字温湿度传感器SHT11与CC2430应用接口电路 · [图文] 调制解调器与电脑接口电路 · [图文] 数字信号的纠错原因及解决方法 · [组图] 变压器电桥原理图 · [图文] 利用运算放大器式电路虚地点减小电缆电容原理图 · [组图] 差动脉宽(脉冲宽度)调制电路 · [图文] 通断温度控制电路--On-Off Temperature Control · [组图] Phorism with 12V · [组图] 击落模型定位器电路 (Downed Model Locator II) · [组图] 红外线开关电路-Infra Red Switch · [组图] 电池组接收器的放电电路--Discharger for Receiver Battery Packs · [组图] 多通道火箭发射器 -Multi Rocket Launcher · [组图] 阻抗变换器电路 · [图文] 步进电机各相绕组驱动电路 · [图文] 速度判别电路 · [图文] 一种实用的步进电机驱动电路 · [图文] 4线步进电机分列分列电路原理图 · [组图] 击落模型定位器电路 (Downed Model Locator) · [图文] CW431CS比较器应用线路 · [图文] 智能天线技术的应用 · 天线的基本概念及制作 · [组图] 红外接收头的构造 · [图文] 手机信号指示器电路原理图 · [组图] 二阶高通分频器单元电路 · [组图] 二阶分频器低通单元电路 · [组图] 分立元件无稳态多谐振荡电路 · [图文] 用Max038制作的函数波形发生器 · [图文] 多波调频信号产生器电路 · [组图] 方波和三角波发生器电路 · [组图] RC桥式正弦振荡电路 · [图文] AD8228集成芯片构成的阻抗匹配电路 · [图文] 分立元件组成的阻抗匹配电路 · [图文] 采用间接电流反馈架构的IA · [图文] 使用三运放搭建输入缓冲级和输出级电路

模拟信号运算电路和信号处理电路例题

第7章 模拟信号运算电路 1、(10分)写出下面电路中o1U 、o2U 及o U 与输入电压i1U 、i2U 、i3U 的关系式。 o U R U U 3 R U 解:⑴ A1:反相输入求和电路;A2:电压跟随器;A3:差分输入求和电路。(3分) ⑵ 22 31131I I O u R R u R R u ?-?- =………………(2分) 32I O u u =………………(2分) ()35 6252631516312563I I I O O O u R R u R R R R u R R R R u u R R u ?+?+?=-?= ………………(3分) 2、(10分)理想运放组成的电路如下图所示,试分别指出A1、A2和A3各构成什么基本电路,并写出O1 u 、O2u 和O u 与输入信号I1u 和I2u 的关系式。 O u 解:⑴ A1:同相输入比例电路;A2:求和电路;A3:电压跟随器电路。

3 311167212 465 6712 4615 211()()O I O O I I I O O R u u R R R u u u R R R R R R u u R R R R u u =+ =-+ =+-+= 3、(15分)如下图所示,设所有运放为理想器件。其中Ω=k 41R ,Ω==k 652R R , 7324k R R ==Ω,89101110k R R R R ====Ω,Ω=k 10012R ,μF 1=C 。V 6.0i1=U ,V 4.0i2=U ,V 1i3-=U 。 ⑴ 写出o1U 、o2U 及o3U 与输入电压i1U 、i2U 、i3U 的关系式;(9分) ⑵ 设电容的初始电压值为2V ,求使输出电压V 6o -=U 所需要的时间t 。(6分) o R U U R U 解:⑴ 电压表达式 V V U R R U R R U i i o 2.54.06246.04242231131-=??? ???+?-=??? ? ???+?-=(反相输入求和电路) V V U R R U i o 51624113572 -=-???? ??+=????? ? ?+=(同相比例电路) ()()V V U U R R U o o o 2.052.510 1021810 3=+--=-- =(差分比例电路) ⑵ 积分时间 333601212102002010010110.()()t o o o t U U U d U U t V R C R C ττ-?? =-+=-?+=-- ?????? ? ()22t V =-- 令()226o U t V V =--=-,得出所需要的积分时间为:

数字信号处理和滤波器设计

计算机仿真技术实验指导书

河南科技大学电子信息工程学院 二〇〇八年二月

计算机仿真技术实验指导书 MATLAB是一种交互式的以矩阵为基本数据结构的系统。在生成矩阵对象时,不要求明确的维数说明。所谓交互式,是指MATLAB的草稿纸编程环境。 与C语言或FORTRON语言作科学数值计算的程序设计相比较,利用MATLAB可节省大量的编程时间。 本实验指导书主要讨论四个实验。 实验一信号与系统的时域分析以及信号合成与分解 1. 实验目的 (1) 连续时间信号的向量表示法和符号运算表示法,典型离散信号表示; (2) 连续信号和离散信号的时域运算与时域变换; (3) 连续系统和离散系统的卷积,以及冲激响应、阶跃响应、单位响应、零状态响应; (4) 周期信号的傅立叶级数分解与综合(以周期方波为例); 2. 实验原理与方法 (1) 信号在MATLAB中的表示方法 MATLAB用两种方法来表示连续信号,一种是用向量的方法来表示信号,另一种则是符号运算的方法来表示信号。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令绘制出直观的信号时域波形。 向量表示法表示信号的方法是:MATLAB用一个向量表示连续信号的时间范围,另一个向量表示连续信号在该时间范围内的对应样值。如下列代码p=0.001; t=-pi:p:pi; f=1+cos(t); plot(t,f) title('f(t)=1+cos(t)') xlabel('t') axis([-pi,pi,-0.2,2.4])

执行后即可绘制连续信号1+cos(t)的时域波形。 借助于符号运算以及符号绘图函数ezplot,也可以绘制连续信号时域波形。如下列代码 syms t f=sym('1+cos(t)') %定义符号表达式 ezplot(f,[-pi,pi]) %绘制符号表达式波形 set(gcf,'color','w') %设置当前图形背景颜色为白色 执行后即可绘制连续信号1+cos(t)的时域波形。 与连续信号的表示相似,在MATLAB中,离散信号也需要用两个向量来表示,其中一个向量表示离散信号的时间范围,另一个向量表示该离散信号在该时间范围内的对应样值。但与连续信号表示有所不同的是,表示离散信号时间范围向量的元素必须为整数。如下列代码 n=[-3,-2,-1,0,1,2,3]; x=[-3,2,-1,3,1,-2,1]; stem(n,x,'filled') set(gcf,'color','w') title('x(n)') xlabel('n') 执行后即可绘制离散信号x(n)={ -3,2,-1,3,1,-2,1}的时域波形。 ↑ n=0 (2) 连续信号和离散信号的时域运算与时域变换 对连续信号而言,其基本时域变换有反褶、平移、尺度变换、倒相。 利用MATLAB的符号运算功能以及符号绘图函数ezplot,可以直观的观察和分析连续信号的时域运算与时域变换。如下列代码 syms t; f=sym('(t+1)*(heaviside(t+1)-heaviside(t))'); f=f+sym('(heaviside(t)-heaviside(t-1))'); %定义信号符号表达式 ezplot(f,[-3,3]) %绘制信号波形 axis([-3,3,-1.2,1.2]) set(gcf,'color','w')

杭电_数字信号处理课程设计_实验5

实验5 IIR和FIR滤波器过滤信号的实现及比较:以心电信号为例 一、实验目的 1、探究心电信号的初步分析。心电信号(频率-般在0.05Hz ~100Hz范围)是一种基本的人体生理信号,体表检测人体心电信号中常带有工频干扰(50HZ)、基线漂移(频率低于0.5Hz)和肌电干扰等各种噪声。 2、为了得到不失真的原始心电信号,需要滤波预处理。设计数字低通滤波器、高通滤波器、带阻滤波器,用MATLAB软件对含噪心电信号分别进行高通、带阻和低通滤波等处理,将心电信号中的低频基线漂移、50Hz 工频高频和高频杂波进行滤除。 3、通过观察对含噪心电图信号的滤波作用,获得数字滤波的感性知识。 二、实验要求及内容 实验题目: 给定一组干净心电信号数据,数据文件存于C盘Ecg.txt。采样频率Fs = 500Hz。 1、编写程序读出心电信号,并在屏幕上打印出其波形。 2、产生模拟高斯白噪声信号,与干净心电混合,设计一个IIR低通滤波器和一个FIR 低通滤波器分别滤除心电信号中的白噪声干扰,调整白噪声信噪比大小,对滤波前后的心电信号的频谱进行分析比较。其中数字低通滤波器指标要求,通带截止频率Wp=0.1π,阻带截止频率 Ws=0.16π,阻带衰减不小于15 dB,通带衰减不大于1 dB。 要求:编写一个IIR低通滤波器和一个FIR低通滤波器仿真程序,在屏幕上打印出数字滤波器的频率区间[0, π]上的幅频响应特性由线(H(e^jw)) ;计算其对含噪心电信号的低通滤波响应序列,并在屏幕上打印出干净心电信号波形,含工频干扰的心电信号波形以及IIR低通滤波和FIR低通后的信号波形,并进行比较;同时对滤波前后的心电信号的频谱进行分析比较,并在屏幕上打印出滤波前后的心电信号的频谱,观察其变化。 3、产生模拟工频信号,与干净心电混合,设计一个带阻滤波器(50Hz 陷波器)滤除心电信号中的电源线干扰,调整工频幅度大小,对滤波前后的心电信号的频谱进行分析比较。其中带阻滤波器指标要求,通带下限频率Wp1=0.18π,阻带下截止频率Ws1=0.192 π,阻带上截止频率Ws2=0.208π,通带上限频率Wp2=0.22π,阻带衰减不小于15 dB, 通带衰减不大于1 dB。 要求:编写IIR带阻滤波器仿真程序,在屏幕上打印出数字滤波器的频率区间[0, π]上的幅频响应特性由线(H(e^jw ));计算其对含工频干扰的心电信号的带阻滤波响应序列,并在屏幕上打印出干净心电信号波形,含工频干扰的心电信号波形以及滤波后的信号波形,并进行比较;同时对滤波前后的心电信号的频谱进行分析比较,并在屏幕上打印出滤波前后的心电信号的频谱,观察其变化。 4、产生模拟基线漂移信号,与干净心电信号混合,设计一个高通滤波器滤除心电信号中的基线低频干扰,调整基线的幅度大小,对滤波前后的心电信号的频谱进行分析比较。其中,高通滤波器指标要求,通带截止频率Wp=0.0028π,阻带截止频率Ws=0.0012π,阻带衰减不小于15 dB,通带衰减不大于1 dB。 要求:编写IIR高通滤波器(或FIR高通滤波器)仿真程序,在屏幕上打印出数字滤波器的频率区间[0,π]上的幅频响应特性由线(H(e^jw);计算其对含基线低频干扰的心电信号的高通滤波响应序

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

例说信号处理与滤波器设计

例说信号处理与滤波器设计 目录 数字时代 (2) 数字信号处理的应用 (3) 频率——信号的指纹 (5) 卷积可以不卷 (8) 向量运算的启示 (11) 滤波器设计征程 (16) 最后一击——滤波的实现方法 (22) 纵览全局 (27)

数字时代 信号处理是对原始信号进行改变,以提取有用信息的过程,它是对信号进行变换、滤波、分析、综合等处理过程的统称。数字信号处理是将信号以数字方式表示并处理的理论和技术;模拟信号处理是指用模拟系统对模拟信号进行处理的方法或过程。 数字信号处理课程的主要内容包括信号分析与处理。两者并不是孤立的,不同的信号处理方法往往需要选择不同的信号表示形式。两者的区别主要表现在,信号处理是用系统改变输入信号,以得到所期望的输出信号,如信号去噪;而信号分析往往是通过变换(傅里叶变换、小波变换等),或其它手段提取信号的某些特征,如语音信号的基本频率,图像的直方图等。 早期的信号处理局限于模拟信号,随着数字计算机的飞速发展,信号处理的理论和方法得以飞速发展,出现了不受物理制约的纯数学的加工,即算法,并确立了数字信号处理的领域。现在,对于信号的处理,人们通常是先把模拟信号变成数字信号,然后利用高效的数字信号处理器(DSP:Digital Signal Processor)或计算机对其进行数字形式的信号处理。 一般地讲,数字信号处理涉及三个步骤: (1)模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行 离散化的过程,基本的理论保证是采样定理。 (2)数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。 (3)数模转换(D/A转换):把经过处理的数字信号还原为模拟信号。通常,这一步并不 是必须的。 图1数字信号处理基本步骤

数字信号处理实验

实验六: 用FFT对信号作频谱分析 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab的开发环境。 二、实验原理与方法 1、引言 双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播

光电转换及信号处理电路设计

光电转换及信号处理电路设计 与CCD等探测器不同,PIN光电二极管对于探测目标输出信号是一个电流信号,而且在距离探测目标较远时照射到探测面的光信号很微弱,在预定电压偏置下输出电流会比较小,因而可以概括PIN的输出信号为一个微弱电流信号,对于PIN的输出信号处理,是一个微弱信号处理的过程。 光电转换及信号处理模块 图1 光电转换及信号处理模块整体设计示意图 通常情况下,电流信号的采集和处理都是比较困难的,故首先需要对PIN 的信号进行电流到电压的转化。微弱电流信号转化而来的电压信号一般也是微弱信号,而且传输线耦合进去的交流噪声有可能会淹没目标信号,故为了提高信噪比,需要在采集之前对信号进行前置放大。 由于被测信号也是可见光信号,在进行光电探测时很容易受到杂散光和PIN 自身暗电流的影响,导致噪声信号和目标信号一同被放大,在后续电路中不易消除,为了减少杂散光和PIN暗电流带来的噪声、背景噪声和元器件噪声,本光电信号处理电路设计了一个参考PIN光电转换电路,用来接收杂散光和背景噪声,参考PIN光电转换电路与探测信号PIN光电转换电路及的参数一致,前置放大电路的参数也一样,但是在实验过程中由于与目标光信号之间的光路被人为完全遮挡,故只能接收到杂散光信号和背景噪声信号。在后续的差分放大电路中通过信号同向相减,把系统噪声和背景噪声去除,保证了最终采集信号具有较高的信噪比。 在最后的滤波电路设计过程中,考虑到被测目标光信号的调制频率不会超过200KHz,而空气和电路中存在着大量的高频噪声,为了保证即将进入数据采集

模块的信号有较高的信噪比,需要滤除掉高频噪声,于是需要根据被测信号频率的不同设计一款低通滤波器或者带通滤波器。 综上所述,本光电转换和信号处理模块由光电转换电路、前置放大电路、差分放大电路和滤波电路四个部分组成,模块整体示意图如图4-1所示。 1 光电转换电路设计 光电二极管的光探测方式有两种结构:一是光电导模式,在这种模式下,需给光电二极管加反向偏置电压,存在暗电流I d,由此会产生较大的噪声电流,有非线性,通常应用在高速场合;二是光电压模式,在这种模式下,光电二极管处于零偏状态,不存在暗电流I d,有较低的噪声,线性好,噪声低(主要是热噪声),适合于比较精确的测量[31]。在微弱信号检测中比较常用的是光电压模式,具体光电检测电路图如图2所示。 图2 光电压模式PIN光电转换电路 光电二极管工作于短路状态,极大地降低了暗电流的影响,从而使光电二极管得到最大SNR,进而使后续放大电路仅放大与光强成正比的电流。 考虑到对目标光信号的探测频率不同,本文采用了两款响应率不同PIN光电二极管,用于探测低频光信号的PIN选择的是西门子(SIEMENS)公司的BPX65硅光敏二极管,用于探测高频光信号的高速PIN选择的是日本滨松的S5973硅光敏二极管。 BPX65具有频率响应范围广,暗电流小,高灵敏度等特点,最高工作温度可达125°,其主要特性参数如下所示: (1)光谱响应范围为350nm~1100nm,峰值波长850nm,适合白光测量; (2)暗电流I R≤5nA; (3)光谱灵敏度(Sλ):0.55 A/W; (4)光敏面接收半角(Half angle):±45°; (5)受光面积为1mm2,远小于传感器与探测目标的距离;

数字信号处理与数字信号处理器

物理学与信息科学技术专题 第十讲 数字信号处理与数字信号处理器(D SP) 1) 李昌立 1, 董永宏 2 (1 中国科学院声学研究所 北京 100080)(2 闻亭数字系统(北京)有限公司 北京 100085) 摘 要 文章简要介绍了“数字信号处理”与“数字信号处理器(DSP )”的发展历史.在数字信号处理的应用中,实时实现是非常重要的,而DSP 在实时处理中,扮演了一个重要的角色.文章中还介绍了DSP 在实际应用中的一些关键技术,例如DSP 的种类和选型,DSP 的开发工具,实时软件的开发过程等.最后,还介绍了一些DSP 的应用实例,如语音编码器,视频电话和视频会议系统,用于雷达和声纳的DSP 并行处理系统 关键词 数字信号处理器(DSP ),实时信号处理,DSP 开发工具,DSP 并行处理系统. D i g it a l si gna l processi n g and processors L I Chang 2L i 1, DONG Yong 2Hong 2 (1Institute of Acoustics ,Chinese A cade m y of Sciences,B eijing 100080,China ) (2W intech D igitalsyste m s Technology corp,B eijing 100085,China ) Abstract The history of digital signal p r ocessing and the digital signal p r ocess or (DSP )is reviewed .A s is well known,real -ti me i mp lementation is crucial in the app licati ons of digital signal p rocessing in which the DSP p lays an i m portant role .Certain key techniques,such as the types and type selecti on of DSPs,their devel 2opment equipment,real -ti me s oft ware development and s o on are then described .Finally,s ome p ractical ap 2p licati ons such as s peech coding hardware,video telephone and video conference system s,DSP parallel p ro 2cessing system s for s onar and radar are als o described Keywords digital signal p r ocess or,real -ti me signal p r ocessing .development equi pment,parallel p r ocess 2ing system 1) 该专题的第一至第九讲分别发表于2005年第1—8期,第12期 《物理》———编者注 2005-09-27收到初稿,2006-03-14修回  通讯联系人.Email:li_chang_li_cn@hot m ail .com 1 数字信号处理与数字信号处理器(DSP )发展史的简要回顾[1—3] DSP 既是D igital Signal Pr ocessing 的缩写,也是D igital Signal Pr ocess or 的缩写,前者是指数字信号 处理的理论和方法,后者则是指用于数字信号处理的可编程微处理器.我们所说的DSP 技术,一般是指将DSP 处理器用于完成数字信号处理的方法和技术. 自从1965年库利(Cooley )和图基(Tukey )在 《计算数学》(《Mathe matic of Computati on 》 )上发表了《用机器计算复序列傅里叶级数的一种方法》一文以后,接着又有人发表了在计算机上用差分方程实现滤波器的算法,以及用计算机设计数字滤波器 的各种方法.此后,“数字信号处理”这一分支学科迅速发展,逐渐形成了一整套较为完整的学科领域和理论体系.到今天,“数字技术”已经渗透到各行各业,成为了高新技术的代名词.很多传统产业采用

相关主题
文本预览
相关文档 最新文档