当前位置:文档之家› buck-boost课程设计

buck-boost课程设计

buck-boost课程设计
buck-boost课程设计

湖南工程学院

课程设计

课程名称电力电子技术课程设计

课题名称Buck-Boost变换器设计

专业

班级

学号

姓名

指导教师

2013 年月日

湖南工程学院

课程设计任务书

课程名称电力电子技术课程设计课题Buck-Boost变换器设计

专业班级

学生姓名

学号

指导老师

审批

任务书下达日期2013年月日任务完成日期2013年月日

目录

第一章概述 (6)

第二章Buck-Boost变换器设计总体思路 (7)

2.1电路总设计思路 (7)

2.2电路设计原理与框图 (7)

第三章Buck-Boost主电路设计 (8)

3.1 Buck-Boost主电路基本工作原理 (8)

3.2主电路保护(过电压保护) (10)

3.3 Buck-boost变换器元件参数 (11)

3.3.1 占空比 (11)

3.3.2滤波电感L (11)

3.3.3滤波电容 (11)

3.4 Buck-Boost仿真电路及结果 (12)

3.4.1 Buck-Boost变换器仿真模型 (12)

3.4.2不同占空比 的仿真结果 (13)

第四章控制和驱动电路模块 (17)

4.1SG3525脉冲调制器控制电路 (17)

4.1.1 SG3525简介 (17)

4.1.2 SG3525内部结构和工作特性 (17)

4.2SG3525构成控制电路单元电路图 (20)

4.3驱动电路设计 (20)

第五章总体与体会 (21)

第六章参考文献 (22)

第七章附录 (23)

第一章概述

自20世纪50年代,美国宇航局以小型化重量轻为目标而为搭载火箭开发首个开关电源以来,在半个多世纪的发展中,开关电源逐步取代了传统技术制造的相控稳压电源,并广泛应用于电子整机设备中。随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。近20年来,集成开关电源沿两个方向发展。第一个方向是对开关电源的控制电路实现集成化。

与国外开关电源技术相比,国内从1977年才开始进入初步发展期,起步较晚、技术相对落后。目前国内DC/DC模块电源市场主要被国外品牌所占据,它们覆盖了大功率模块电源的大部分以及中小功率模块电源一半的市场。但是,随着国内技术的进步和生产规模的扩大,进口中小功率模块电源正在快速被国产DC/DC产品所代替。

当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。直流斩波电路的应用非常广,但在实际产品中应用时也存在一些问题:首先电源系统本身的耗能元件如电源内阻、滤波器阻抗、连接导线及接触电阻等都会引起系统损耗。可控型器件IGBT 的栅极电阻Rg会随着驱动器件电流额定值的增大而减小,而栅极电阻Rg 的变化又会对电路的性能产生影响。以及驱动电路如何实现过电流电压保护问题。

第二章Buck-Boost变换器总体设计思路

2.1电路的总设计思路

直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。它在电源的设计上有很重要的应用。一般来说,斩波电路的实现都要依靠全控型器件。在这里,我所设计的是基于IGBT的降压斩波短路。

直流升降压斩波电路主要分为三部分,分别为主电路模块,控制电路模块和驱动电路模块。除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。

2.2电路设计基本原理与框图

电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。因此,一个完整的升降压斩波电路也应该包括主电路,控制电路,驱动电路和保护电路致谢环节。

设计要求是输出电压Uo=0V-40V可调的DC/DC变换器,这里为升降压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。IGBT的通断用PWM控制,用PWM方式来控制IGBT的通断需要使用脉宽调制器SG3525来产生PWM控制信号。

根据升降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如下图所示。

图2.1 总结构框图

第三章Buck-Boost主电路设计

3.1 Buck-Boost主电路基本工作原理

V通时,电源E经V向L供电使其贮能,此时电流为i1。同时,C 维持输出电压恒定并向负载R供电。V断时,L的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。

a 原理图

b 波形图

图3.1 升压/降压斩波电路的原理图及波形图

数量关系:

稳态时,一个周期T 内电感L 两端电压uL 对时间的积分为零,即:

00=?t T

L d u

当V 处于通态时,E u L =;当V 处于断态时,o L u u -=;于是:

off on t U Et 0=

所以输出电压为: E E t T t E t t U on on off on α

α-=-==10 由此可见,改变导通占空比α,就能够控制斩波电路输出电压U 。的大小。当0<α<1/2时为降压,当1/2<α<1时为升压,故称作升降压斩波电路。

图3.1 b)中给出了电源电流i1和负载电流i2的波形,设两者的平均值分别为I1和I2,当电流脉动足够小时,有:

off

on t t I I =21 由上式可得:

1121I I t t I on off

α

α-== 如果V 、VD 为没有损耗的理想开关时,则:21I U EI o =

其输出功率和输入功率相等,可将其看作直流变压器。

3.2 主电路保护(过电压保护)

本次设计的电路要求输出电压为15V ,所以当输出电压设定时,一旦出现过电压,为了保护电路和期间,应立刻将电路断开,及关断IGBT 的脉冲,使电路停止工作。以为芯片SG3525的引脚10端为外部关断信号输入端,所以可以利用SG3525的这个特点进行过电压保护。当引脚10端输入的电压等于或超过8V 时,芯片将立刻锁死,输出脉冲将立即断开。所以可以从输出电压中进行电压取样,并将取样电压通过比较器输入10端实现电压保护。,从而

过电压保护电路图如下所示:

图3.2 过电压保护电路图

3.3 Buck-Boost变换器元件参数

3.3.1 占空比

根据Buck-Boost变换器的性能指标要求及Buck-Boost变换器输入输出电压之间的系求出关占空比的变化范围,要求输出电压为:0~ 40V,得占空比范围为:0~ 0.667。

3.3.2 滤波电感L

滤波电感Lf于开关管的存储时间与最小控制时间之和,变换器的输出将出现失控或输出纹波加大,因此希望变换器工作在电感电流连续状态。所以,以最小输出电流Io min作为电感临界连续电流来设计电感。取L=95e-5H。

3.3.3 滤波电容C

在开关变换器中,滤波电容通常是根据输出电压的纹波要求来选取。取C=3e-6 F。输出滤波电容的耐压值决定于输出电压的最大值,一般比输出电压的最大值高一些,但不必高太多,以降低成本。由于最大输出电压为15V,则电容的耐压值为15V。

3.4 Buck-Boost变换器仿真电路及结果

3.4.1 Buck-Boost变换器仿真模型

根据升降压斩波电路原理图,建立升压-降压式变换器仿真模型,如图(5)所示

图3.3 升压-降压式变换器仿真模型

由IGBT构成直流升降压斩波电路的建模和参数设置:

(1)电压源参数取Uo=20V;

(2)IGBT按默认参数设置,并取消缓冲电路;

(3)二极管按默认参数设置;

(4)负载参数取R=5Ω,C=3e-06 F;

(5)电感支路L=95e-5H

(6)打开仿真参数窗口,选择ode23tb算法,相对误差设置为1e-03,开始仿真时间设置为0,停止仿真时间设置为0.002 s;

(7)控制脉冲周期设置为1e-04s,控制脉冲占空比分别设为10%、25%、50%、66.7%。

3.4.2 不同占空比α的仿真结果

1.脉冲发生器中的脉冲宽度设置为脉宽的10%,仿真结果如图3.4所示:

图3.4 控制脉冲占空比10%

从图3.4可以看出,负载上平均电压大约为2V ,波形为有少许波纹的直流电压;理论计算:V E E U 2.29

110==-=αα,Uo 与E 极性相反;仿真结果与升降压斩波理论在脉动范围之内。

图3.5 控制脉冲占空比25%

从图3.5可以看出,负载上平均电压大约为6.5 V ,波形为有少许波纹的直流电压;理论计算:V E E U 67.63

110==-=αα,Uo 与E 极性相反;仿真结果与升降压斩波理论在脉动范围之内。

图3.6 控制脉冲占空比50%

从图3.6可以看出,负载上平均电压大约为20 V ,波形为有少许波纹的直流电压;理论计算:V E E U 2010==-=α

α,Uo 与E 极性相反;仿真结果与升降压斩波理论在脉动范围之内。

图3.7 脉冲占空比66.7%

从图3.7以看出,负载上平均电压大约为40V ,波形为有少许波纹的直流电压;理论计算:V E E U 40210==-=

α

α,Uo 与E 极性相反;仿真结果与升降压斩波理论在脉动范围之内。

第四章控制和驱动电路模块

4.1 SG3525A脉宽调制器控制电路

4.1.1 SG3525简介

SG3525A系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。在芯片上的 5.1V基准电压调定在±1%,误差放大器有一个输入共模电压范围。它包括基准电压,这样就不需要外接的分压电阻器了。一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。在CT和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。一只断路脚同时控制软起动电路和输出级。只要用脉冲关断,通过PWM(脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。当VCC低于标称值时欠电压锁定禁止输出和改变软起动电容器。输出级是推挽式的可以提供超过200mA的源和漏电流。SG3525A系列的NOR(或非)逻辑在断开状态时输出为低。

·工作范围为8.0V到35V

·5.1V±1.0%调定的基准电压

·100Hz到400KHz振荡器频率

·分立的振荡器同步脚

4.1.2 SG3525内部结构和工作特性

(1)基准电压调整器

基准电压调整器是输出为5.1V,50mA,有短路电流保护的电压调整器。它供电给所有内部电路,同时又可作为外部基准参考电压。若输入电压低于6V时,可把15、16脚短接,这时5V电压调整器不起作用。

(2)振荡器

3525A 的振荡器,除CT 、RT 端外,增加了放电7、同步端3。RT 阻值决定了内部恒流值对CT 充电,CT 的放电则由5、7端之间外接的电阻值RD 决定。把充电和放电回路分开,有利于通过RD 来调节死区的时间,因此是重大改进。这时3525A 的振荡频率可表为:

)R 3R 7.0(C 1

f D T T S +=

(3)误差放大器

误差放大器是差动输入的放大器。它的增益标称值为80dB ,其大小由反馈或输出负载决定,输出负载可以是纯电阻,也可以是电阻性元件和电容的元件组合。该放大器共模输入电压范围在1.8~3.4V ,需要将基准电压分压送至误差放大器1脚(正电压输出)或2脚(负电阻输出)。

3524的误差放大器、电流控制器和关闭控制三个信号共用一个反相输入端,3525A 改为增加一个反相输入端,误差放大器与关闭电路各自送至比较器的反相端。这样避免了彼此相互影响。有利于误差放大器和补偿网络工作精度的提高。

(4)闭锁控制端10

利用外部电路控制10脚电位,当10脚有高电平时,可关闭误差放大器的输出,因此,可作为软起动和过电压保护等。

(5)有软起动电路

比较器的反相端即软起动控制端8,端8可外接软起动电容。该电容由内部V ref 的50μA 恒流源充电。达到2.5V 所经的时间为

8C A 50V 5.2t ?μ=

点空比由小到大(50%)变化。

(6)增加PWM 锁存器使关闭作用更可靠

比较器(脉冲宽度调制)输出送到PWM 锁存器。锁存器由关闭电路

置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使过流信号立即消失,锁存器也可维持一个周期的关闭控制,直到下一周期时钟信号使倘存器复位为止。

另外,由于PWM锁存器对比较器来的置位信号锁存,将误差放大器上的噪音、振铃及系统所有的跳动和振荡信号消除了。只有在下一个时钟周期才能重新置位,有利于可靠性提高。

(7)增设欠压锁定电路

电路主要作用是当IC块输入电压小于8V时,集成块内部电路锁定,停止工作(其准源及必要电路除外),使之消耗电流降到很小(约2mA)。

(8)输出级

由两个中功率NPN管构成,每管有抗饱和电路和过流保护电路,每组可输出100mA。组间是相互隔离的。电路结构改为确保其输出电平或者是高电平或者是低电平的一个电平状态中。为了能适应驱动快速的场效应功率管的需要,末级采用推拉式电路,使关断速度更快。

11端(或14端)的拉电流和灌电流,达100mA。在状态转换中,由于存在开闭滞后,使流出和吸收间出现重迭导通。在重迭处有一个电流尖脉冲,其持续时间约100ns。使用时VC接一个0.1μf电容可以滤去尖峰。

另一个不足处是吸电流时,如负载电流达到50mA以上时,管饱和压降较高(约1V)。

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A

开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 开关周期:T S= s f 1=4×10-6s 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283 输出电压:V O=24V 输出电流I O=5A 纹波电流:Δi L=0.25A 纹波电压:ΔV L=100mV 电感量计算:由Δi L= 2L v- V o max - in DT S 得: L= L o max - in i 2v- V ΔD min T S= 25 .0 2 24 53 ? -×0.4528×4×10-6=1.05× 10-4H

电容量计算:由ΔV L =C i L 8ΔT S 得: C= L L V 8i ΔΔT S = 1 .0825 .0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d ) 1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++=)( in 0 2 V Q s s 11)(G 2 ωωω++ + = z vd s s ESR z CR 1 =ω

过程设备课程设计

目录 一、课程设计任务书---------------------------------------------3 1、题目-----------------------------------------------------------------3 2、设计参数及要求--------------------------------------------------3 3、设计任务-----------------------------------------------------------4 二、夹套好氧发酵罐的结构------------------------------------------4 1、夹套好氧发酵罐的功能和用途--------------------------------4 2、发酵罐的反应条件-----------------------------------------------4 三、计算及说明----------------------------------------------------4 1、罐体和夹套的设计-----------------------------------------------4 (1)罐体和夹套的设计结构-----------------------------------4 (2)罐体几何尺寸计算-----------------------------------------5 (3)夹套几何尺寸计算-----------------------------------------5 (4)罐体及夹套的强度计算及稳定性校核-----------------6 (5)水压试验校核-----------------------------------------------8 2、搅拌器的设计-----------------------------------------------------8 (1)搅拌器的类型及应用场合--------------------------------9 (2)搅拌器的计算-----------------------------------------------9 3、发酵罐的传动装置----------------------------------------------10 (1)电机的选取-------------------------------------------------11 (2)减速机选择-------------------------------------------------11 (3)选择凸缘法兰----------------------------------------------11

Buck-Boost变换器的设计与仿真

1 概述 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。本文将对Buck/Boost升降压斩波电路进行详细的分析。

V E U L C U O V i 1 i 2i L R VD L V E U L C U O V i 1 i 2 i L R VD L V E U L C U O V i 1 i 2 i L R VD L 2 主电路拓扑和控制方式 2.1 Buck/Boost 主电路的构成 Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。 图2-1 Buck/Boost 主电路结构图 电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。 (a )V 导通 (b )V 关断,VD 续流 图2-2 Buck/Boost 不同模态等效电路

过程设备设计课程设计说明书

第一章 设计参数的选择 1.1设计参数 形式:卧式椭圆形封头储罐 材料:16MnR 设计压力:0.78MPa 设计温度:60℃ 全容积:7.5m3 介质名称:硫化剂 介质特性:强氧化性,毒性,不易燃 第二章 容器强度的计算与校核 2.1筒体与封头的厚度计算 2.1.1筒体厚度 由于该容器存储介质具有中毒毒性,熔点195℃,不易燃。所以该容器的焊缝采用双面全融透对接接头结构,对该储罐进行局部探伤,所以取焊缝系数0.85φ=。 根据长径比/2~6L D =最为合适,取/4L D =,则4L D =。 则: 2 2 2 224244324i i i i i D D V D L V D D ππ π??=+=?+??? ???封头 所以: 3 3 7.5130112 i i i D D D mm ππ=+ ?= 查钢板卷焊筒体,规定用筒体内径作为公称直径系列尺寸表,圆整为1300i D mm =。查JBT4737-95椭圆形封头表1得在封头厚度在6mm 时的3 =0.3208m V 封,总深度 350H mm =,代入原式反算: 7.5 1.6920.320851704L L mm π =?+??= 则:

/ 5.167/1.3 3.97i L D ==在区间2~6之间,符合要求。 计算厚度[]0.781300 3.51821700.850.78 2c i t c P D mm P δδ???= = =??-- 钢板或钢管厚度负偏差1C 应按相应钢材标准名义厚度的规定选取。当钢材的厚度负偏差不大于0.25mm ,且不超过名义厚度的6%时,可取1=0mm C 。由于GB 6654《压力容器用钢板》规定压力容器专用钢板厚度的厚度负偏差不大于0.25mm ,因此使用该标准中钢板厚度超过5mm ,可取1=0mm C 。 根据腐蚀速率直接选取2C :材料属于单面腐蚀取2=2mm C 。 则: 筒体设计厚度2 3.5182 5.518d C mm δδ=+=+= 筒体名义厚度1=+ 5.51806n d C mm δδ+?=++?= 2.1.2封头厚度 选用标准椭圆形封头,其形状系数12162i i D K h ????= +=?? ????? ,封头采用钢板整体冲压而成,焊接接头系数取 1.0φ=,故封头计算壁厚: []10.781300 2.99217010.50.78 20.5c i t c kP D mm P δδ????= = =??-?- 取22h C mm =,则封头设计厚度2 2.992 4.99d C mm δδ=+=+= 同上取10h C mm =,则封头名义厚度1 4.990 4.99hn d C mm δδ≥+=+= 考虑常用钢板的规格和材料采购和焊接上的方便,可取封头壁厚与筒体厚度相同 6hn mm δ= 2.1.3液压试验应力校核 试验压力[][] 170 1.25 1.250.780.975170 T c t P P MPa σσ=??=?? = (或由用户输入)

BUCK变换器设计报告

BUCK变换器设计报告 一、BUCK主电路参数计算及器件选择 1、BUCK变换器设计方法 利用计算机设计BUCK变换器,首先要选取合适的仿真软件。本文采用MATLAB和PSIM设计软件进行BUCK变换器的综合设计。在选取好设计软件之后,先根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真。如果开环仿真结果不能满足设计要求,再考虑选取合适的闭环控制器进行闭环控制系统的设计。 设计好闭环控制器后,对其进行闭环函数的仿真,选取超调小、调节时间快的闭环控制器搭建模型进行电路仿真。 2、主电路的设计 根据设计指标,采用BUCK电路作为主电路,使用MOSFET元件作为开关元件,这是因为MOSFET的开关速度快,工作频率高,可以满足250khz的开关频率,此外,MOSFET与其他开关器件最显著的不同,是MOSFET具有正温度系数,热稳定性好,可以并联使用,其他开关器件不具有此特性。

(1)BUCK电路的主电路的拓扑图: (2)主电路的基本参数计算: 开关周期:Ts=1/f s=4?10?6s =0.5 占空比(不考虑器件管压降):D=v0 v in =0.5581 V in=43V时,Dmax=v0 v in =0.4528 V in=53V时,Dmin=v0 v in 输出电压:V o=24V; 输出电流:Io=0.25A; 额定负载:R=V o÷Io=4.8Ω 纹波电流:△I=0.25A; 纹波电压:△V=100mV 电感量理论值计算: 由: , 得: ,电容量理论值计算: 由:,得 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故取C=120uF. 由于电解电容一般都具有等效串联电阻R esr,因此在选择的过程中需要注意此电阻的大小对系统性能的影响。一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。取R esr=50mΩ。

C语言课程设计-实验室设备信息管理系统.

二○一五~二○一六学年第一学期电子与信息工程系课程设计报告书课程名称:程序设计基础实践 班级: 学号: 姓名: 指导教师: 二○一五年十二月

1..实验室设备信息管理系统功能 (1). 每一条记录包括实验室的设备编号、设备名称、设备型号、设备价格、设备购买日期信息。 (2). 实验设备信息录入:可以一次完成诸多条记录的录入。 (3). 实验设备信息更改:可实现对实验设备信息更改的信息进行适当的修改。 (4). 报废设备信息删除:对实验损毁设备信息予以删除。 (5). 实验设备信息查询:本系统提供两种查询实验设备的方法: 1.按器材名称查询. 2.按器材编号查询. 从而完成按实验设备的查找查找功能,并显示。 (6). 实验设备信息排序:根据实验设备的编号进行排序,以实现实验设备的有序全局查看。 实验设备信息显示功能:完成全部学生记录的显示。 (7). 简单帮助:提供实验室负责人简单的信息。 (8). 保存功能:将学生记录保存在任何自定义的文件中,如保存在:c:\score。 (9). 读取功能:将保存在文件中的学生记录读取出来。 (10). 有一个清晰美观界面来调用各个功能 2.设计内容 2.1 程序的总体设计

整个系统除了主函数外,另外还有11个函数,实现以下功能:实验室设备录入功能、显示功能、查找功能、排序功能、读出与写入取功能。各个函数的详细设计说明分别如下: 2.2 数据结构 使用C语言创建的结构体如下: typedef Equipment /*定义数据结构*/ { char bianhao; //编号 char name[20]; //名称 char model[20]; //型号bnm char price[20]; //价格 char buy_date[20]; //购买日期 }; 3 详细设计 3.1实验设备管理系统主程序模块设计 控制整个程序的运行,通过主函数模块分别调用各个模块,实现各项功能,流程如图1所示。通过switch进入分支结构从而调用执行不同的函数,以实现菜单选择的功能。程序

BuckBoost电路建模及分析

题目:BuckdBoost电路建模及分析 摘要:作为研究开关电源的基础,DCTC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而BucMoost电路作为DCTC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck^oost电路进行了稳态分析和小信号分析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式,并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公式;接着推导了状态空间模型,以在M ATLAB中进行仿真;而最后仿真得到的电感电流、输出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一致。 关键词:BuckHBoost;稳态分析;小信号分析;MATLAB仿真

1 ?概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC4)C变换器。 作为研究开关电源的基础,DCTC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DCTC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压THE (BuckdBoos 泌],如图1-1所示。其中BucMoost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) B uck型电路结构 (b) Boost型电路结构 (c) B uckHB oost型电路结构 图1-1 DCTC变换器的三种电路结构

Buck变换器实现及其调速系统设计与调试

运动控制系统 课程设计 题目:Buck变换器实现及其调速系统设计与调试 院系: 班级: 姓名: 学号: 指导老师: 日期:

摘要 (3) 第一章概述 (3) 第二章设计任务及要求 (4) 2.1实验目的 (4) 2.2实验内容 (4) 2.3设计要求 (4) 2.4课程设计基本要求 (5) 第三章BUCK变换器的工作原理和各种模型 (6) 3.1B UCK变换器介绍 (6) 3.2B UCK变换器电路拓扑 (6) 3.3PWM控制的基本原理 (7) 第四章MATLAB仿真模型的建立 (9) 4.1MATLA仿真软件介绍 (9) 4.2B UCK电路模型的搭建 (9) 4.3B UCK变换器在电机拖动控制系统中的设计与仿真 (12) 4.3.1直流电机的数学模型 (12) 4.3.2系统在开环情况下的仿真 (13) 4.3.3 系统在闭环情况下的仿真 (14) 第五章总结与体会 (18)

变压调速是直流调速系统的主要方法,调节电枢供电电压从而改变电机的转速。即需要有一个可控直流源,常用的为直流斩波或者脉宽调制器,其通过电力电子开关控制及电容、电感的充放电及二极管的续流组成直流斩波电路(DC),实现输出电压可控,即升压(BOOST)、降压(BUCK)。本实验主要针对降压斩波电路(BUCK)进行实验分析。实验采用MATLAB作为仿真软件,利用PWM 波驱动降压斩波电路为直流电动机提供驱动电压,并通过调节PWM波的占空比来调节电动机的启动电压使达到调节电动机转速的电路设计。 关键词:S-Function;PWM调制;Buck变换器;闭环控制;直流电动机 第一章概述 直流变换技术(亦称直流斩波技术,DC-DC),作为电力电子技术领域非常活跃的一个分支,在近几年里,得到了充分的发展。随着电动牵引技术的发展,特别是电子信息类产品的大量涌现,直流变换技术已经广泛应用于生产,生活的各个领域。由于其有良好的可操作性,被大量应用到电机的调速系统中,很好的解决了电动机调速的不可控性。 BUCK电路作为一种最基本的DC-DC变换电路,由于其简单、实用性在各种电源产品中均得到广泛的应用。其电路主要器件有电力电子开关(IGBT或MOSFET)、电感、电容、续流二极管。通过对开关的调节控制电压,其一般采用软开关控制方法,即采用脉宽调制技术(PWM),通过改变占空比来调节输出电压的大小。其与直流调速系统组成的脉宽调制变换器—直流电机调速系统,简称直流脉宽调速系统,即PWM直流调速系统。存在:1)主电路简单、功率器件少;2)开关频率高、电流容易连续、谐波小;3)低速性能好、稳态精度高;4)低速性能好,稳态精度高,动态抗干扰能力强等优点。 使用MATLAB等仿真分析,再做实物研究,已经逐渐成为电力电子技术研究的主要方法。 本次课程设计使用MATLAB友好的工作平台和编辑环境进行模型编辑工作,运用它的s函数编辑一个简单的脉冲发生器,要求它的占空可调;运用数学处理功能来处理仿真时的实时数据,利用传递函数构造直流电机转速的数学模型,运用它广泛的模块集合工具箱里的Simulink进行电路模型搭建和系统仿真,控制电路的占空比从而控制输出电压的大小,进而调节电机的转速,同时采用负反馈的控制方式,调节转速在一个恒定值。

(完整word版)化工机械与设备课程设计

化学工程学院 化工机械与设备课程设计 设计说明书 专业化学工程与工艺 班级化工11-4 姓名沈杰 学号11402010417 指导老师杨泽慧 日期2014年6月10日 成绩

化学工程学院2013-2014(2) 化工机械与设备课程设计任务书 一、课程设计题目:管壳式换热器的机械设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定 6. 编写设计说明书一份 7. Auto CAD绘3号设备装配图一张 三、设计条件 1气体工作压力 管程:半水煤气(0.80+学号最后两位第一个数字×0.02,单位:MPa) 壳程:变换气(0.75+学号最后一位数字×0.01,单位:MPa) 2壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 3由工艺计算求得换热面积为(130+学号最后一位数字×5),单位:m2。

4壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据查表选用。 5壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 6图纸:尺寸需根据自己的设计的尺寸标注。 四、进度安排 6月9-6月20日 五、基本要求 1.学生要按照任务书要求,独立完成设备的机械设计; 2.设计说明书一律采用电子版,指导老师指导修改后打印,3号图纸终稿打印; 3.图纸打印后,将图纸按照统一要求折叠,同设计说明书统一在6月20日上午9点半前,由各组组长负责统一提交。 5.根据设计说明书、图纸、平时表现综合评分。 六、说明书的内容 任务书 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。 4.绘制结构草图 (1)换热器装配图; (2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示; (3)标注形位尺寸;

化工设备基础课程设计

化工设备基础课程设计 第一章设计方案的确定 (1) 1.1 液氨储罐选型 (1) 1.2 液氨储罐选材 (2) 第二章储罐的工艺设计 (2) 2.1 筒体壁厚设计 (2) 2.2 筒体封头设计 (3) 2.3 校核罐体及封头的水压试验强度 (4) 2.4 人孔设计 (4) 2.5 人孔补强 (5) 2.6 接口管 (5) 2.6.1 液氨进料管 (5) 2.6.2 液氨出料管 (6) 2.6.3 排污管 (6) 2.6.4 液面计接管 (6) 2.6.5 放空接口管 (6) 2.7 鞍座 (6) 2.7.1 罐体质量 (7) 2.7.2 封头质量 (7) 2.7.3 液氨质量 (7) 2.7.4 附件质量 (7) 第三章设备总装配图 (8) 3.1 设备总装配图 (8) 3.2 储罐技术要求: (8) 3.3 设计技术特性表 (9) 第四章设计总结 (9) 参考文献 (10)

第一章设计方案的确定 1.1 液氨储罐选型 工业的压力容器种类很多,按形状主要分以下几类:(1)方型或矩形容器(2)球型容器(3)圆筒型容器。本设计采用圆筒型容器,方型或矩形容器虽制造简单,但承压能力差,四角的边缘应力较大,容易失效且封头设计较厚,故不选用。球型容器,虽单位容积所用的材料最少且受力最佳,承载力好,但对中小型储罐来说安装内件不方便,制造难度较大,成本相对较高,不选用。而圆筒型容器,制造容易,选用适当的长径比之后,安装、检修方便,承载能力较好。因此本设计采用圆筒型容器。 1.2 液氨储罐选材 储罐的经济性与实用性重要方面就是材料的选择。根据实际条件,本设计 采用16MnR,主要有几下方面原因:(1)容器的使用条件,如温度、压力等。当容器温度低于0℃时,不得选用Q235系列的钢板,因其塑性变脆。虽20R的碳素钢满足,但其制造要求较高且强度底。而16MnR在常温-40℃—200℃下,具有良好的力学性能和足够的强度。(2)综合经济市场调查(2009年)20R 碳素钢价格:2600元/吨,低合金钢16MnR价格:2680元/吨,两者价格相差不大,但16MnR制造的储罐比碳素钢的质量轻1/3,同时减少了壁厚。 综上所述,本设计用钢选用16MnR。

Buck-Boost变换器

目录 摘要........................................................................ I 1 Buck/Boost变换器分析.. (1) 基本电路构成 (1) 基本工作原理 (1) 工作波形 (2) 2 Buck/Boost变换器基本关系 (3) 3 主要参数计算与选择 (5) 输入电压 (5) 负载电阻 (5) 占空比α (5) { 电感L (5) 输出滤波电容C计算 (6) 4 理论输入、输出电压表达式关系 (7) 5 仿真电路与仿真结果分析 (8) buck/boost仿真电路图 (8) 线性稳压电源仿真 (8) 稳压电源波形图 (9) 升压时输出电压与电流波形 (10) 降压时输出电压与电流波形 (11) 总结 (13) 参考文献 (14) )

摘要 随着世界的需求与电力电子的发展,高频开关电源凭借其低功耗等优点,得到了在计算机、通信和航天等领域的广泛应用。其中功率变换电路对组成开关电源起重要作用。功率变换电路是开关电源的核心部分,针对整流以后不同的直流电压功率变换电路有很多种拓扑结构,比如:Buck变换器拓扑、Boost变换器拓扑、Buck/Boost变换器拓扑、正激(反激)变换器拓扑......Buck/Boost变换器作为其中重要的一种,在开关电源的设计中当然也得到了很好的应用。本课程设计即是基于Simulink对Buck/Boost变换器进行设计与仿真,并且将仿真得到的输入输出电压关系式与理论推导进行比较,从而验证其可行性。 关键字:电力电子开关电源 Simulink Buck/Boost变换器

基于BUCK变换器的电源设计

电子科技大学中山学院新型电源设计实践报告 设计名称基于BUCK变换器的开关电源设计 学院机电学院 班级 14级电气A班 学号姓名 2014100500521 刘连红 指导教师余翼 机电工程学院 2017年 12月 27日

一、设计要求与内容 开关电源是20世纪60年代电源历史上的一次革命,它安装于各种家用电器、工业设备及军用电子装置中,同时作为赋能装置应用于各个领域。比如在电力系统中的应用、在通信领域中的应用、在蓄电池充电中的应用、在风能\太阳能发电中的应用。这次我们要求设计一个9-12V的情况下,通过一个开关电源得到一个稳定的5V/1A的直流输出。我们要求这个开关电源有整流的功能,同时通过反馈控制,有稳压,调压,降压的功能。从而得到稳定的一个直流输出。 二、人员分工与时间安排表 三总体方案设计与论证 3.1 设计思路和流程

1.经过题目选定,确定使用基于BUCK变换器的电源设计。 2.在方案选择过程中,因为考虑到是非隔离电源,使用集成PWM调制芯片简化电路设计。 3.在分析了UC3842,SG3525等芯片的功能与参数后,选择MC34063作为控制方案,该芯片本身也有较强的驱动能力,可直接外接滤波电路与反馈电路来进行电源设计。 4.通过外接场效应管的方式极大增强了驱动能力,该场效应管最大电流可到达17A以上,设计中仅利用不到1A,如果更换滤波电路中的元器件,输出功率可以得到数倍的提升。如果将采样电阻改为电位器,还可以灵活调节输出电压。 3.2 开关电源总电路框图 图3-1 开关电源总电路框图 四、开关电源原理图各部分说明及计算 4.1总原理图的介绍 开关电源是指调整管工作在开关方式,只有导通和截止两个状态,上图为工作过程。 基准电压为固定值,由于输入波动或负载变化导致输出电压减小,采样电压将减小,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大。同理,当由于输入波动或负载变化导致输入电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。 4.2 各部分的说明与计算

机械1802陈莉 课程设计

智能制造基础课程设计说明书物料 控制系统的设计 学院:机械工程学院 专业:机械制造与自动化 班级:机械1802 姓名:陈莉 学号:180101202 指导老师:孙娟

课程设计书 扬州市职业大学机械工程学院 陈莉 2019年5月23日

目录 课程设计任务六物料控制系统 ?课程设计目的: .................................................................................................... ?课程设计器材: .................................................................................................... ?课程设计要求: .................................................................................................... ?I/O对照分配表: .................................................................................................. ?操作步骤: ............................................................................................................ ?程序设计: ............................................................................................................ ?课程设计:............................................................................................ ? 参考文献:............................................................................................

Buck-Boost变换器原理(过程啊)

Buck变换器原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳压器。 1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 2.工作原理 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流I o,两端输出电压V o,极性上正下负。当i s>I o时,电容在充电状态。 这时二极管D1承受反向电压;经时间D1T s后(,t on为S在a位时间,T s是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流i L不变。负载R两端电压仍是上正下负。在i L0,开关打开时,i s=0,故i s是脉动的,但输出电流I o,在L、D1、C作用下却是连续的,平稳的。 图2Buck变换器电路工作过程

Boost变换器 Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。 1.线路组成 线路由开关S、电感L、电容C组成,如图1所示,完成把电压V s升压到V o的功能。 图1 2.工作原理 当开关S在位置a时,如图2(a)所示电流i L流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。此时,电容C放电,R上流过电流I o,R两端为输出电压V o,极性上正下负。由于开关管导通,二极管阳极接V s负极,二极管承受反向电压,所以电容不能通过开关管放电。开关S转换到位置b时,构成电路如2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持i L不变。这样线圈L磁能转化成的电压V L与电源V s串联,以高于V o电压向电容C、负载R供电。高于V o时,电容有充电电流;等于V o时,充电电流为零;当V o有降压趋势时,电容向负载R放电,维持V o不变。 图2Boost变换器电路工作过程 由于V L+V s向负载R供电时,V o高于V s,故称它为升压变换器。工作中输入电流i s=i L是连续的。但流经二极管D1电流确实脉动的。由于有C的存在,负载R上仍有稳定、连续的负载电流I o。

浮头式换热器(过程设备设计课程设计说明书)参考word

目录 设计题目及工艺参数---------------------------------------------------1 一、换热器的分类及特点---------------------------------------------------2 二、结构设计-------------------------------------------------------------5 1、管径及管长的选择---------------------------------------------------5 2、初步确定换热管的根数n和管子排列方式-------------------------------5 3、筒体内径确定-------------------------------------------------------5 4、浮头管板及钩圈法兰结构设计-----------------------------------------6 5、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------7 6、外头盖法兰、外头盖侧法兰设计---------------------------------------7 7、外头盖结构设计-----------------------------------------------------8 8、接管的选择--------------------------------------------------------------------------------------8 9、管箱结构设计-------------------------------------------------------8 10、管箱结构设计------------------------------------------------------8 11、垫片选择----------------------------------------------------------9 12、折流板------------------------------------------------------------------------------------------9 13、支座选取----------------------------------------------------------10 14、拉杆的选择--------------------------------------------------------13 15、接管高度(伸出长度)确定------------------------------------------13 16、防冲板------------------------------------------------------------13 17、设备总长的确定----------------------------------------------------13 18、浮头法兰---------------------------------------------------------------------------------------14 19、浮头管板及钩圈----------------------------------------------------14 三、强度计算--------------------------------------------------------------14 1、筒体壁厚的计算-----------------------------------------------------14 2、外头盖短节,封头厚度计算-------------------------------------------15 3、管箱短节、封头厚度计算 --------------------------------------------16 4、管箱短节开孔补强的核校 --------------------------------------------16 5、壳体压力试验的应力校核---------------------------------------------16 6、壳体接管开孔补强校核-----------------------------------------------17 7、固定管板计算-------------------------------------------------------18 8、无折边球封头计算 --------------------------------------------------19 9、管子拉脱力计算-----------------------------------------------------20 四、设计汇总-----------------------------------------------------21 五、设计体会--------------------------------------------------------------21 参考文献--------------------------------------------------------------22

BUCK变换器设计毕业设计

课程名称:电力电子技术 题目:BUCK变换器设计

9

目录 第一章概述 (5) 1.1 本课题在国内外的发展现状与趋势 (5) 第二章Buck变换器设计总思路 (6) 2.1 电路的总设计思路 (6) 2.2 电路设计总框图 (6) 2.3 总电路图 (7) 第三章BUCK主电路设计 (8) 3.1 Buck变换器主电路基本工作原理 (8) 3.2 主电路保护(过电压保护) (9) 3.3 Buck变换器工作模态分析 (10) 3.4 Buck变换器元件参数 (12) 3.4.1 占空比D (12) 3.4.2 滤波电容C f (13) 3.5 Buck变换器仿真电路及结果 (14) 第四章控制和驱动电路模块 (15) 4.1 SG3525A脉宽调制器控制电路 (15) 4.1.1.SG3525简介 (15) 4.1.2.SG3525内部结构和工作特性 (15) 4.2 SG3525构成的控制电路单元电路图 (18) 4.3 驱动电路设计 (18) 第五章课程设计总结 (19)

第六章附录 (20) 第七章参考文献 (21) 第一章概述 1.1 本课题在国内外的发展现状与趋势 从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。 有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。 为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于 forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

相关主题
文本预览
相关文档 最新文档