当前位置:文档之家› 东北大学 复杂工业过程的智能控制与优化

东北大学 复杂工业过程的智能控制与优化

东北大学 复杂工业过程的智能控制与优化
东北大学 复杂工业过程的智能控制与优化

“985工程”

流程工业综合自动化科技创新平台学术方向建设《项目指南》(第一批)

学术方向复杂工业过程的智能控制与优化

责任教授:杨光红

流程工业综合自动化科技创新平台

二ΟΟ六年五月二十八日

一、研究方向支持的主要领域

复杂工业过程的智能控制与优化方向将开展复杂系统的多目标优化理论与方法研究,容错控制方法研究以提高容错能力和可靠性,考虑在网络化环境下智能控制与优化的新挑战;以及复杂工业过程控制系统中各层次的智能控制与特殊问题研究。主要支持以下研究主题:

1)容错控制系统的多目标优化设计方法及应用;

2)基于模糊模型的非线性鲁棒与智能控制;

3)广义系统的鲁棒控制:不确定性广义系统的鲁棒控制理论、以受限机器人系统、电力系统、经济系统、生物系统为背景的控制器设计方法和仿真。

4)切换系统的鲁棒控制、多目标优化设计方法及应用;

5)运动目标视觉跟踪技术;

6)巡诊查房机器人技术及原型样机;

7)网络控制系统:通信网络系统、基于无线传感器网等的控制方法、控制系统优化设计及复杂互联系统协调控制方法。

二、研究方向建设的总体目标

本学术方向建设的总体目标是:取得一批原创性强的研究成果,部分成果有重大突破并达到国际领先水平,推动复杂工业过程的智能控制与优化理论的进一步发展,以提高我国在相关学科的整体研究水平。

具体指标:

1)在国内外主要学术刊物和重要国际会议上发表60篇以上论文,其中SCI等检索收录论文30篇,包括在本领域著名国际杂志发表论文15篇;

2)争取申请成功4项国家自然科学基金,2项省部、市自然科学基金项目;

3)培养博士生和硕士生50名(毕业25名以上)。

三、建议课题

课题1:容错控制系统的多目标优化设计

1.1 研究目的与意义

在许多实际工程系统(诸如飞行器控制系统、电力控制系统、网络控制系统等)设计过程中,为了降低由于系统出现故障而带来的损失,通常要求所设计的系统具有可靠性,即所设计的系统要有容错功能。容错控制控制系统是指所设计的控制器不但能对系统正常运行时提供理想的性能保证,而且在执行器、传感器或元部件发生故障时,仍能使闭环系统是稳定的并具有可接受的特性。容错控制方法主要分为:主动容错控制与被动容错控制。主动容错控制是指在故障发生后需要重新调整控制器的参数,也可能需要改变

控制器的结构以取得可靠性的目的。主要分成三大类:1)控制律重新调度;2)控制器重构设计;3)模型跟随重组控制。其中控制律重新调度与控制器重构设计方法是以有效的故障检测与诊断为基础的,而这对许多实际工程系统而言是非常困难的。第三类方法,模型跟随重组控制可以避免这一困难,其基本原理是采用模型参考自适应控制的思想,使得被控制过程的输出始终自适应地跟踪参考模型的输出。但这类方法的缺点是很难优化闭环系统的性能。被动容错控制方法是指设计一个或多个固定参数的控制器去达到容错目的,其优点是闭环系统的性能可以得到优化,但一般在系统发生故障后,与系统正常运行时相比,被动容错控制系统的性能会有所下降,甚至无法满足实际的需要。在不使用故障检测与诊断技术的前提下,如何结合被动容错控制方法、模型跟随重组控制方法以及鲁棒自适应控制技术,研究能充分优化闭环系统在不同运行模式下性能的容错控制方法,无疑是非常重要的。本项目将对这一问题进行深入研究,其结果无论对容错控制理论本身的发展,还是对工程控制系统的应用都具有相当重要的意义。

本项目的研究将对上述容错控制问题,给出有效的容错控制系统多目标优化设计方法,并使得所取得的成果能够应用于实际工程系统。提出一套能有效计算的数值方法,在理论上能够证明所提出的设计方法能取得比只用被动容错控制方法要好的性能保证;并能通过系统实时仿真来加以验证。

预期目标:

1)在国内外主要学术刊物和重要国际会议上发表30篇以上论文,其中SCI等检索收录论文15篇,包括在本领域著名国际杂志发表论文10篇;

2)争取申请成功1项国家自然科学基金;

3)培养博士生和硕士生20名(毕业10名以上)。

1.2 主要研究内容

本项目的主要研究内容包括:

1) 针对执行器与传感器故障的情况,研究容错控制系统的优化设计方法。

2) 针对系统含有参数不确定性的情况,研究鲁棒容错控制系统的优化设计方法。

3) 将综合所发展的容错控制器设计方法,能够应用于容错飞行控制系统(诸如F-16模型)的设计,并进行实时仿真研究。

1.3 研究期限:2005年1月1日至2007年12月31日

1.4 拟支持经费:50万元

课题2:基于高性能模糊模型的非线性鲁棒控制器的研究

2.1研究目的与意义

本课题的研究目的是以复杂工业过程的建模与控制问题为背景,以模糊集和非线性系统为主要理论,提出一种高性能的模糊建模方法和模糊控制方法,使研究成果达到国

际前沿水平,最终形成高控制精度和强鲁棒稳定的控制方法,并力争形成产品。

目前用于模糊控制系统建造的模糊模型结构主要有两类:模糊关系模型和T-S模糊模型。Cao于1997年提出的动态模糊模型本质上也可以看作T-S模糊模型。深入研究上述两种模型会发现如下三个缺陷:(1)辨识上述模型时, 必须辨识模糊模型的前提结构。现有的方法计算烦琐、费时,且难以保证得到全局最优的结构;(2)当基于上述两种模糊模型设计控制器时,通常是对每个模糊子空间的局部模型分别设计控制器,要求所设计的模糊控制规则的模糊前提描述与模型的前提描述完全相同。但是这将给系统的稳定性、鲁棒性设计和分析带来很大的困难。(3)上面两类模糊模型还具有共同局限性:其模糊性或不确定性均来自于模糊产生式规则的前提和结论部分的语言描述。可事实上,操作人员在表达和处理知识和操作经验的过程中,对诸条模糊产生式规则的置信程度(或重要程度)也具有模糊性。

只有稳定的控制系统在工程实际中才有意义,模糊控制系统也不例外。由于模糊模型是本质非线性时变模型,因此控制系统的稳定性、鲁棒性设计极为困难,难以提出有效的通用方法。T-S模型因其结构的局部为线性模型,有关稳定性的分析较为完善。以T. Tanaka为代表的学者曾提出了当控制器的前提与模糊模型的前提完全相同时(不允许有任何偏离)的控制系统稳定性设计方法,得到的是在Lyapunov意义下解矩阵Ricatti 方程的方法,要求存在公共的正定阵P。很明显对于实际的多变量模糊系统寻找正定阵P是很困难的,有时是无解的。实质上,此类方法最多只分析了该模糊模型的结论存在未建模偏差时,模糊控制器的鲁棒稳定性设计问题。但实际上模糊模型的前提部分也存在着未建模偏差,所以前述假设通常难以成立。因此,这种方法存在着局限性,对于复杂工业过程对象,闭环控制系统的稳定性难以保证。

因此,研究高性能的模糊模型结构、建模方法以及相应的模糊自适应控制器设计方法是十分重要的。这项研究将推动模糊自适应控制理论和非线性控制理论的深入发展,同时也可以进一步形成具有自主知识产权的高科技产品,解决工业生产过程中非线性系统控制的许多老大难问题,取得可观的经济效益和社会效益,促进我国工业自动化产品的深入发展。

预期目标:

1)在国内外主要学术刊物和重要国际会议上发表20篇以上论文,其中SCI等三大检索收录论文10篇;

2)争取申请成功2项国家、省部、市自然科学基金;

3)培养博士生和硕士生25名(毕业10名以上),培养在职攻读博士学位和博士后的青年教师5名以上。

2.2 主要研究内容

1)针对数学模型未知的一类多干扰多变量时变非线性复杂对象,构筑一种先进的多维动态模糊模型──改进的模糊双曲正切模型;

2)综合采用粗糙集理论和模糊聚类分析方法辨识其模型,建立反馈控制器。

3)研究小波变换的改进算法,并据此形成新型频域前馈控制方案,解决大时滞和持续的不确定性扰动这两个难点问题;最终形成高控制精度和强鲁棒稳定的控制方法。

2.3 研究期限:2005年1月1日至2007年12月31日

2.4 拟支持经费:10万元

课题3:广义系统的鲁棒控制理论与应用

3.1、研究目的与意义

广义系统又称为微分代数系统,历经近30年的研究,取得了许多理论成果,并在航空、航天、机器人、电力系统、电子网络、化工、生物和经济等领域得到了一定的应用。目前,广义系统的研究仍然是国内外控制界研究的一个热门领域。广义系统用微分方程和代数方程来表示,描述了一类更为广泛的实际系统模型。尤其是,广义系统具有正常系统所不具有的脉冲行为,致使有关研究变得复杂而结果富于新颖性。因此,对于广义系统的研究,具有重要的学术价值和广泛的实际应用背景。对于广义系统的研究,一些学者考虑导数反馈作用下的广义系统极点配置、脉冲消除和正常化等问题。在这些工作中,导数项系数矩阵是变化的。特别是系统动态阶的变化,往往引起系统极点在无穷区间上变化,造成系统稳定性的改变,或者产生新的脉冲行为。另外,Taniguchi 等人通过实际问题建模,提出了广义T-S模糊系统模型。这个模型在一定前件变量条件下,是一类导数项系数矩阵为时变的广义系统。可见,无论是理论上,还是应用上,广义系统中都存在着导数项系数矩阵变化的情况。同时,导数反馈在广义系统控制中是重要的,也是必不可少的。有关导数反馈作用下的广义系统结构性质分析与相关控制问题的研究,需要进一步地开展工作,来细致地描述和刻画这类系统的形态和性能。

本项目研究广义系统的分析与控制的新方法,发展导数项系数矩阵具有不确定性的广义系统的鲁棒控制理论,以及混沌控制理论;以受限机器人系统、电力系统、经济系统、生物系统为应用背景,提出相关的控制器设计方法和仿真程。

预期目标:

1)在国内外主要学术刊物和重要国际会议上发表30篇以上论文,其中SCI检索收录论文10篇。

2)争取申请成功2项国家、省部、市自然科学基金;

3)培养博士生和硕士生25名(毕业10名以上),培养在职攻读博士学位和博士后的青年教师5名以上。

3.2 主要研究内容

1)研究在导数反馈作用下,受控广义系统的性质和性能。细致地刻画系统动态阶的变化和脉冲行为,以及对初始状态的敏感性,分岔、失稳和混沌现象;产生跳跃输入

时,系统响应的间断形态;

2)探讨导数项系数矩阵具有不确定性时,广义系统结构性质的鲁棒性和混沌想象,以及相关的控制问题,包括鲁棒控制、带有性能指标的优化控制(如H 控制),保成本控制和混沌控制等;

3)借助于矩阵不等式方法,以及Matlab软件,求解出对应的控制器,并给出控制器的设计和仿真程序;

4)以控制仿真及受限机器人系统、电力系统和生物系统中的实际为背景的应用研究。

3.3 研究期限:2005年1月1日至2007年12月31日

3.4 拟支持经费:10万元

课题4:切换系统的分析与鲁棒控制

4.1 研究目的与意义:

切换系统(Switched Systems)是一类重要的混杂系统。十几年来,切换系统的研

究颇受重视。切换系统有着十分广泛的实际背景,很多实际系统如机器人控制系统、

电力系统、交通管理系统、工业控制系统等都不可以简单地用单一的连续模型或离散

模型来描述,但却可以用切换系统来描述其动态行为。切换系统作为混杂系统的一类

特殊和简化模型,它的研究结果可为混杂系统的分析和设计提供理论、方法上的借鉴

和启示。目前关于切换系统研究最集中的问题是稳定性问题,包括三类基本问题:a)

任意切换下的稳定性,b)判断某类切换下的稳定性,c)设计切换使系统稳定。其中第

三个问题远没有解决,尚无一般方法。单 Lyapunov 函数方法和多Lyapunov 函数方

法似为有效的工具。但单 Lyapunov 函数通常不易找出,而多 Lyapunov 函数方法对

各子系统的 Lyapunov-like 函数在切换序列上有十分严格的限制。寻求易于计算和

检验的稳定性条件仍然是热点问题之一。另外,如何设计连续控制器和离散切换信

号来镇定系统是一个具有挑战性的亟待解决的问题,但目前的研究结果十分之少。鲁

棒性是控制系统的十分重要的品性。但切换系统的鲁棒性方面的结果还相当少,并且

主要集中在特殊类型的输出反馈上。对于连续动态和切换信号同时带有不确定性的情况,极少有研究结果报道。

本项目系统研究切换系统的分析与鲁棒控制问题。通过分析连续动态与离散动态

相互作用机理,揭示切换系统内部的运动规律,寻求易于计算和检验的稳定性条件和

设计方法。根据不确定性进入系统的不同方式,包括连续动态和切换信号同时带有不

确定性的情况, 研究连续控制器和切换信号的设计方法。本项目的完成将为切换系统

的分析与设计提供理论分析结果和方法。研究结果可望应用于机器人控制系统,交通

运输管理与控制等许多实际系统。

预期目标:

1)在国内外主要学术刊物和重要国际会议上发表15篇以上论文,其中SCI检索收录论文5篇。

2)争取申请成功一项国家自然科学基金;

3)培养博士毕业生5名以上。

4.2 主要研究内容:

本项目研究切换系统的鲁棒控制问题。为切换系统的分析与设计提供理论分析结果和方法。研究内容包括:

1) 切换系统的鲁棒镇定条件和连续控制器与切换规则的设计方法;

2) 切换信号通道具有不确定性和干扰情况下的鲁棒稳定性分析;

3) 利用控制器切换技术处理复杂非线性系统的鲁棒控制问题。

4.3 研究期限:2005年1月1日至2007年12月31日

4.4拟支持经费:5万元

课题5:基于粒子滤波的运动目标视觉跟踪技术研究

5.1 研究目的与意义

人类的视觉系统是获取外界信息的最主要途径,而目标跟踪把图像处理、自动控制、信息科学等有机的结合起来,成为计算机视觉和模式识别领域中的一个重要课题。目标跟踪可以广泛地应用于军事目标识别与跟踪系统、武器制导系统、公路交通智能监测系统、重要场所的视频监控、智能汽车的自动驾驶、机器人导航等领域。目标运动的随机性和复杂性,例如目标的形变、运动速度和姿态变化、目标颜色与背景颜色相似度、背景的稳定程度等,这些都会给目标跟踪带来困难,其理论和技术研究极具挑战性,目前仍存在许多问题和难点尚未解决。粒子滤波通过非参数化的蒙特卡罗模拟方法来实现递推贝叶斯滤波,适用于任何能用状态空间模型表示的非线性系统,以及传统的卡尔曼滤波无法表示的非线性系统,精度可以逼近最优估计。粒子滤波方法使用灵活,容易实现,具有并行结构,实用性强。将粒子滤波理论应用于目标的视觉跟踪领域可以提高跟踪精度和复杂场景下跟踪的精度。因此,研究基于粒子滤波的运动目标跟踪不仅具有重要的理论意义,而且具有很高的应用价值。

本项目的研究将提供运动目标跟踪的有效算法,保证视频跟踪实验系统的可用性、可靠性、可维护性。

预期目标

1) 在国内外主要学术刊物和重要国际会议上发表4篇以上论文;

2) 争取申请成功1项辽宁省自然科学基金;

3) 培养硕士生2名,博士后一名。

5.2 主要研究内容

1) 研究粒子滤波理论在视频领域中的应用,探讨粒子滤波方法中各个步骤在视频跟踪过程中所表示的具体意义;跟踪国内外目标跟踪技术和粒子滤波理论的发展动态,结合运动目标视觉跟踪系统的特点和要求,设计改进的粒子滤波器。

2) 将传统的跟踪方法(如模版跟踪、轮廓跟踪)与粒子滤波器结合,提高算法的跟踪精度和鲁棒性。将gabor小波特征、mean-shift、颜色模型等先进跟踪方法与粒子滤波器结合解决目标旋转、尺度、仿射变形、遮挡等恶劣条件下的运动目标跟踪稳定性问题。

3) 建立基于粒子滤波的运动目标视频跟踪框架,构建视频跟踪实验系统。

5.3 研究期限:2005年1月1日至2007年12月31日

5.4 拟支持经费:5万元

课题6:远距巡诊查房机器人关键技术的研究

6.1 研究目的与意义

远距巡诊查房机器人是一种可以应用在医院内部,辅助医务人员完成一些基本的医疗任务的具有智能的机械电子装置,是综合信息技术、电子技术、机械技术、控制技术、以及通讯技术为一体的高科技产物。它的研制和开发对社会发展和科学研究进步都有着深刻的意义。进入21世纪,中国社会仍面临着严重的人口压力,而计划生育政策的实施也使得人口结构向着少子化、老龄化的趋势迅速演变。如何应对人口结构急剧变化及缓解人口膨胀,成为了摆在社会学家,心理学家,科技工作者面前一道急需解决的难题。将有限的人力从简单重复的工作当中解放出来,让机器人来辅助医务人员完成这些作业,如医院内的日常巡诊和查房、食品、药品以及医疗器械的运送。医用服务型智能机器人的研制和开发将有效地改善人民的生活质量,减轻社会负担,促进社会的稳定和繁荣。远距巡诊查房机器人项目要研制的是一种集信息技术、电子技术、机械技术、控制技术以及通讯技术等为一体的能够最大限度模仿人类智能,辅助医务人员完成繁重、机械的工作任务的机械电子装置。它需要有合理的控制结构、灵敏的传感器信号采集、高速有效的远程通讯控制、及时准确的微处理器控制、最优的决策规划等。因此,远距巡诊查房机器人的研制是一个前沿性、多学科交叉的研究课题。本课题的研究将会促进相关技术的发展及集成,同时也是对相关领域研究结果的实用化探索。如机器人定位与导航研究领域的相关成果,图像处理领域相关研究成果,模式识别领域的相关研究成果、远程通讯研究领域的相关成果以及智能控制领域的相关研究成果等。

综上所述,远距巡诊查房机器人课题的研究对于带动相关行业发展,对于相关领域科研成果的实用化问题等都有着重要的意义,值得研究与开发。鉴于远距巡诊查房机器人系统集成了自主式机器人研究领域很多关键技术,研制一款远距巡诊查房机器人的原

型机可以为开发适用于其他场合的自主式机器人打下坚实的基础,并可为其它领域自主式机器人的研究提供许多宝贵经验。

预期目标:

1) 突破远距巡诊查房机器人几项关键技术,研制一种能够完全自主导航并能通过远程通讯进行高级人机交互的巡诊查房机器人原型样机,并通过技术鉴定,填补国内空白,为巡诊查房机器人的实用化与产业化奠定基础;

2) 在高水平的国内外刊物和会议上发表5篇以上论文;

3) 结合本课题培养本领域博士、硕士和高层次人才5名,在学术上产生良好的影响。

4) 结合研究成果,申请1-2项发明专利。

6.2 主要研究内容

1) 多传感器信息融合;

2) 自定位与路径规划;

3) 动态随机避障;

4) 人脸面部表情识别;

5) 基于Internet的远距实时通讯。

6.3 研究期限:2005年1月1日至2007年12月31日

6.4 拟支持经费:5万元

课题7:通信网络系统的拥塞控制问题

7.1 研究目的与意义

网络控制问题的研究正日益成为国内外学者普遍重视和研究的领域。网络控制包含两大问题:一是控制的网络,一是网络的控制。前者是网络化控制问题,受到人们的普遍关注。这类研究所处理的对象是系统,而网络则是控制通道,通过网络将控制施加到系统中。着重点在于如何分析由网络引起的信号滞后和如何设计网络化控制器。而后者是关于网络本身这一系统的控制问题,尚未得到更大的重视和研究。现代通信网络是一种大规模复杂系统。它具有相当广泛的通信量种类,服务于多用户,而且呈现各种结构。网络中的拥塞控制问题已成为重要的研究方向,而控制理论中的思想和方法正适合于此类问题。将控制理论中的一些理论和方法应用到通信网络系统的研究领域中,是信息科学的一个新方向。

研究目标在于如何将控制理论中得到理论研究成果与现代通信网络系统的研究有机地结合起来,进行现代通信网络系统中拥塞控制问题的研究。一方面,将通过控制通信网络的价格,即以系统和用户的最大盈余为目标函数,建立随机网络系统的激励价格管理策略,利用激励价控策略的调整、引导和激励作用,使网络系统稳定在平衡点处,

来避免拥塞的产生。另一方面将通过控制TCP/IP网络和ATM网络的流量来避免拥塞的产生。以期扩展控制理论的应用领域,为现代通信网络系统的管理和控制研究提供一条新的途径。

预期目标

1) 在国内外主要学术刊物和重要国际会议上发表5篇以上论文,其中SCI检索收录论文1篇;

2) 培养博士毕业生3名以上。

7.2 主要研究内容

1) 随机网络系统的激励价格管理及控制策略的研究;

2) 针对一类网络系统盈余函数的数学模型分析,研究网络服务质量可升级的连接管理策略;

3) 基于TCP/IP网络和ATM网络的流量控制策略。

7.3 研究期限:2005年1月1日至2007年12月31日

7.4 拟支持经费:1.5万元

课题8:信息不完全系统的控制与优化

8.1 研究目的与意义

在现实世界中,大多数信息是非精确的、非完全的,即不完全信息或不确定信息. 这样,人类就不可避免地要遇到许多不确定性信息并必须处理它. 因此,不确定性信息处理的数学模型及方法已成为当今的研究热点。在网络系统不断发展的今天,由于供电网络,供水网络、供气(油)网络以及通讯网络大范围区域化,出现了许多不完全信息问题。如:网络咨询服务系统中根据客户的不完全信息确定服务的范围,内容;不完全信息的故障定位问题。在网络中,由于往往采用数字式继电器保护及远动装置,不完全信息故障定位系统的任务是根据从分布在网络中的有限的数字保护所获得的信息,并根据已知的故障开关状态及运行参数,判断出故障点的位置。军事领域中的信息对抗,装备研制,战略部署等各类军事博弈问题都属于信息不完全问题,对应的系统为信息不完全系统。随着研究的深入,人们发现信息不完全系统控制与优化问题,有着更为广泛的实际应用背景,特别是在各类复杂大系统中更为突出,在许多前沿学科的研究中得到了广泛的应用。

神经网络模型是描述和处理复杂系统的有力工具,但目前利用神经网络模型对信息不完全系统的描述,处理的研究尚未见到。神经网络与自适应控制、模糊技术相结合的研究,已成为智能控制的一个重要分支。本课题拟将神经网络与模糊控制、自适应控制思想相融合研究信息不完全系统的控制和优化问题具有理论与实际意义。

预期目标:

1) 在国内外主要学术刊物和重要国际会议上发表5篇以上论文,其中SCI检索收录论文1篇;

2) 培养博士毕业生3名以上。

8.2 主要研究内容

1) 利用神经网络模型对信息不完全系统的描述与辨识方法研究;

2) 利用神经网络模型对信息不完全系统的控制与优化研究:

3) 通常意义下的信息不完全系统(对策系统)的自适应控制和鲁棒控制;

4) 信息不完全系统控制、优化理论在实际中的应用。

8.3 研究期限:2005年1月1日至2007年12月31日

8.4 拟支持经费:1.5万元

课题9: 基于无线传感器网的多移动载体的分布式控制

9.1 研究目的与意义

随着在微机电系统技术、无线通信和数字电子技术的日益成熟,具有感知、计算和通信能力的微型传感器已经出现。由于“普适计算”(pervasive computing)思想的出现促使计算、通信和传感器等三项技术相结合,产生了无线传感器网络(wireless sensor network, WSN)。该网络能适用于环境恶劣或人们无法到达的区域,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。因此,它在军事、医疗、空间探测、环境监测、抢险救灾、安全生产监控等领域都有广泛应用。目前又出现了许多新的学科方向和实际应用。其中,基于无线传感器网的多移动载体的分布式控制、自组织移动网络、多载体自主控制,容错控制等,就是它重要代表。总体来说,国内外对无线传感器网络的分布式控制和容错控制以及移动自组织网络的研究尚处于发展阶段,还有许多的问题需要深入的研究和解决。

本项目研究基于无线传感器网络信息的多移动载体的分布式控制问题,为系统的任务规划与控制提供方法和策略。具体目标为:(1)给出不同自组织网络模式切换对多移动载体任务规划的控制效率优化及切换条件;(2)给出多移动载体任务规划与控制规则的设计方法;(3)部分无线传感器网络节点及移动载体失效的容错控制方法。

预期目标:

1) 在国内外主要学术刊物和重要国际会议上发表5篇以上论文,其中SCI检索收录论文1篇;

2) 培养硕士毕业生3名以上。

9.2 主要研究内容

1)基于无线传感器网络的多移动载体的协同控制与任务规划问题;

2)不同移动自组织网络对多移动载体的控制效率影响比较;

3)多移动载体任务规划的容错控制问题。

9.3 研究期限:2005年1月1日至2007年12月31日

9.4 拟支持经费:1万元

子课题10:复杂互联系统协调控制及优化的研究

10.1 研究目的与意义

在自然界、控制工程和社会领域,广泛存在着各种形式的复杂互联系统。按照系统科学的观点,对于由多个子系统按照某种联结作用结合而成的系统,其子系统之间的联系及信息传递是维系整个系统存在、发展和演化的根本。通过子系统之间的联系和信息互递来达到整个系统的基本控制目标,进而实现优化,这正是系统论的初衷和精髓所在。然而,由于人们对子系统的互联作用的机理还不甚清楚,以及求解工具的限制,长期以来互联系统的分析和设计问题还远未彻底解决,其中包括一些最基本的问题。这与工程技术、生产实践对等领域对复杂互联系统设计的要求形成了鲜明的对照。我们提出的协调控制以网络控制、分布式控制等为背景,立足于控制论,结合并借鉴系统论和信息论的相关研究成果,不仅具有重要的理论价值和广泛的应用领域,更具有深远的方法论义。由于互联系统分析与设计的复杂性,学者们试图从不同的侧面、利用不同的工具进行研究,并取得了很多进展,针对具体的系统形式提出了一些较为有效的设计方法。但即在系统分析方面仍有一些基本问题没能解决,如静态分散反馈镇定的等价条件。

研究目标包括:给出通过协调控制实现或改善系统性能的条件;通过建立

..子系统之

间的(部分或全部)联系来实现整体的控制目标;通过改造

..子系统之间固有的(部分或全部)联系来实现整体的控制目标。

成果以论文的形式提出和验收,在国内外主要学术刊物和重要国际会议上发表5篇以上论文,其中SCI检索收录论文1篇。培养硕士毕业生3名以上。争取获得国家自然科学基金立项资助。

10.2 主要研究内容

1) 协调性分析,即研究通过协调控制实现或改善系统性能的条件;

2) 通过建立

..子系统之间的(部分或全部)联系来实现整体的控制目标;

3) 通过改造

..子系统之间固有的(部分或全部)联系来实现整体的控制目标;

4) 与其它先进控制理念的有机融合。

10.3 研究期限:2005年1月1日至2007年12月31日

10.4 拟支持经费:1万元

东北大学 复杂工业过程的智能控制与优化

“985工程” 流程工业综合自动化科技创新平台学术方向建设《项目指南》(第一批) 学术方向复杂工业过程的智能控制与优化 责任教授:杨光红 流程工业综合自动化科技创新平台 二ΟΟ六年五月二十八日

一、研究方向支持的主要领域 复杂工业过程的智能控制与优化方向将开展复杂系统的多目标优化理论与方法研究,容错控制方法研究以提高容错能力和可靠性,考虑在网络化环境下智能控制与优化的新挑战;以及复杂工业过程控制系统中各层次的智能控制与特殊问题研究。主要支持以下研究主题: 1)容错控制系统的多目标优化设计方法及应用; 2)基于模糊模型的非线性鲁棒与智能控制; 3)广义系统的鲁棒控制:不确定性广义系统的鲁棒控制理论、以受限机器人系统、电力系统、经济系统、生物系统为背景的控制器设计方法和仿真。 4)切换系统的鲁棒控制、多目标优化设计方法及应用; 5)运动目标视觉跟踪技术; 6)巡诊查房机器人技术及原型样机; 7)网络控制系统:通信网络系统、基于无线传感器网等的控制方法、控制系统优化设计及复杂互联系统协调控制方法。 二、研究方向建设的总体目标 本学术方向建设的总体目标是:取得一批原创性强的研究成果,部分成果有重大突破并达到国际领先水平,推动复杂工业过程的智能控制与优化理论的进一步发展,以提高我国在相关学科的整体研究水平。 具体指标: 1)在国内外主要学术刊物和重要国际会议上发表60篇以上论文,其中SCI等检索收录论文30篇,包括在本领域著名国际杂志发表论文15篇; 2)争取申请成功4项国家自然科学基金,2项省部、市自然科学基金项目; 3)培养博士生和硕士生50名(毕业25名以上)。 三、建议课题 课题1:容错控制系统的多目标优化设计 1.1 研究目的与意义 在许多实际工程系统(诸如飞行器控制系统、电力控制系统、网络控制系统等)设计过程中,为了降低由于系统出现故障而带来的损失,通常要求所设计的系统具有可靠性,即所设计的系统要有容错功能。容错控制控制系统是指所设计的控制器不但能对系统正常运行时提供理想的性能保证,而且在执行器、传感器或元部件发生故障时,仍能使闭环系统是稳定的并具有可接受的特性。容错控制方法主要分为:主动容错控制与被动容错控制。主动容错控制是指在故障发生后需要重新调整控制器的参数,也可能需要改变

智能控制的主要应用领域

一)智能控制的主要应用领域? 答:1在机器人系统中的应用2)在CIMS计算机/现代集成制造系统和CIPS计算机/现代集成作业系统中的应用3)在航天航空控制系统中的应用4)在社会经济管理系统中的应用5)在交通运输系统中的应用。 二)专家系统的组成、主要类型? 答:专家系统主要有四部分组成1)知识库,包括事实、判断、规则、经验知识和数学模型2)推理机,首先把知识库中的专家知识及数据库中的有关事实,以一定的推理方式进行逻辑推理以给出结论3)解释机制是专家系统区别于传统计算机程的主要特征之一,它可以向用户回答如何导出推理的结论4)知识获取系统,主要完成机器学习。 类型:1)控制系统辅助设计2)过程监控、在先诊断、故障分析与预测维护;3)过程控制4)航天故障诊断与处理5)生产过程的决策与调度。 三)智能控制的产生和发展过程及其主要代表人物? 答:1)启蒙期从20世纪60年代起,F.W.史密斯提出采用性能模式识别器;1965年,美国扎德模糊集合;1966年,J.M.门德尔人工智能控制; 2)形成期20世纪70年代傅京孙、曼德尼3)发展期20世纪80年代4)高潮期20世纪90年代 四)人工神经网络的特点? 答:1)可以充分逼近任意复杂的非线形关系2)所有定量或定性的信息都分布储存于网络内的各神经元的连接上,故有很强的鲁棒性和容错性3)采用并行分布处理方法,使得快速进行大量运算成为可能4)可自学习和自适应不确知或不确定的系统。 五)智能控制的应用对象? 答:1)不确定的模型传统的控制是基于模型的控制,这里的模型包括控制对象和干扰模型。 2)高度的非线性传统控制理论中的线性系统理论比较成熟。 3)复杂的任务要求在传统的控制系统中,控制的任务或者是要求输出量为定值,或者是要求输出量跟随期望的运动轨迹,因此控制任务的要求比较单一。对于智能控制系统,任务的要求往往比较复杂。 六)傅京孙关于智能控制的论文中列举的三种智能控制系统? 答:1)人作为控制器的控制系统2)人机结合作为控制器的控制系统3)无人参与的智能控制系统。 七)模糊控制器的主要特点? 答:1)设计简单。模糊控制器是一种基于规则的控制。 2)适用于数学模型难以获取、动态特性不易掌握或变化非常显著的对象。 3)控制效果优于常规控制器。 4)具有一定的智能水平, 5)模糊控制系统的鲁棒性强。 八)隶属函数选择的基本准则? 答:1)表示隶属度函数的模糊集合必须是凸模糊集合。 2)变量所取隶属度函数通常是对称的、平衡的。 3)隶属度函数要符合人们的语义顺序,避免不恰当的重叠。 4)论域中每个点至少属于一个隶属度函数的区域,并应属于不超过两个隶属度函数的区域, 5)当两个隶属度函数重叠时,重叠部分对两个隶属度函数的最大隶属度不应有交叉,6)当两个隶属度函数重叠时,重叠部分的任何点的隶属度函数的和应该小于或等于1。九)隶属度函数确定的三种主要方法。

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

软件工程-东北大学

软件工程 (学科代码: 0835) 一、学科简介与研究方向 东北大学软件工程学科是2011年2月国家首次批准调整建设的一级学科。东北大学于2011年8月设立软件工程一级学科博士学位授权点,是国家设立的第一批软件工程学科。东北大学软件工程学科的人才培养已经形成了较为完整成熟的本科生和硕士生培养体系,建立了国家软件人才国际培训(沈阳)基地、国家级人才培养模式创新实验区、辽宁省软件工程实验教学示范中心,质量工程建设取得一系列重大成果,成功培养了大批软件实用性人才。软件工程专业是省级示范专业,并被批准为国家级特色建设专业。本学科已培养了大批硕士研究生走上工作岗位,软件工程被评为“全国工程硕士研究生教育特色工程领域”。2012年,软件工程学科开始招收博士研究生,已形成了完善的本硕博贯通式软件工程人才培养体系。在全国第四轮学科评估中,东北大学软件工程学科排名全国并列第九。本学科学术队伍现有教授12人(其中博士生导师7人),副教授18人,以国家、区域科技需求为导向,结合学科的发展趋势和多年研究积累,已形成相互促进、彼此渗透、有一定优势和特色的学科研究方向。 (一)网构化软件工程及其演化技术体系。研究结合大数据的高速、多样、价值密度等特性,描述软件生态环境,分析大数据对软件工程的影响及收益,形成全新的以数据为驱动的,具有自主性、协同性、反应性、演化性和多态性相结合的软件工程理论。 (二)软件安全技术。针对软件理论和技术的研究与软件产业发展所面临的软件安全问题,围绕国家科技战略目标,立足创新研究,强调理论和应用相结合。从软件安全开发模型和软件开发的生命周期入手,重点研究安全软件工程的防护框架、软件安全防护理论与关键技术和可信软件的关键技术。 (三)基于混合现实的交互式软件开发技术。重点研究虚拟与真实空间位置映射技术、增强现实及交互技术、交互式医学信息可视化关键技术、云渲染关键技术及应用。 (四)软件定义互联网体系架构与关键技术。主要围绕着①可扩展、可信的软件定义互联网体系架构模型,②可行、高效、安全的软件定义互联网运行机制,③准确、有效的软件定义互联网量化模型与分析方法展开研究。 (五)复杂系统理论与应用技术。以混沌、分形、复杂网络等理论为基础和手段,将复杂系统理论成果和研究方法应用于计算机科学、软件工程等领域中,研究和解决软件工程领域的设计方法、可靠性分析、质量管理与预测及复杂网络与社交网络的建模、分析、挖掘、预测等问题。 (六)大数据计算与应用技术。研究高效的大数据获取、存储、管理、分析、理解和展示等方面的关键技术,包括数据密集型计算,高能效计算,非结构化数据存储和数据管

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

研究生《最优化方法》课程实验-最优化编程作业答案-东北大学

研究生《最优化方法》课程实验(第一部分) function a=li_H(x1,x2,f1,f2) t1=0.00001;t2=0.00001;t3=0.0001; a=0; if norm(grad(x2))>=t3 a=1; end if (norm(x2-x1))/(norm(x1)+1)>=t1 a=1; end if (abs(f2-f1))/(abs(f1)+1)>=t2 a=1; end end ---------------------------------------------------------------------------------------------------------------------- function t= line(f,a,b,e) B=0.618; t2=a+B *(b-a); hanshu2=subs(f,t2); t1=a+b-t2; f1=subs(f,t1); while abs(t1-t2)>=e if f1<=f2 b=t2; t2=t1; f2=f1; t1=a+b-t2; f1=subs(f,t1); else a=t1; t1=t2; f1=f2; t2=a+B *(b-a); f2=subs(f,t2); end end tb=0.5*(t1+t2); fb=subs(f,tb); f2=tb; ---------------------------------------------------------------------------------------------------------------------- function y=qujian(x,p)

智能监控系统的应用

当前,随着国际国内形势的变化,安全已经成为人们日益关注的问题,出于反恐安保的需要,智能视频监控已经广泛运用在奥运会、世博会、青奥会等大型赛事活动安保工作中。不仅国家安全需要智能视频监控,社会安全也需要视频监控系统,当前在工厂、酒店、超市、码头、学校、家庭、政府部门、银行等等,都广泛采用了智能视频监控系统保障人身安全、财产安全和交通安全。 视频监控技术主要经历了三个发展阶段,第一阶段是人力现场监控,即通过肉眼和人脑对现场情况进行监控,这是几千年来的传统做法,能起到一定的效果,但需要耗费大量的人力物力,而且限于人的视力和脑力,起到的监控效果受到很大的限制。第二阶段是传统视频监控,即通过机器眼和人脑进行监控,即通过摄像机或者其他视频采集设备获取现场视频,然后靠人脑对视频对判断处理,这种方式极大的提升了视频的采集能力,基本能做到全天候、无死角的还原现场情况,但受限于人脑的数据处理能力,没有能力将视频获取的海量数据进行实时处理分析,限制了监控效果的进一步提高。第三阶段是智能视频监控,就是利用计算机对摄像机或者其他视频采集设备获取的现场视频自己进行内容分析,从而自动检测与识别出需要掌握的信息,并给出相应的预警预报信号。 三个阶段图 实验表明:在盯着视频画面仅仅22分钟后,人眼会对画面里面95%以上的活动视而不见。

1997年,卡内基梅隆大学牵头,麻省理工学院等高校参与的视觉监控重大项目VSAM启动,主要研究用于战场及普通民用场景监控的自动视频理解技术。1999年,康奈尔大学设计了一套航拍视频检测与持续跟踪系统,该系统能够对多运动目标实现长时间的准确跟踪,即使发生短时间内目标被遮挡或目标时静时动的情况仍可以完成跟踪,这点对于空中侦察或者追踪意义重大。2003年法国的SILOGIC 公司和英国雷丁大学等机构参与研究的AVITRACK项目,检测和跟踪机场停机坪出现的飞机、汽车以及行为等运动目标,辅助机场管理人员进行管理和调度,不仅可以提高机场利用率,而且可以提高机场安全管理水平。 目标跟踪就是将视频中的每一帧图像中确定出要检测的运动目标位置,并把各个帧中同一运动目标对应起来。 主要难度来源于局部遮挡、姿势变化、运动模糊、光照变化等因素 一般跟踪选择颜色特征、边缘特征、光流、或者纹理,代表性的方法有均值漂移法(Meanshift):无参核密度估计。卡尔曼滤波:线性、高斯。扩展卡尔曼滤波(EKF):非线性、高斯。粒子滤波(PF):非线性、非高斯。 几个代表性目标检测与跟踪算法 帧差法:适合摄像头固定的场景,利用建立的背景模型来生成背景 图像的像素值,然后将当前帧与背景图像求差,差值较大的像素区域

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

东北大学控制理论与控制工程博士论文要求

控制理论与控制工程学科 一、学科简介 该学科以工程系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的理论、方法和技术。控制理论是学科的重要基础和核心内容;控制工程是学科的背景动力和发展目标。东北大学控制理论与控制工程学科是经国家教委批准建立的全国首批博士点及自动控制博士后流动站;是国家和省级重点学科,是国家“211工程”和“985工程”的重点建设学科;拥有国家冶金自动化工程技术中心,教育部流程工业综合自动化实验室,“985”流程工业综合自动化科技创新平台。以控制理论与控制工程学科为龙头的控制科学与工程学科在国家一级学科评比中排名第一。学科现有博士生导师15人,学术梯队年龄结构合理,拥有国家自然科学基金创新群体2个,教育部创新团队1个,其中包括学科带头人中科院院士张嗣瀛教授、中国工程院院士柴天佑教授,“长江学者计划”特聘教授刘晓平教授、张化光教授、杨光红教授。学科目前承担国家“十一五”科技攻关项目、自然科学基金重点项目、973项目、863项目、国家、教育部、省、市各级纵向科研项目多项;与美、英、加、澳等众多的国家和地区的著名大学建立长期的学术合作关系;在国内外重要学术杂志和国际学术会议上发表论文数量在国内同学科名列前茅;若干理论研究成果已达到国际领先水平。曾获国家自然科学三等奖、国家科技进步二、三等奖、国家教育部科学进步一等奖、省部科技进步一等奖等多项奖励。学科还主办《控制与决策》和《控制工程》等学术杂志,并举办“中国控制与决策学术年会”,在国内具有重要影响。目前,该学科已成为东北大学教学、科研与研究生培养的一个重要基地,具备独立培养高质量高层次人才的能力。 二、培养目标 控制理论与控制工程博士的培养目标是为国家培养控制领域的高层次研究开发人才,具体目标有: 1.热爱祖国,遵纪守法,具有良好的道德品质,学风严谨。 2.掌握本学科坚实宽广的基础理论和系统深入的专门知识。 3.具有独立的从事科研工作的能力。 4.在本学科领域取得一定的创造性成果。 三、学习年限与学分要求 全日制攻读博士学位,学习年限原则上为3年;在职攻读博士学位,学习年限原则上为4年,但无论全日制还是在职攻读博士学位,保留学籍时间不超过6年。 学分要求:最低学分10学分。

智能控制发展趋势及应用

智能控制的发展趋势和应用 学号0000000 姓名****** 老师钟春富

摘要:描述了智能控制产生的历史以及全世界对于智能控制有研究的多个国家在智能控制的研究方向以及研究水平,介绍了智能控制的发展趋势以及智能控制发展面临的问题,详述了智能控制的主要研究方向,说明了智能控制的应用方向以及具体应用,展望了智能控制的发展前景以及对于社会生产和日常生活的积极意义。 关键词:智能控制、模糊控制、神经网控制、专家控制、智能化。 一、智能控制的产生 人类的进化归根结底是智能的进化,而智能反过来又为人类的进步服务。我们学习与研究智能系统、智能机器人和智能控制等,其目的就在于创造和应用智能技术和智能系统,从而为人类进步服务。因此,可以说对智能控制的钟情、期待、开发和应用,是科技发展和人类进步的必然趋势。 在科学技术发展史上,控制科学同其他技术科学一样,它的产生与发展主要由人类的生产发展需求和人类当时的知识水平所决定和限制的。 20世纪以来,特别是第二次世界大战以来,控制科学与技术得到了迅速的发展,由研究单输入单输出被控对象的经典控制理论,发展成了研究多输入多输出被控对象的现代控制理论。1948年,美国著名的控制论创始人维纳(N.Wiener)在他的《控制论》中第一次把动物和机器相提并论,引起哲学界的轩然大波,有人骂控制论是“伪科学”。 直到1954年钱学森博士在《工程控制论》中系统地揭示了控制论这一新兴学科对电子通讯、航空航天和机械制造工业等领域的重要意义和深远影响后,反控制论的热潮才逐渐开始平息。20世纪60年代,由于空间技术,海洋技术和机器人技术发展的需要,控制领域面临着被控对象的复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的复杂性和不确定性表现为对象特性的高度非线性和不确定性,高噪声干扰,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。 面对复杂的对象,复杂的环境和复杂的任务,用传统控制(即经典控制和现代控制)

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

(完整版)天津大学最优化历年试题

2003—2008《工程与科学计算》历届试题类型 1. 直解法 例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数) ?? ? ??=++=++=++0000 .11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x 例2. 设线性方程组b Ax =,其中 1 123 1 112341113 4 51 A ??? ?=?????? 求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法 例1. 设线性方程组b Ax =为 ?? ?? ??????=????????????????????-----221221122321x x x ααα , 0≠α 写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛. 例 2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中 b Ax =为 ?? ? ? ?=++-=+=-5 228262332 13231x x x x x x x 3.插值 例 1. 已知,12144,11121,10100=== (1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位) (2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件 4. Runge —Kutta 格式 例 写出标准Kutta Runge -方法解初值问题 ???==+-=1 )0(,1)0(sin 2' 2'''y y x y xy y 的计算格式

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

最优化方法课程教学大纲

《最优化方法》课程教学大纲 Methods of Optimization 课程代码: 课程性质:专业基础理论课/选修 适用专业:信息计算、统计学开课学期:6 总学时数:56总学分数:3.5 编写年月:2002年3月修订年月:2007年7月 执笔:刘伟 一、课程的性质和目的 最优化计算方法是在生产实践和科学实验中选取最佳决策,研究在一定限制条件下,选取某种方案,以达到最优目标的一门学科,广泛应用与空间科学、军事科学、系统识别、通讯、工程设计、自动控制、经济管理等各个领域,是工科院校高年纪学生、研究生、应用数学专业学生和搞优化设计的工程技术人员的一门重要课程。通过本课程教学,使学生掌握最优化计算方法的基本概念和基本理论,初步学会处理应用最优化方法解决实际中的碰到的各个问题,培养解决实际问题的能力。 二、课程教学内容及学时分配 (一)教学内容 1. 最优化方法和最优化模型 最优化方法定义、最优化问题的数学模型与分类;根据问题特点(无约束最优化与约束最优化),根据函数类型(线性规划,非线性规划);最优化方法(解析法,直接法),最优解与极值点。 2.基础知识 多元函数泰勒公式的矩阵形式,古典极值理论问题,二次函数求梯度公式,凸集,凸函数,凸规划,几个重要的不等式。 3. 常用的一维搜索方法 一维搜索法是最优化的基础,“成功-失败”法的思想与算法,黄金分割法(0.618法)的思想与算法,二次插值法,三次插值法,D。S。C法,Powell 法等方法的思想与算法。 4. 无约束最优化方法 无约束最优化方法是最优化方法中的基本方法。最速下降法的思想与算法步骤,牛顿法的思想与算法步骤,共轭方向法的思想与算法步骤,共轭梯度法的思想与算法步骤,变尺度法(DFP法和BFGS法)的思想与算法步骤 5. 约束最优化方法 约束最优化方法通常约束问题转化为无约束问题求解。序列无约束极小化方法(SUMT-外点法与SUMT-内点法)的思想与算法步骤,内点的求法,其他罚函数法,Frank-Wolfe法的思想与算法步骤

东北大学材料工程研究生培养方案

附件11 专业学位硕士研究生培养方案 材料工程 (085204) 一、专业领域简介与研究方向 (一)专业领域简介 东北大学材料工程是国家首批试点招收与培养工程硕士的领域之一,也是首批设立培养全日制专业硕士学位研究生的领域之一。与本领域相对应的材料科学与工程学科是我国冶金与材料领域最早建立的学科之一,涵盖材料物理与化学、材料学、材料加工工程3个二级学科,具有学科齐全、理工结合等特点。本学科1962年起开始培养研究生,1981年具有首批硕士、博士学位授权点,1998年被批准为博士学位授权一级学科,2007年被评为一级学科国家重点学科,并于同年设立博士后流动站。 依托本学科,建有“轧制技术及连轧自动化国家重点实验室”、“材料电磁过程研究教育部重点实验室”、“材料各向异性与织构教育部重点实验室”和发改委与地方共建的“材料电磁冶金国家工程实验室”、“金属材料微结构设计与控制辽宁省重点实验室”、“教育部新材料与功能材料网上合作研究中心”、“新材料技术辽宁省高校重点实验室”和“辽宁省金属防护专业技术服务中心”等科研教学基地。 本学科以金属材料和无机非金属材料为重点,以功能材料为发展前沿,以金属材料升级换代和新材料研制为使命,围绕工艺绿色化、装备智能化和产品高质化开展基础研究、应用基础研究及关键共性技术研究,在行业关键共性技术和高端金属材料产品两方面实现突破,为材料的研制、生产和应用提供原创性理论和关键技术。学科立足国际前沿,致力于建设高层次复合型人才培养、科研与成果转化和学术交流的国际一流基地,使学科成为推动材料发展、促进材料技术进步和服务经济社会及国防建设的典范。 (二)研究方向: 1.材料设计、模拟与仿真 2.低维材料的制备、结构与性能 3.材料微结构与性能的调控 4.新型功能材料的制备、结构与性能 5.高性能陶瓷及粉末冶金材料 6.材料表面技术

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

相关主题
文本预览
相关文档 最新文档