当前位置:文档之家› SIP封装概述_特性_优点_应用_前景

SIP封装概述_特性_优点_应用_前景

SIP封装概述_特性_优点_应用_前景
SIP封装概述_特性_优点_应用_前景

SIP封装[浏览次数:约406次]

?SIP封装是指在单一的封装内实现多种功能,或者说将数种功能合并入单一模块中,譬如,这些功能可以是无线通信、逻辑处理和存储记忆等之间的集成,这些集成在蓝牙器

件、手机、汽车电子、成像和显示器、数码相机和电源中已得到广泛应用。

目录

?SIP封装的概述

?SIP封装的特性

?SIP封装的优点

?SIP封装的应用

?SIP封装的前景

SIP封装的概述

?1、SIP封装是基于SOC的一种新封装技术,将一个或多个裸芯片及可能的无源元件构成的高性能模块装载在一个封装外壳内,包括将这些芯片层叠在一起,且具备一个系统的功能。

2、SIP封装将多个IC和无源元件封装在高性能基板上,可方便地兼容不同制造技术

的芯片,从而使封装由单芯片级进人系统集成级。

3、SIP封装是在基板上挖凹槽,芯片镶嵌其中,可降低封装体厚度,电阻、电容、

电感等生成于基板上方,最后用高分子材料包封。常用的基板材料为FR-4、LCP(Liquid Crystal Polymer)。低温共烧多层陶瓷LTCC、Qsprey Metal Al/SiC颗粒增强金属基复合材料等。

4、SIP封装在一个封装中密封多个芯片,通常采用物理的方法将两个或多个芯片重叠

起来,或在同一封装衬底上将叠层一个挨一个连接起来,使之具有新的功能。

5、SIP封装可实现系统集成,将多个IC以及所需的分立器件和无源元件集成在一

个封装内,包括多个堆叠在一起的芯片,或将多个芯片堆叠整合在同一衬底上,形成的标准化产品,可以像普通的器件一样在电路板上进行组装。

6、SIP封装为一个封装内集成了各种完成系统功能的电路芯片,是缩小芯片线宽之外

的另一种提高集成度的方法,而与之相比可大大降低成本和节省时间。

7、SIP封装实际上是多;S片封装MCP或芯片尺寸封装CSP的演进,可称其为层叠

式MCP,堆叠式CSP,特别是CSP因生产成本低,将成为最优的集成无源元件技术,0201型片式元件也可贴放在较大CSP下方,但SIP封装强凋的是该封装内包含了某种系统的功能。

8、SIP封装也就是多芯片堆叠的3D封装内系统(System-in-3D package)集成,

在垂直芯片表面的方向上堆叠,互连两块以上裸芯片的封装,其空间占用小,电性能稳定,向系统整合封装发展。

9、SIP封装将混合集成的无源元件封装于四面引线扁平封装QFP或薄微型封装TSOP

的封装中,可有效地减少印刷电路板的尺寸,提高组装密度。

10、SIP封装可嵌装不同工艺制作IC芯片,以及内嵌无源元件,甚至光器件和微机械

电子系统MEMS,提供紧凑而性能优异的功能产品给用户。

11、SIP封装通过各功能芯片的裸管芯及分立元器件在同一衬底的集成,实现整个系

统功能,是一种可实现系统级芯片集成的半导体技术。

12、SIP封装是指通过多芯片及无源元件(或无源集成元件)形成的系统功能集中于

一个单一封装内,构成一个类似的系统器件。

13、当SOC的特征尺寸更小以后,将模拟、射频和数字功能整合到一起的难度随之增

大,有一种可选择的解决方案是将多个不同的裸芯片封装成一体,从而产生了系统级封装。

以上表述多方面明确了SIP封装的内涵概念,基于系统化设计思想的SIP封装方案是富有创意的,所涉及到芯片、系统、材料、封装等诸多层面问题,涵盖十分广泛,是一个较宽泛的指称,将会随其技术的发展而扩充完善。

SIP封装的特性

1、SIP封装采用一个封装来完成一个系统目标产品的全部互连以及功能和性能参数,

可同时利用引线键合与倒装焊互连以及别的IC芯片直接内连技术;

2、封面积比增大,SIP封装在同一封装中叠加两个或更多的芯片,把Z方向的空间也

利用起来,又不必增加封装引脚,两芯片叠装在同一壳内的封装与芯片面积比增加到170%,三芯片叠装可增至250%;

3、在物理尺寸上必定是小的,例如,SIP封装封装体的厚度不断减少,最先进的技术

可实现五层堆叠芯片只有1.0mm厚的超薄封装,三叠层芯片封装的重量减轻35%;

4、SIP封装可实现不同工艺,材料制作的芯片封装形成一个系统,有很好的兼容性,

并可实现嵌入集成化无源元件的梦幻组合,无线电和便携式电子整机中现用的无源元件至少可被嵌入30-50%,甚至可将Si、GaAs、InP的芯片组合一体化封装;

5、SIP封装可提供低功耗和低噪声的系统级连接,在较高的频率下工作可以获得较宽

的带宽,几乎与SOC相等的总线带宽;

6、元件集成封装在统一的外壳结构中,可使总的焊点大为减少,也缩短了元件的连线

路程,从而使电性能得以提高;

7、缩短产品研制和投放市场的周期,SIP封装在对系统进行功能分析和划分后,可充

分利用商品化生产的芯片资源,经过合理的电路互连结构及封装设计,易于修改、生产,力求以最佳方式和最低成本达到系统的设计性能,无需像SOC那样进行版图级布局布线,从而减少了设计、验证、调试的复杂性与系统实现量产的时间,可比SOC节省更多的系统设计和生产费用,投放市场的时间至少可减少1/4;

8、采取多项技术措施,确保SIP封装具有良好的抗机械和化学侵害的能力以及高可靠

性。

SIP封装的优点

?(1)封装效率大大提高,SIP封装技术在同一封装体内加多个芯片,大大减少了封装体积。两芯片加使面积比增加到170%,三芯片装可使面积比增至250%。

(2)由於SIP封装不同於SOC无需版图级布局布线,从而减少了设计、验证和调试的复杂性和缩短了系统实现的时间。即使需要局部改动设计,也比SOC要简单容易得多。

大幅度的缩短产品上市场的时间。

(3)SIP封装实现了以不同的工艺、材料制作的芯片封装可形成一个系统,实现嵌入集成无源元件的梦幻组合。

(4)降低系统成本。比如一个专用的集成电路系统,采用SIP封装技术可比SOC节省更多的系统设计和生产费用。

(5)SIP封装技术可以使多个封装合二为一,可使总的焊点大为减少,也可以显着减小封装体积、重量,缩短元件的连接路线,从而使电性能得以提高。

(6)SIP封装采用一个封装体实现了一个系统目标产品的全部互连以及功能和性能参数,可同时利用引线键合与倒装焊互连以及其他IC芯片直接内连技术。

(7)SIP封装可提供低功耗和低噪音的系统级连接,在较高的频率下工作可获得几乎与SOC相等的汇流排宽度。

(8)SIP封装具有良好的抗机械和化学腐蚀的能力以及高的可靠性。

(9)与传统的芯片封装不同,SIP封装不仅可以处理数字系统,还可以应用於光通信、传感器以及微机电MEMS等领域。

SIP封装的应用

?(1)RF/无线电方面

(2)传感器方面

(3)网络和计算机技术方面

(4)其他高速数字产品

SIP封装的前景

?SIP封装综合运用现有的芯片资源及多种先进封装技术的优势,有机结合起来由几个芯片组成的系统构筑而成的封装,开拓了一种低成本系统集成的可行思路与方法,较好地解决了SOC中诸如工艺兼容、信号混合、电磁干扰EMI、芯片体积、开发成本等问题,在移动通信、蓝牙模块、网络设备、计算机及外设、数码产品、图像传感器等方面有很大的市场需求量。所Semico公司报道,世界SIP封装营销收入将从2002年的8200万美元增长到2007年的7.48亿美元,年均增长率达55.6%。日本新近预测,2007年世界有关应用SIP封装技术的LSI市场可望达1.2万亿日元,这是根据同期系统LSI的1/5可利用SIP 封装技术计算而得的。

东芝的SIP封装目标是把移动电话的全部功能组合到一个封装内,Rohm大量生产用于PC机的SIP封装,Amkor公司月产百万块用于高频通信及存储器SIP封装。中国台湾封装大厂正积极发展SIP封装,与韩国一争高低。研究者发现:SIP封装技术需要克服的障碍不在于缺乏应用,也不是生产厂商不乐意采用这项技术,而是成品率问题。

在IC产业大投资、大发展之际。国内一些知名高校在211建设中,均将芯片封装和MEMS技术列为重点学科发展方向,应多方关注SIP封装技术研发动向,予以充分重视,一些锂电池生产商找准了这一方面的商机,有选择性地中西贯通。

半导体封装技术向高端演进 (从DIP、SOP、QFP、PGA、BGA到CSP再到SIP)

半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进。总体说来,半导体封装经历了三次重大革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,它极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩阵封装的出现,满足了市场对高引脚的需求,改善了半导体器件的性能;芯片级封装、系统封装等是现在第三次革新的产物,其目的就是将封装面积减到最小。 高级封装实现封装面积最小化 芯片级封装CSP。几年之前封装本体面积与芯片面积之比通常都是几倍到几十倍,但近几年来有些公司在BGA、TSOP的基础上加以改进而使得封装本体面积与芯片面积之比逐步减小到接近1的水平,所以就在原来的封装名称下冠以芯片级封装以用来区别以前的封装。就目前来看,人们对芯片级封装还没有一个统一的定义,有的公司将封装本体面积与芯片面积之比小于2的定为CSP,而有的公司将封装本体面积与芯片面积之比小于1.4或1.2的定为CSP。目前开发应用最为广泛的是FBGA和QFN等,主要用于内存和逻辑器件。就目前来看,CSP的引脚数还不可能太多,从几十到一百多。这种高密度、小巧、扁薄的封装非常适用于设计小巧的掌上型消费类电子装置。 CSP封装具有以下特点:解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;封装面积缩小到BGA的1/4至1/10;延迟时间缩到极短;CSP封装的内存颗粒不仅可以通过PCB板散热,还可以从背

面散热,且散热效率良好。就封装形式而言,它属于已有封装形式的派生品,因此可直接按照现有封装形式分为四类:框架封装形式、硬质基板封装形式、软质基板封装形式和芯片级封装。 多芯片模块MCM。20世纪80年代初发源于美国,为解决单一芯片封装集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上组成多种多样的电子模块系统,从而出现多芯片模块系统。它是把多块裸露的IC芯片安装在一块多层高密度互连衬底上,并组装在同一个封装中。它和CSP封装一样属于已有封装形式的派生品。 多芯片模块具有以下特点:封装密度更高,电性能更好,与等效的单芯片封装相比体积更小。如果采用传统的单个芯片封装的形式分别焊接在印刷电路板上,则芯片之间布线引起的信号传输延迟就显得非常严重,尤其是在高频电路中,而此封装最大的优点就是缩短芯片之间的布线长度,从而达到缩短延迟时间、易于实现模块高速化的目的。 WLCSP。此封装不同于传统的先切割晶圆,再组装测试的做法,而是先在整片晶圆上进行封装和测试,然后再切割。它有着更明显的优势:首先是工艺大大优化,晶圆直接进入封装工序,而传统工艺在封装之前还要对晶圆进行切割、分类;所有集成电路一次封装,刻印工作直接在晶圆上进行,设备测试一次完成,有别于传统组装工艺;生产周期和成本大幅下降,芯片所需引脚数减少,提高了集成度;引脚产生的电磁干扰几乎被消除,采用此封装的内存可以支持到800MHz的频

单列直插式封装(SIP)

单列直插式封装(SIP) SIP封装并无一定型态,就芯片的排列方式而言,SIP可为多芯片模块(Multi-chip Module;MCM)的平面式2D封装,也可再利用3D封装的结构,以有效缩减封装面积;而其内部接合技术可以是单纯的打线接合(Wire Bonding),亦可使用覆晶接合(Flip Chip),但也可二者混用。除了2D与3D的封装结构外,另一种以多功能性基板整合组件的方式,也可纳入SIP的涵盖范围。此技术主要是将不同组件内藏于多功能基板中,亦可视为是SIP的概念,达到功能整合的目的。 不同的芯片排列方式,与不同的内部接合技术搭配,使SIP的封装型态产生多样化的组合,并可依照客户或产品的需求加以客制化或弹性生产。 构成SIP技术的要素是封装载体与组装工艺。前者包括PCB,LTCC,Silicon Submount(其本身也可以是一块IC)。后者包括传统封装工艺(Wirebond和Flip Chip)和SMT设备。无源器件是SIP的一个重要组成部分,其中一些可以与载体集成为一体(Embedded,MCM-D等),另一些(精度高、Q值高、数值高的电感、电容等)通过SMT组装在载体上。SIP的主流封装形式是BGA。就目前的技术状况看,SIP 本身没有特殊的工艺或材料。这并不是说具备传统先进封装技术就掌握了SIP技术。由于SIP的产业模式不再是单一的代工,模块划分和电路设计是另外的重要因素。模块划分是指从电子设备中分离出一块功能,既便于后续的整机集成又便于SIP封装。电路设计要考虑模块内部的细节、模块与外部的关系、信号的完整性(延迟、分布、噪声等)。随着模块复杂度的增加和工作频率(时钟频率或载波频率)的提高,系统设计的难度会不断增加,导致产品开发的多次反复和费用的上升,除设计经验外,系统性能的数值仿真必须参与设计过程。 与在印刷电路板上进行系统集成相比,SIP能最大限度地优化系统性能、避免重复封装、缩短开发周期、降低成本、提高集成度。对比SoC,SIP具有灵活度高、集成度高、设计周期短、开发成本低、容易进入等特点。SIP将打破目前集成电路的产业格局,改变封装仅仅是一个后道加工厂的状况。未来集成电路产业中会出现一批结合设计能力与封装工艺的实体,掌握有自己品牌的产品和利润。目前全世界封装的产值只占集成电路总值的10%,当SIP技术被封装企业掌握后,产业格局就要开始调整,封装业的产值将会出现一个跳跃式的提高。 SIP封装可将其它如被动组件,以及天线等系统所需的组件整合于单一构装中,使其更具完整的系统功能。由应用产品的观点来看,SIP更适用于低成本、小面积、高频高速,以及生产周期短的电子产品上,尤其如功率放大器(PA)、全球定位系统、蓝芽模块(Bluetooth)、影像感测模块、记忆卡等可携式产品市场。但在许多体系中,封闭式的电路板限制了SIP的高度和应用。以长远的发展规划而言,SoC的发展将能有效改善未来电子产品的效能要求,而其所适用之封装型态,也将以能提供更好效能之覆晶技术为发展主轴;相较于SoC的发展,SIP则将更适用于成本敏感性高的通讯用及消费性产品市场。

系统级封装(SiP)

系统级封装(SiP)的发展前景(上) ——市场驱动因素,要求达到的指标,需要克腰的困难 集成电路技术的进步、以及其它元件的微小型化的发展为电子产品性能的提高、功能的丰富与完善、成本的降低创造了条件。现在不仅仅军用产品,航天器材需要小型化,工业产品,甚至消费类产品,尤其是便携式也同样要求微小型化。这一趋势反过来又进一步促进微电子技术的微小型化。这就是近年来系统级封装(SiP,System in Package)之所以取得了迅速发展的背景。SiP已经不再是一种比较专门化的技术;它正在从应用范围比较狭窄的市场,向更广大的市场空间发展;它正在成长为生产规模巨大的重要支持技术。它的发展对整个电子产品市场产生了广泛的影响。它已经成为电子制造产业链条中的一个重要环节。它已经成为影响,种类繁多的电子产品提高性能、增加功能、扩大生产规模、降低成本的重要制约因素之一。它已经不是到了产品上市前的最后阶段才去考虑的问题,而是必须在产品开发的开始阶段就加以重视,纳入整体产品研究开发规划;和产品的开发协同进行。再有,它的发展还牵涉到原材料,专用设备的发展。是一个涉及面相当广泛的环节。因此整个电子产业界,不论是整机系统产业,还是零部件产业,甚至电子材料产业部门,专用设备产业部门,都很有必要更多地了解,并能够更好地促进这一技术的发展。经过这几年的发展,国际有关部门比较倾向于将SiP定义为:一个或多个半导体器件(或无源元件)集成在一个工业界标准的半导体封装内。按照这个涵义比较广泛的定义,SiP又可以进一步按照技术类型划分为四种工艺技术明显不同的种类;芯片层叠型;模组型;MCM型和三维(3D)封装型。现在,SiP应用最广泛的领域是将存储器和逻辑器件芯片堆叠在一个封装内的芯片层叠封装类型,和应用于移动电话方面的集成有混合信号器件以及无源元件的小型模组封装类型。这两种类型SiP的市场需求在过去4年里十分旺盛,在这种市场需求的推动下,建立了具有广泛基础的供应链;这两个市场在成本方面的竞争也十分激烈。 而MCM(多芯片模组)类型的SiP则是一贯应用于大型计算机主机和军用电子产

SIP封装知识

?SIP封装是指在单一的封装内实现多种功能,或者说将数种功能合并入单一模块中,譬如,这些功能可以是无线通信、逻辑处理和存储记忆等之间的集成,这些集成在蓝牙器 件、手机、汽车电子、成像和显示器、数码相机和电源中已得到广泛应用。 目录 ?SIP封装的概述 ?SIP封装的特性 ?SIP封装的优点 ?SIP封装的应用 ?SIP封装的前景 SIP封装的概述 ?1、SIP封装是基于SOC的一种新封装技术,将一个或多个裸芯片及可能的无源元件构成的高性能模块装载在一个封装外壳内,包括将这些芯片层叠在一起,且具备一个系统的功能。 ?插入定义 ?无源元件,是电子术语,主要是电阻类、电感类和电容类元件,指在不需要外加电源的条件下,就可以显示其特性的电子元件。简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。容、阻、感都是无源器件,IC、模块等都是有源器件 2、SIP封装将多个IC和无源元件封装在高性能基板上,可方便地兼容不同制造技术 的芯片,从而使封装由单芯片级进人系统集成级。 3、SIP封装是在基板上挖凹槽,芯片镶嵌其中,可降低封装体厚度,电阻、电容、电 感等生成于基板上方,最后用高分子材料包封。常用的基板材料为FR-4、LCP(Liquid Crystal Polymer)。低温共烧多层陶瓷LTCC、Qsprey Metal Al/SiC颗粒增强金属基复合材料等。 4、SIP封装在一个封装中密封多个芯片,通常采用物理的方法将两个或多个芯片重叠 起来,或在同一封装衬底上将叠层一个挨一个连接起来,使之具有新的功能。 5、SIP封装可实现系统集成,将多个IC以及所需的分立器件和无源元件集成在一个 封装内,包括多个堆叠在一起的芯片,或将多个芯片堆叠整合在同一衬底上,形成的标准化产品,可以像普通的器件一样在电路板上进行组装。 6、SIP封装为一个封装内集成了各种完成系统功能的电路芯片,是缩小芯片线宽之外 的另一种提高集成度的方法,而与之相比可大大降低成本和节省时间。 7、SIP封装实际上是多;S片封装MCP或芯片尺寸封装CSP的演进,可称其为层叠 式MCP,堆叠式CSP,特别是CSP因生产成本低,将成为最优的集成无源元件技术,0201型片式元件也可贴放在较大CSP下方,但SIP封装强凋的是该封装内包含了某种系统的功能。

系统级封装技术(SiP)引领封测产业的“混搭”潮

系统级封装技术(SiP)引领封测 产业的 混搭 潮 产业的“混搭”潮
2010年6月25号

混搭英文原词为Mix and Match。混搭是一个时尚界专用名词,指将不同 风格,不同材质,不同身价的东西按照个人口味拼凑在 起,从而混合 风格,不同材质,不同身价的东西按照个人口味拼凑在一起,从而混合 搭配出完全个人化的风格,就是不要规规矩矩,是一种时髦,但决不能 等同于胡穿乱配的毫无章法。 混搭最典型的莫过于韩式混搭,韩国街头流行起一种更实用,更有味道 的混搭新哲学。穿出层次,叠穿法则是混搭哲学中最基础课程,其中最 奏 重要的是搭配的节奏感,这也正是混搭风能在当今流行的重要原因。
系统级封装技术的特点非常符合和“混搭”的精髓,有一 脉相承 异曲同工之处 脉相承、异曲同工之处



1、系统级封装的发展背景 2、系统级封装的定义 系统级封装的定义 3、系统级封装的优势 系统级封装的优势 4、系统级封装的成本 5、长电科技系统级封装技术及服务的介绍 6、长电科技系统级封装产品及应用 长电科技系统级封装产品及应用 7、总结

1、系统级封装的发展背景
?当今社会,电子系统的发展趋势是小型化、高性能、多功能、高 可靠性和低成本,在这些需求的强力驱动下,电子产品的演进速度 超乎寻常 ?在物联网、移动支付、移动电视、移动互联网、3G通讯等新生应 用的引导下,一大批新型电子产品孕育而生 ?目前系统级封装产品在计算机、汽车电子、医疗电子、军事电子、 消费类电子(手机 蓝牙 消费类电子(手机、蓝牙、Wi-Fi、交换机等)等领域内都有巨大 交换机等)等领域内都有巨大 的市场 ?系统级芯片(System 系统级芯片(S t on Chip, Chi SoC)的发展随着摩尔定律的脚 S C)的发展随着摩尔定律的脚 步不断演进,然而随着SoC发展至深次微米以下先进制程世代后, 已经面临极大的技术发展瓶颈,SoC已难面面俱到。此时使得兼具 面临极大的技术发展瓶颈 难面面俱到 时使得兼具 尺寸与开发弹性等优势的系统级集成封装技术跃然而起,成为后摩 尔定律时代的典型代表 ?国家科技重大专项(02专项)给予系统级封装技术和产品的发展 提供了充分的扶持和政策保证

先进封装技术WLCSP和SiP的发展现状和趋势

先进封装技术WLCSP和SiP的发展现状和趋势 关于先进封装工艺的话题从未间断,随着移动电子产品趋向轻巧、多功能、低功耗发展,高阶封装技术也开始朝着两大板块演进,一个是以晶圆级芯片封装WLCSP (Fan-In WLP、Fan-out WLP等)为首,功能指向在更小的封装面积下容纳更多的引脚数;另一板块是系统级芯片封装(SiP),功能指向封装整合多种功能芯片于一体,压缩模块体积,提升芯片系统整体功能性和灵活性。 图1:主要封装形式演进 Source:拓璞产业研究所整理,2016.9 WLCSP:晶圆级芯片封装(Wafer Level Chip Scale Package)也叫WLP。与传统封装工艺相反,WLP是先封装完后再切割,因此切完后芯片的尺寸几乎等于原来晶粒的大小,相比传统封装工艺,单颗芯片封装尺寸得到了有效控制。 如何在更小的尺寸芯片上容纳更多的引脚数目?WLP技术利用重分布层(RDL)可以直接将芯片与PCB做连接,这样就省去了传统封装DA(Die attach)段的工艺,不仅省去了DA工艺的成本,还降低了整颗封装颗粒的尺寸与厚度,同时也绕过DA工艺对良率造成的诸多影响。 起初,Fan-In WLP单位面积的引脚数相对于传统封装(如FC BGA)有所提升,但植球作业也仅限于芯片尺寸范围内,当芯片面积缩小的同时,芯片可容纳的引脚数反而减少,在这个问题的节点上,Fan-out WLP诞生,实现在芯片范围外充分利用RDL做连接,以此获取更多的引脚数。 图2:从传统封装至倒装封装及晶圆级封装结构变化示意图 Source:拓璞产业研究所整理,2016.9 SiP:将不同功能的裸芯片通过整合封装的方式,形成一个集多种功能于一体的芯片组,有效地突破了SoC(从设计端着手,将不同功能的解决方案集成与一颗裸芯片中)在整合

SoC封装技术与SIP封装技术的区别

SoC封装技术与SIP封装技术的区别 随着物联网时代来临,全球终端电子产品渐渐走向多功能整合及低功耗设计,因而使得可将多颗裸晶整合在单一封装中的SIP技术日益受到关注。除了既有的封测大厂积极扩大SIP制造产能外,晶圆代工业者与IC基板厂也竞相投入此一技术,以满足市场需求。 早前,苹果发布了最新的apple watch手表,里面用到SIP封装芯片,从尺寸和性能上为新手表增色不少。而芯片发展从一味追求功耗下降及性能提升(摩尔定律),转向更加务实的满足市场的需求(超越摩尔定律)。 根据国际半导体路线组织(ITRS)的定义:SIP为将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。 SIP定义 从架构上来讲,SIP 是将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。 SOC定义 将原本不同功能的IC,整合在一颗芯片中。藉由这个方法,不单可以缩小体积,还可以缩小不同IC 间的距离,提升芯片的计算速度。SOC称为系统级芯片,也有称片上系统,意指它是一个产品,是一个有专用目标的集成电路,其中包含完整系统并有嵌入软件的全部内容。同时它又是一种技术,用以实现从确定系统功能开始,到软/硬件划分,并完成设计的整个过程。 SOC与SIP之比较 自集成电路器件的封装从单个组件的开发,进入到多个组件的集成后,随着产品效能的提升以及对轻薄和低耗需求的带动下,迈向封装整合的新阶段。在此发展方向的引导下,形成了电子产业上相关的两大新主流:系统单芯片SOC(System on Chip)与系统化封装SIP (System in a Package)。

SiP封装共形屏蔽简介、性能、工艺、应用及优点解析

SiP封装共形屏蔽简介、性能、工艺、应用及优点解析 前言 移动设备向着轻薄短小的方向发展,手机行业是这一方向的前锋,从几代iPhone的尺寸可以看出----薄,是一直演进的方向(图1)。随着物联网、可穿戴等市场兴起,将这一方向推向极致。 图1 iPhone厚度变化 手机的薄型化,得益于多方面技术的进步,包括SiP、PCB、显示屏等技术,其中关键的技术之一就是EMI屏蔽技术。传统的手机EMI屏蔽是采用金属屏蔽罩,屏蔽罩在横向上要占用宝贵的PCB面积,纵向上也要占用设备内部的立体空间,是设备小型化的一大障碍。新的屏蔽技术——共形屏蔽(Conformal shielding),将屏蔽层和封装完全融合在一起,模组自身就带有屏蔽功能,芯片贴装在PCB上后,不再需要外加屏蔽罩,不占用额外的设备空间,从而解决这一难题。如图2,iPhone 7主板上,大部分芯片都采用了Conformal shielding技术,包括WiFi/BT、PA、Memory等模组,达到高度集成且轻薄短小的目的。 图2 iPhone7主板上采用共形屏蔽技术的模组 SiP封装共形屏蔽电子系统中的屏蔽主要两个目的:符合EMC规范;避免干扰。传统解决方案主要是将屏蔽罩安装在PCB上,会带来规模产量的可修复性问题。此方法也可以在SiP模组中使用,如图3中的模组封装,或Overmolded shielding将屏蔽罩封装在塑封体内。这两种屏蔽解决方案,虽然实现了屏蔽罩的SiP封装集成,但是并未降低模组的高度,同时也会带来工艺和成本问题。 图3 传统的屏蔽罩模组及SiP封装内集成(Overmolded shielding)屏蔽罩 SiP封装的共形屏蔽,可以解决以上问题。如图4,SiP封装采用共形屏蔽技术,其外形与封装一致,不增额外尺寸。

SiP封装共形电磁屏蔽技术简介

SiP封装共形电磁屏蔽技术简介 前言 ?移动设备向着轻薄短小的方向发展,手机行业是这一方向的前锋,从几代iPhone的尺寸可以看出----薄,是一直演进的方向(图1)。随着物联网、可穿戴等市场兴起,将这一方向推向极致。 ?图1、iPhone厚度变化 ?手机的薄型化,得益于多方面技术的进步,包括SiP、PCB、显示屏等技术,其中关键的技术之一就是EMI屏蔽技术。传统的手机EMI屏蔽是采用金属屏蔽罩,屏蔽罩在横向上要占用宝贵的PCB面积,纵向上也要占用设备内部的立体空间,是设备小型化的一大障碍。新的屏蔽技术共形屏蔽(Conformal shielding),将屏蔽层和封装完全融合在一起,模组自身就带有屏蔽功能,芯片贴装在PCB上后,不再需要外加屏蔽罩,不占用额外的设备空间,从而解决这一难题。如图2,iPhone 7主板上,大部分芯片都采用了Conformal shielding技术,包括WiFi/BT、PA、Memory等模组,达到高度集成且轻薄短小的目的。?图2、iPhone7主板上采用共形屏蔽技术的模组 ?SiP封装共形屏蔽 ?电子系统中的屏蔽主要两个目的:符合EMC规范;避免干扰。传统解决方案主要是将屏蔽罩安装在PCB上,会带来规模产量的可修复性问题。此方法也可以在SiP模组中使用,如图3中的模组封装,或Overmolded shielding将屏蔽罩封装在塑封体内。这两种屏蔽解决方案,虽然实现了屏蔽罩的SiP封装集成,但是并未降低模组的高度,同时也会带来工艺和成本问题。 ?图3、传统的屏蔽罩模组及SiP封装内集成(Overmolded shielding)屏蔽罩?SiP封装的共形屏蔽,可以解决以上问题。如图4,SiP封装采用共形屏蔽技

先进LGA-SIP封装技术

先进LGA‐SiP封装技术

内容纲要 11.SiP技术的主要应用和发展趋势 2.华天科技自主设计SiP产品介绍 3.高密度SiP封装主要技术挑战 4.SiP技术带动MCP封装工艺技术的发展 5.SiP技术促进BGA封装技术的发展 6.SiP催生新的先进封装技术的发展 催生新的先进封装技术的发展

1.SiP技术的主要应用

2. 华天的SiP技术:UTI LGA‐SiP Application: UTI (Universal Transport Interface) 1.SMT PAD开窗方式: 0201:non-Solder mask define 0402: Solder mask define 2.关键信号的差分阻抗控制 3.大片敷铜时采取void设计,有 效释放塑封、高温流程的应力 4.高密度封装中的3D结构及布局, 高度装中结构 防止SMT污染第二压焊点 5.IC和 5与客户协同设计,将许多 封装的组装技术结合起来,创 建出具有最优成本、尺寸和性 能的高集成度产品。

2. 华天的SiP技术:UTI(续) 模拟 differential pairs)模拟 差分阻抗(differential pairs) 差分阻抗( LGA‐SiP, 堆叠芯片+并肩芯片+27无源器件

2. 华天的 SiP 技术:UTI (续) Package Type MCM/SiP PACKAGE INFORMATION LGA ‐SiP Application: UTI (U i l T t I t f ) Package Size LGA 12X14 64P 0.65Pitch Max package thk 1.00mm max Die size 1 ( Level 1) 3.242 x 3.241 mm (Universal Transport Interface)Loop1 Loop2 Die to Die Bonding Parameter Bond pad opening/pitch 55.0 x 55.0 um Die size 2 ( Level 1) 3.220 x 3.320 mm Bond pad opening/ pitch 75.0 x 75.0 um Ball Loop140um Loop2120um Ball size 42um p p g p Die size 3 ( Level 2) 1.600 x 1.800mm Bond pad opening/ pitch 75.0 x 75.0 um Bump Bump height 15um SUBSTRATE Substrate thk 0.26mm[150um core, Green Material]Substrate type Normal plating trace process COMPONENTS No. of 0201 components 26N f 0402t No. of 0402 components 1

SiP工艺技术介绍

SiP工艺技术介绍 为适应集成电路和系统向高密度、高频、高可靠性和低成本方向进展,国际上逐步形成了IC封装的四大主流技术,即:阵列凸点芯片及其组装技术、芯片尺度封装技术(CSP,Chip Scale Package)、圆片级封装技术(W LP, Wafer Level Package)和多芯片模块技术。目前正朝着更高密度的系统级封装(SiP)进展,以适应高频和高速电路下的使用需求。 系统级封装是封装进展的方向,它将封装的内涵由简单的器件爱护和功能的转接扩展到实现系统或子系统功能。SiP产品开发时刻大幅缩短,且透过高度整合可减少印刷电路板尺寸及层数,降低整体材料成本,专门是S iP设计具有良好的电磁干扰(EMI)抑制成效,更可减少工程时刻耗费。然而SiP除了以上的优点外,也存在一些咨询题需要后续去突破,SiP产品的设计和制造工艺较以往进展单颗芯片更为复杂,必须要从IC设计的观点来考量基板与连线等系统模组设计的功能性和封装工艺的可实现性。 我公司目前着力于针对SiP封装技术建立完善的工艺、设计、可靠性分析能力,以拉近与国外同行业者之间的距离。目前已有以下工艺研发成果:(一)高、低弧度、密间距焊线工艺 通常SiP产品中需要在有限的空间中集成数颗尺寸大小各异的芯片和其他的外围元器件,一样都会采纳芯片堆叠的封装工艺进行,同时此类产品中芯片的压焊点间距专门的小,因此这类产品的焊线技术与传统的封装产品有着更高的要求。 (1)当芯片堆叠层数增加时,不同线环形层之间的间隙相应减少,需要降低较低层的引线键合弧高,以幸免不同的环形层之间的引线短路。为了幸免金丝露出塑封体表面,需要严格操纵顶层芯片的金线弧高,因此稳固的金线倒打工艺是确保良率的关键焊线技术。 我司目前已完成40um以下的低弧度焊线工艺技术的研发(超低弧度金线倒打技术、金线直径20um、金丝弧高可达40um)。 (2)为了满足压焊点间距小于60微米、压焊点开口尺寸小于50微米的芯片的焊线工艺,需要开发超密间距劈刀的小球径焊线工艺。

SiP工艺技术介绍

当今社会,电子系统的发展趋势是小型化、高性能、多功能、高可靠性和低成本,在这些需求的强力驱动下,电子产品的演进速度超乎寻常。在物联网、移动支付、移动电视、移动互联网、3G通讯等新生应用的引导下,一大批新型电子产品孕育而生,多功能集成、外型的短小轻薄、高性能、低成本是这些新型电子产品的共性。想要实现这一目标,多种功能芯片和各类电子元件的高度集成技术是必不可少的环节,因此对半导体封装提出了前所未有的集成整合要求,从而极大推动了先进封装技术的发展。 为适应集成电路和系统向高密度、高频、高可靠性和低成本方向发展,国际上逐渐形成了IC封装的四大主流技术,即:阵列凸点芯片及其组装技术、芯片尺度封装技术(CSP,Chip Scale Package)、圆片级封装技术(WLP, Wafer Level Package)和多芯片模块技术。目前正朝着更高密度的系统级封装(SiP)发展,以适应高频和高速电路下的使用需求。 系统级封装是封装发展的方向,它将封装的内涵由简单的器件保护和功能的转接扩展到实现系统或子系统功能。SiP产品开发时间大幅缩短,且透过高度整合可减少印刷电路板尺寸及层数,降低整体材料成本,尤其是SiP设计具有良好的电磁干扰(EMI)抑制效果,更可减少工程时间耗费。但是SiP除了以上的优点外,也存在一些问题需要后续去突破,SiP产品的设计和制造工艺较以往发展单颗芯片更为复杂,必须要从IC设计的观点来考量基板与连线等系统模组设计的功能性和封装工艺的可实现性。 我公司目前着力于针对SiP封装技术建立完善的工艺、设计、可靠性分析能力,以拉近与国外同行业者之间的距离。目前已有以下工艺研发成果:(一)高、低弧度、密间距焊线工艺 通常SiP产品中需要在有限的空间中集成数颗尺寸大小各异的芯片和其他的外围元器件,一般都会采用芯片堆叠的封装工艺进行,同时此类产品中芯片的压焊点间距非常的小,因此这类产品的焊线技术与传统的封装产品有着更高的要求。 (1)当芯片堆叠层数增加时,不同线环形层之间的间隙相应减少,需要降低较低层的引线键合弧高,以避免不同的环形层之间的引线短路。为了避免金丝露出塑封体表面,需要严格控制顶层芯片的金线弧高,因此稳定的金线倒打工艺

集成电路系统级封装(SiP)技术和应用

集成电路系统级封装(SiP)技术和应用 吴德馨 (中国科学院微电子研究所,北京,100029) [编者按] 此文是中科院院士吴德馨在集成电路粤港台论坛上演讲稿的摘要。对于集成电路系统级封装(SIP)的发展概况及其趋势做了介绍,对于从事此领域工作的读者有指导性意义,本刊特转载。 摘要 由于集成电路设计水平和工艺技术的提高,集成电路规模越来越大,已可以将整个系统集成为一个芯片(目前已可在一个芯片上集成108个晶体管)。这就使得将含有软硬件多种功能的电路组成的系统(或子系统)集成于单一芯片成为可能。90年代末期集成电路已经进入系统级芯片(SOC)时代。20世纪80年代,专用集成电路用标准逻辑门作为基本单元,由加工线供给设计者无偿使用以缩短设计周期:90年代末进入系统级芯片时代,在一个芯片上包括了CPU、DSP、逻辑电路、模拟电路、射频电路、存储器和其它电路模块以及嵌入软件等,并相互连接构成完整的系统。由于系统设计日益复杂,设计业出现了专门从事开发各种具有上述功能的集成电路模块(称做知识产权的内核,即IP核)的工厂,并把这些模块通过授权方式提供给其他系统设计者有偿使用。设计者将以IP核作为基本单元进行设计。IP核的重复使用既缩短了系统设计周期,又提高了系统设计的成功率。研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样工艺技术条件下实现更高的系统指标。21世纪将是SOC技术真正快速发展的时期。 近年来由于整机的便携式发展和系统小型化的趋势,要求芯片上集成更多不同类型的元器件,如Si-CMOSIC、GaAs-RFIC、各类无源元件、光机 电器件、天线、连接器和传感器等。单一材料和标准工艺的SOC就受到

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

SiP:面向系统集成封装技术

SiP:面向系统集成封装技术 集成电路的发展在一定程度上可概括为一个集成化的过程。近年来发展迅 速的SiP 技术利用成熟的封装工艺集成多种元器件为系统,与SoC 互补,能够实现混合集成,设计灵活、周期短、成本低。多年来,集成化主要表现在器件内CMOS 晶体管的数量,比如存储器。随着电子设备复杂程度的不断增加和市场需求的迅速变化,设备制造商面临的集成难度越来越大,开始采用模块化 的硬件开发,相应地在IC 上实现多功能集成的需求开始变得突出。SoC 在这 个发展方向上走出了第一步。但受到半导体制造工艺的限制,SoC 集成的覆盖面有固定的范围。随着网络与通信技术的普及,物理层前端硬件(模拟系统)是 多数系统中必要的组成,以SoC 实现这类系统的单芯片集成有明显困难。封装载体与组装工艺是构成SiP 技术要素构成SiP 技术的要素是封装载体与组装工艺。前者包括PCB,LTCC,SiliconSubmount(其本身也可以是一块IC)。后者包括传统封装工艺(Wirebond 和FlipChip)和SMT 设备。无源器件是SiP 的一个重要组成部分,其中一些可以与载体集成为一体(Embedded,MCM-D 等),另一些(精度高、Q 值高、数值高的电感、电容等)通过SMT 组装在载体上。SiP 的主流封装形式是BGA。就目前的技术状况看,SiP 本身没有特殊的工艺 或材料。这并不是说具备传统先进封装技术就掌握了SiP 技术。由于SiP 的产业模式不再是单一的代工,模块划分和电路设计是另外的重要因素。模块划分 是指从电子设备中分离出一块功能,既便于后续的整机集成又便于SiP 封装。 电路设计要考虑模块内部的细节、模块与外部的关系、信号的完整性(延迟、分布、噪声等)。随着模块复杂度的增加和工作频率(时钟频率或载波频率)的提高,系统设计的难度会不断增加,导致产品开发的多次反复和费用的上升,除设计 经验外,系统性能的数值仿真必须参与设计过程。优化系统性能提高集成度

SiP:系统集成封装技术

SiP:系统集成封装技术 窦新玉 清华大学电子封装技术研究中心 SiP(System in Package)是近几年来为适应模块化地开发系统硬件的需求而出现的封装技术,在已经开始的新一轮封装技术发展阶段中将发挥重要作用。SiP利用已有的电子封装和组装工艺,组合多种集成电路芯片与无源器件,封闭模块内部细节,降低系统开发难度,具有成本低、开发周期短、系统性能优良等特点,目前已经在通信系统的物理层硬件中得到广泛应用。 随着半导体制造技术的进步,集成电路芯片引出端(I/O)数与芯片面积的比值将持续上升,现有的二维I/O结构在未来五年里面临着新的挑战,SiP在不改变二维封装结构的前提下作为一个解决方案,有明显的技术优势和市场潜力。SiP技术的普及能够改变目前封装产业以代工为主的状况,为封装企业拥有自主产品在技术上创造了可能性,封装产业的产值在整个半导体产业中的比重会随之增加。 1.集成电路产业的发展与需求催生SiP技术 从第一支晶体管的诞生,到第一颗集成运算放大器的出现,一直到今天,半导体产业的发展可以概括为一个集成化的过程。多年来,集成化主要表现在器件内晶体管的数量,这个指标在单一功能的器件中目前仍占统治地位,比如存储器。现代系统集成技术中一个更重要的指标是系统功能的完整化,这样就牵扯到不同IC技术与电路单元的集成。单一功能的器件比比皆是,但单一功能的电子系统少见。由于网络与通信技术的普及,纯数字系统(所谓的计算机)几乎已经不存在,物理层硬件是多数系统中必要的组成部分。最基本的数字系统也至少包含逻辑电路和存储器,两者虽都是数字电路,但半导体制造工艺的细化与优化也已使得这两种最基本电路单元的集成不是一件简单的工作。 移动通信技术的普及使得电子整机系统向着高性能、多功能和小型化方向发展。这种需求推动了电子封装技术的近十年来的飞速发展,BGA和CSP等先进封装型式因为能够满足多I/O、小型化的技术得到普遍应用。纵观微电子产业发展的历史,封装技术在满足市场需求方面经常是被动地发挥作用;末端电子产品提出集成的要求,前端半导体设计与制造提出解决方案,封装在两者的约束下做物理实现。这种情况将在未来几年会发生变化,目前这种变化已经初步显示出来了。造成这种局面的原因是电子系统复杂度的不断提高,封装也要参与系统集成的过程。 一个先进的电子整机系统是由许多不同技术和功能的器件和电路、不同的材料等集成实现的,能够完成信号的发射、接收、存储、处理、再现(图像的显示和声音的播放等)等多项功能。以移动手机为例,它的功能包括远程无线通信(GSM和WCDMA)、近程无线接入(IrDA,Bluetooth或WLAN)、有线连接(USB)、支持操作系统和应用程序运行的CPU,平板显示及背光LED、音频系统、及支持这些硬件的电源管理系统等。所有这些功能的内部细节的以及它们的组合多少年来一直是末端产品制造商的任务,使得产品开发的费用越来越高、周期越来越长,这样发展下去,终究会有一天发生量变到质变的转换,产品开发从“难”过渡到“不可能”。 软件工程已经解决了这个问题:OOP的概念使得每个层次的问题在规模上都大体相同,系统集成的工作与模块开发的工作比重相同。硬件系统的开发也必须走这条路。这就要求整个产业过程均摊系统集成的任务,即芯片设计和封装要承担一部分系统集成的工作。这一需求将决定未来几年芯片设计与封装技术的发展方向,作为设计过程中的集成技术SoC(System On Chip)和作为封装过程中的集成技术SiP (System-in-Package)将逐渐成为产业中主流技术。大量和普遍使用SoC和SiP技术将实现产品开发过程的模块化,进而缩短产品开发周期、降低成本。SoC的思想

SIP封装

SIP(封装系统),SIP(封装系统)是什么意思 封装概述 半导体器件有许多封装型式,从DIP、SOP、QPF、PGA、BGA到CSP再到SIP,技术指标一代比一代先进,这些都是前人根据当时的组装技术和市场需求而研制的。总体说来,它大概有三次重大的革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,极大地提高了印刷电路板上的组装密度;第二次是在上世纪90 年代球型矩正封装的出现,它不但满足了市场高引脚的需求,而且大大地改善了半导体器件的性能;晶片级封装、系统封装、芯片级封装是现在第三次革新的产物,其目的就是将封装减到最小。每一种封装都有其独特的地方,即其优点和不足之处,而所用的封装材料,封装设备,封装技术 根据其需要而有所不同。驱动半导体封装形式不断发展的动力是其价格和性能。电子产品是由半导体器件(集成电路和分立器件)、印刷线路板、导线、整机框架、外壳及显示等部分组成,其中集成电路是用来处理和控制信号,分立器件通常是信号放大,印刷线路板和导线是用来连接信号,整机框架外壳是起支撑和保护作用,显示部分是作为与人沟通的接口。所以说半导体器件是电子产品的主要和重要组成部分,在 电子工业有“ 工业之米”的美称。 半导体组装技术(Assembly technology)的提高主要体现在它的封装型式(Package)不断发展。通常所指的组装(Assembly)可定义为:利用膜技术及微细连接技术将半导体芯片(chip)和框架(Lea d-Frame)或基板(Substrate)或塑料薄片(Film)或印刷线路板中的导体部分连接以便引出接线引脚,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。它具有电路连接,物理支撑和保护,外场屏蔽,应力缓冲,散热,尺寸过度和标准化的作用。从三极管时代的插入式封装以及20世纪80年代的表面贴装式封装,发展到现在的模块封装,系统封装等等,前人已经研究出很多封装形式,每一种新封装 形式都有可能要用到新材料,新工艺或新设备。 封装的作用包括:1.物理保护。2.电器连接。3.标准规格化。 封装的分类: 1.根据材料分类,根据所用的材料来划分半导体器件封装形式有金属封装、陶瓷封装、金属-陶瓷封装和塑 料封装。 2. 根据密封性分类,按封装密封性方式可分为气密性封装和树脂封装两类。 3. 根据外形、尺寸、结构分类,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封 装。 SiP(system in a package,封装内系统,或称系统封装)是指将不同种类的元件,通过不同技术,混载于同一封装之内,由此构成系统集成封装形式。该定义是经过不断演变,逐渐形成的,开始是在单芯片封装中加入无源元件,再到单个封装中加入多个芯片、叠层芯片以及无源器件,最后封装构成一个体系,即SiP。该定义还包括,SiP应以功能块亚系统形式做成制品,即应具备亚系统的所有组成部分和功能。 微电子封装对集成电路(IC)产品的体积、性能、可靠性质量、成本等都有重要影响,IC成本的40%是用于封装的,而IC失效率中超过25%的失效因素源自封装。实际上,封装已成为研发高性能电子系统的关键环节及制约因素,全球领先的整合器件制造商IDM在高密度、高可靠封装技术方面秣马厉兵,封装被列入重点研发计划正处于如火如茶之中。另外,支持发展速度的硅IC应用所需的无源元件的用量也越来越大,其典型值超过1:10,在一些移动终端(手机、笔记本电脑、个人数字助理PDA、数码相机等)产品中,无

相关主题
文本预览
相关文档 最新文档