当前位置:文档之家› Reconstruction of Illumination Functionsusing Bicubic Hermite Interpolation

Reconstruction of Illumination Functionsusing Bicubic Hermite Interpolation

Reconstruction of Illumination Functionsusing Bicubic Hermite Interpolation
Reconstruction of Illumination Functionsusing Bicubic Hermite Interpolation

Reconstruction of Illumination Functions

using Bicubic Hermite Interpolation

R UI M ANUEL B ASTOS1

A NT′ONIO A UGUSTO DE S OUSA12

F ERNANDO N UNES F ERREIRA12

1INESC–Instituto de Engenharia de Sistemas e Computadores

Largo Mompiller22–Apartado4433

4007PORTO CODEX–PORTUGAL

2FEUP–Faculdade de Engenharia da Universidade do Porto

Rua dos Bragas

4099PORTO CODEX–PORTUGAL

1rmb@bruna.inescn.pt

ABSTRACT An interpolation technique based on Hermite bicubic surfaces is proposed to

improve the accuracy of the reconstruction of illumination functions and avoid Mach band

artifacts.The information of radiosity at vertices is used to evaluate approximate tangent

planes to the illumination function and determine partials and mixed partials of that function.

Typical discontinuities of intensity or derivative in the illumination function are preserved in

the reconstructed image.The additional computation involved is modest and the result of real

importance.

1Introduction

The photorealistic image synthesis has been the aim of much research in Computer Graphics.The main goal is to generate images that evoke the same response that the observer would have when looking at the actual environment.There are many limitations related to physiological cues that hamper the achievement of the?nal purpose[3].A special limitation is the way our eyes respond to changes and discontinuities in magnitude and/or slope of intensity.This is the so called Mach band effect.

It is easy to verify that the most of the light we see does not proceed directly from light sources,but from multiple diffuse,specular or intermediate re?ections/transmissions.The most accurate way to render a scene is to evaluate the illumination function for each pixel,but for smoothly-varying illumination functions (diffuse surfaces),this is unnecessarily expensive.In this case,it is much more ef?cient to sample the illumination function in selected points,and then reconstruct a smooth function to approximate the actual illumination function everywhere in the scene.

The main cause of the Mach band effect in synthetic images is the discontinuity in the interpolation of the illumination function between patches where only the values in the vertices are known.In addition to the Mach band effect that can be caused by some kinds of interpolation,the loss in accuracy of the interpolated values also can be noted if compared to the ones evaluated using the same method used to compute the illumination function in the vertices.

There are some reconstruction models,and the simplest one is the constant or faceted shading-a single value of the illumination function is used to shade each entire polygon.As the name suggests,this model presents images with faceted appearance,caused by intensity discontinuities at the edges of the mesh of https://www.doczj.com/doc/049563862.html,ing this model,it is only possible to have intensity and slope continuity at an edge between two patches if these patches have equal values of the illumination function.Otherwise,there is no continuity at each edge between two patches(1-discontinuous in intensity).

To reduce discontinuity problems,a bilinear interpolation technique has been introduced by Gouraud [9].A linear interpolation can ensure continuity of intensity,but cannot eliminate derivative discontinuities (0-continuous in intensity,discontinuous in derivative).

The discontinuities in intensity and/or in derivative,in places where the illumination function should be smooth,may appear as Mach band effect in the generated images.To obtain reconstruction functions continuously differentiable,higher-order interpolation schemes must be used.

Kirk and Voorhies[10]used a quadratic interpolation that avoided Mach band in almost every case, but did not guarantee derivative continuity between adjacent patches.Another quadratic interpolation, described by Powell and Sabin[12]and Cendes and Wong[5],has been used to reconstruct continuously differentiable functions.

Although continuity of derivative is desirable to reconstruction functions,care must be taken in some cases where the illumination functions present magnitude and slope discontinuities.Discontinuities in intensity(1)occur,for instance,at regions of contact between surfaces with different orientations or different re?ection/emission characteristics.Discontinuities in derivative occur,e.g.,in shadows cast by area light sources at penumbra and umbra boundaries.To be faithful to the illumination function, a reconstruction function should preserve these0and1discontinuities and not smooth them as a continuous differentiable function.

Using Powell-Sabin quadratic interpolation looks to be dif?cult to handle derivative discontinuities, because it imposes a strong connection between neighboring patches.Salesin et al.[14]proposed a bicubic reconstruction scheme that breaks up each triangular patch into three B′e zier subtriangles and introduced discontinuities relaxing constraints on the control points of adjacent triangles.Our approach is similar to the second one,but with a simpler scheme.

We propose a bicubic reconstruction scheme based on parametric bicubic Hermite interpolation [7][8].The scheme approximates tangent planes to the illumination function at each vertex of the geo-metrical mesh,and,using the evaluated values of the illumination function at those vertices,associates a reconstruction Hermite patch to each geometrical patch.The consideration of selected discontinuities is done in a natural way,duplicating geometrical vertices and edges where a geometrical or illumination discontinuity exists.

This reconstruction scheme can be used to approximate several functions in several?elds.We used and implemented it to achieve a better interpolant in radiosity.Although the radiosity method very accurately evaluates the illumination function of selected points in a scene,the subsequent and traditional bilinear interpolation of those points introduces undesirable inaccuracies.

2Mach band effect

It is easy to verify the faceted appearance of any image,when curved objects in the scene are approximated by polygonal meshes where each polygon is shaded individually.This effect occurs if constant or interpolated shading is used and nothing is done to ensure slope continuity across polygon boundaries.The most simple, but expensive,solution of using a?ner mesh is not effective,unless all polygons used are smaller than a pixel.

This effect of discontinuity is known as Mach band[13][8],and was?rst reported in1865by the Austrian physicist Ernst Mach.It depends directly on the distribution of the illumination and exaggerates the intensity change at any edge where there is a discontinuity in magnitude or slope of intensity: At the boundary between two polygons,one dark and the other light,the dark one looks darker

and the light one looks lighter.

According to Ratliff[13],the basic effect can be veri?ed by holding an opaque card under an ordinary ?uorescent desk lamp,preferably in a dark room(?gure1).If the shadow is cast on a piece of paper,part of the paper is fully illuminated,and next to that area is a half-shadow(penumbra)that gets progressively darker until a full shadow(umbra)is reached.Ideally,the distribution of light should be uniformly high in the bright area,uniformly low in the dark area,and smoothly graded between the bright and the dark areas. Looking closely at the edges of the penumbra,a narrow bright band at the bright edge and a narrow dark band at the dark edge can be seen.These are the Mach bands.

Observing the distribution of intensity along the bright,penumbra and umbra areas,one can verify that the Mach bands appear in regions where there is discontinuity in magnitude or slope of intensity.In the example presented,discontinuities and its associated Mach bands are desired to represent the actual effect. In cases where a smooth illumination function is desired,discontinuities in magnitude or slope of intensity

LIGHT

Opaque card

I I

Penumbra Umbra

Fully illuminated

Distance

Distance

Perceived intensity

Actual intensity

Figure1:Mach band effect in a shadow cast by a linear light source.It can be seen the actual intensity (analogous to a linear interpolation)and the perceived intensity.Also can be seen a representation of the intensity using constant shading and the correspondent perceived intensity.

cannot exist.

It can be veri?ed that interpolations of order lower than quadratic cannot guarantee continuity of magnitude and slope of intensity.

3De?nition of the reconstruction problem

The illumination function of a scene returns the spectral sampling at a point,given the spatial coordinates of that point.As said in section1,for smoothly-varying illumination functions(diffuse surfaces)it is much more ef?cient to sample the illumination function in selected points,and then reconstruct a smooth function to approximate the actual illumination function everywhere in the scene.That reconstructed or interpolated function is called reconstruction function.

As it is too dif?cult to?nd an interpolation function for a whole scene,the problem is broken down into small https://www.doczj.com/doc/049563862.html,ually,in radiosity algorithms the objects of the scene are tessellated into geometrical patches [6][1].For simplicity,the reconstruction function is tessellated into reconstruction patches associated with the geometrical patches of the scene.Actually,each geometrical patch has more than one associated reconstruction patch-one for each color component(e.g.,red,green and blue),but,since the treatment is the same for each color component,the illumination/reconstruction functions will be analyzed as unidimensional quantities.

Each geometrical patch is described by its vertices coordinates and characteristics of re?ection and emission.At each vertex of each geometrical patch there exists a geometrical normal vector and an intensity (illumination function at that point)is evaluated.

Using the given information,we have to?nd a reconstruction function that,at any vertex, returns values equal to the ones calculated,and approximates the illumination function anywhere else over the geometrical patch:

geometrical patch and

The same reconstruction function should approximate the?rst derivative,or gradient,of the illumination function everywhere over the geometrical patches,and must preserve the continuity and discontinuities of the illumination function.

The simple association of a reconstruction patch with each geometrical patch does not ensure continuity between reconstruction patches.If two patches share an edge where the illumination function continuity is:

1,the two reconstruction patches must share,at that edge,the same values and its?rst derivative.

0,the two reconstruction patches must share,at that edge,the same values to approximate the

illumination function and the ?rst derivative in the direction of the edge.They do not share the ?rst derivative of the illumination function in any other direction.

1,the two reconstruction patches do not share,at that edge,the same values,nor its ?rst derivative.4Bicubic Hermite surfaces to interpolate radiosities

Among the bicubic surfaces the Hermite form was chosen.The motivation to choose this form was its interpolation of derivative data and that this information is directly available from the tangent planes to the illumination functions.

A bicubic patch in Hermite form is given by [8][7]:

(1)

where 321(2)

321

(3)22

11332100

101000(4)

and,in the case of radiosity reconstruction functions:

00

010*******

01201

112

11

(5)

The input parameters to the Hermite bicubic form,as can be seen in the coef?cient matrix

,are radiosities

(),partials (),shown in ?gure 2.s

t

reconstruction

Hermite

patch

patch Geometrical

Partials

Twists

Figure 2:The shown points and vectors de?ne a bicubic Hermite patch.

To guarantee 0continuity at an edge between two Hermite patches,the matching curves of the two patches must be identical,which means that the radiosities and the partials for the two surfaces must be identical along the edge.The necessary conditions for 1continuity are that the radiosities and the partials along the edge and the partials and mixed partials (twists)across the edge be equal.With these equalities the storage requirements may be reduced.

5Tangent planes to the illumination function

It will be assumed that continuity of the geometrical normal vector implies continuity of the reconstruction function.However,an a priori discontinuity meshing algorithm may indicate any kind of discontinuity at any point.In this way,all the reconstruction patches that share a vertex must share a single tangent plane to the illumination function at that point,unless a discontinuity is detected there.

A vertex is duplicated if there is any discontinuity that causes a discontinuity in the illumination function at that vertex.In the same way,an edge is duplicated if there is any discontinuity,at least,at one of its vertices.A discontinuity between patches at a vertex/edge occurs if:

the geometrical normal vector is discontinuous;

the re?ectivity is discontinuous;

the emissivity is discontinuous;

it is a part of the boundary between umbra and penumbra areas;

it is a part of the boundary between penumbra and fully illuminated areas.

To evaluate an approximate tangent plane to the illumination function,the vertex where the function is tangent,the edges that share that vertex and the corresponding patches,and the radiosities at the vertices

of the shared edges must be https://www.doczj.com/doc/049563862.html,ing this information (?gure 3.a),a coordinate system

is de?ned for each patch that shares the vertex through the parametric axes and its cross product (radiosity).In this coordinate system (patch),the radiosity variation vector (radiosity linear interpolation between vertices)is evaluated for the two edges of this geometrical patch that share the vertex.The cross product of the two radiosity variation vectors gives the normal vector,,to the radiosity variation plane (radiosity bilinear interpolation)that approximates the normal vector (tangent plane)to the illumination function at the shared vertex.

The simple use of bicubic interpolation with the above technique to approximate the illumination function tangent plane at every vertex does not give more accurate results than the bilinear interpolation.But more accurate tangent planes can be used taking the average of the tangent planes at each vertex.This average gives good approximations except at vertices of surface boundary.

Geometrical patch

radiosity B

t s V2V3V0

V1B3

B1B0

N i variation

Plane of s

B0

B6B4

B1

V0

V1V4V6

Patch A Patch B Patch C B

(a)(b)Figure 3:Evaluation of the tangent planes (normal vectors)to the illumination function.(a)3D sketch at any vertex of any geometrical patch.(b)Two-dimensional analysis of the normal vectors to the illumination function.

If there are more than a patch sharing a vertex (?gure 3.b),a normal vector to the reconstruction function is evaluated for each patch at each vertex.The approximate normal vector (tangent plane)to the illumination function at the shared vertex is the average vector of the normal vectors of the patches.This

assumption ensures1continuity of the reconstruction function for all the patches sharing the vertex and is a good approximation for the illumination function normal vector(?gure3.b at1and4).

Using just one plane of radiosity variation(?gure3.a and?gure3.b at0and6)to evaluate the illumination function normal vector,the tangent plane is undervalued(dotted line)and a correction must be made to improve the results(solid line).The same problem occurs when two radiosity variation planes share a surface boundary vertex,in the direction of the shared edge.

6First derivative of the illumination functions-Gradients

To evaluate the partials and mixed partials of the coef?cients matrix(5),the approximate normal vectors (tangent planes)to the illumination function are used together with the geometrical normal https://www.doczj.com/doc/049563862.html,ing the fact that the slope of a function may be expressed as the height of a right triangle with base length one, the derivatives are evaluated as the tangent of the angle between the geometrical normal vector,,and the normal vector to the illumination function,,at that vertex(?gure4):

+),and is the projection of the normal vector to the illumination function onto the plane de?ned by the geometrical normal vector and the given direction.Care must be taken with clockwise/counter clockwise angles,depending on,,and:

cos

coordinates over that patch are known.Knowing the correspondent reconstruction patches(one for each color component)to that geometrical patch(same parametric coordinates),the bicubic interpolation of the radiosities is evaluated using expression(1)for each color component(e.g.,red,green,blue).

8Results

The proposed reconstruction technique have been implemented on a SUN Sparc II workstation in C++,as an extension to the radiosity public domain software from India(by Sumant Pattanaik).

We have compared a reference solution(a),obtained with a?ne mesh,since analytic solution are not known for radiosity problems,a bilinear0interpolation(b),and our1bicubic reconstruction technique(c),to show how the accuracy of the reconstruction functions can be improved accumulating more information about the illumination function per vertex/edge and using a higher order interpolation technique(?gure6).In(b),a value of intensity per vertex,together with a bilinear interpolation,were used to generate the?nal image.In(a)and(c),a value of intensity per vertex,and partials and mixed partials of the illumination function were used together with a bicubic interpolation to reconstruct improved images.

Figure5presents a sketch of the simple geometrical model with136quadrilaterals.The reference solution was generated using a mesh of14080quadrilaterals and the area light source was subdivided in16 by16samples in both cases.

Figure5:Simple geometrical model.

Figure6shows a simple illumination function of occluded and unoccluded light where can be analysed the continuity and discontinuities of the reconstruction functions.Note the incorrect Mach band artifacts in(b)that are completly eliminated in(a)and(c).Also note the correct Mach bands on the partial occluded surface,due to penumbra edges,appropriately?agged in the mesh,not smoothed by the bicubic interpolation.

Figure7plots the red component for the horizontal central line of each image and?gure8shows the relative errors between the reference and the interpolated reconstruction functions.The lower relative errors of the bicubic interpolation con?rm that the presented technique based on the correlation between the geometrical normal vector and illumination function normal vector is much more accurate than a conventional bilinear interpolation.

As presented in section5,the undervalueing of the illumination function normal vector at vertices of surfaces boundary can be seen in the bicubic interpolated image and plots(180),if compared to the reference solution.

9Conclusion and further work

The radiosity gradient can be evaluated from the radiosity samples in an environment,using a correlation between the geometrical normal vector and the illumination function normal vector at each vertex.Based on this,we have presented a new bicubic reconstruction technique for illumination functions that allows for selected magnitude and derivative discontinuities.The additional computation involved is negligible,

Figure6:(a)(b)

compared to the cost of computing the radiosity samples,and the advantage is an improved interpolation accuracy.

Compared to a standard radiosity implementation(bilinear interpolation),the described algorithm requires a list of edges(2unsigned-vertices-and6double-2partials per3color components)and12 double per patch-4mixed partials per3color components.To generate the images in?gure6.(b)and(c) were used5minutes and45seconds and6minutes and20seconds,respectively,where3minutes and15 seconds is the time for500steps of progressive re?nment in both cases.In this way,the rendering took195 seconds for the bilinear interpolation and230seconds for the bicubic interpolation(bicubic=1.18bilinear).

Aspects of the presented technique that suggest further research are:

A priori and a posteriori adaptive meshing.The a priori meshing is fundamental to indicate the discon-

tinuity edges.To more accurately reconstruct the illumination functions,an a posteriori meshing can resample the environment,avoiding great radiosity variations and allowing more accurate tangent planes to the illumination function.

More accurate normals at vertices of surface boundary.The simple scheme presented for estimating normals to the illumination function needs a correction at vertices of the boundary of surfaces.It is possible to approximate the derivative of the illumination function at a vertex of the boundary using quadratic interpolation and values of radiosity and derivative at a neighbour vertex out of the boundary.

Triangular patches are better suited to describe complex geometries than are rectangular patches.

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

应用matlab求解约束优化问题

应用matlab求解约束优化问题 姓名:王铎 学号: 2007021271 班级:机械078 上交日期: 2010/7/2 完成日期: 2010/6/29

一.问题分析 f(x)=x1*x2*x3-x1^6+x2^3+x2*x3-x4^2 s.t x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 目标函数为多元约束函数,约束条件既有线性约束又有非线性约束所以应用fmincon函数来寻求优化,寻找函数最小值。由于非线性不等式约束不能用矩阵表示,要用程序表示,所以创建m文件其中写入非线性不等式约束及非线性等式约束,留作引用。 二.数学模型 F(x)为目标函数求最小值 x1 x2 x3 x4 为未知量 目标函数受约束于 x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 三.fmincon应用方法 这个函数的基本形式为 x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 其中fun为你要求最小值的函数,可以单写一个文件设置函数,也可是m文件。 1.如果fun中有N个变量,如x y z, 或者是X1, X2,X3, 什么的,自己排个顺序,在fun中统一都是用x(1),x(2)....x(n) 表示的。 2. x0, 表示初始的猜测值,大小要与变量数目相同 3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵。 4 Aeq beq为线性相等约束,Aeq*x = beq。 Aeq beq同上可求 5 lb ub为变量的上下边界,正负无穷用 -Inf和Inf表示, lb ub应为N阶数组 6 nonlcon 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq 可按下面的例子设置 function [c,ceq] = nonlcon1(x) c = [] ceq = [] 7,最后是options,可以用OPTIMSET函数设置,具体可见OPTIMSET函数的帮助文件。 四.计算程序

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

定义构造函数的四种方法

定义类的构造函数 作者:lyb661 时间:20150613 定义类的构造函数有如下几种方法: 1、使用默认构造函数(类不另行定义构造函数):能够创建一个类对象,但不能初始化类的各个成员。 2、显式定义带有参数的构造函数:在类方法中定义,使用多个参数初始化类的各个数据成员。 3、定义有默认值的构造函数:构造函数原型中为类的各个成员提供默认值。 4、使用构造函数初始化列表:这个构造函数初始化成员的方式显得更紧凑。 例如:有一个学生类。其中存储了学生的姓名、学号和分数。 class Student { private: std::string name; long number; double scores; public: Student(){}//1:default constructor Student(const std::string& na,long nu,double sc); Student(const std:;string& na="",long nu=0,double sc=0.0); Student(const std:;string& na="none",long nu=0,double sc=0.0):name(na),number(nu),scores(sc){} ……….. void display() const; //void set(std::string na,long nu,double sc); }; ......... Student::Student(const std::string& na,long nu,double sc) { name=na; number=nu; scores=sc; } void Student::display()const { std::cout<<"Name: "<

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

主要事迹简介怎么写(2020年最新)

主要事迹简介怎么写 概括?简要地反映?个单位(集体)或个?事迹的材料。简要事迹不?定很短,如果情况 多的话,也有?千字的。简要事迹虽然“简要”,但切忌语?空洞,写得像?学?期末鉴定。 ?应当以事实来说话。简要事迹是对某单位或个?情况概括?简要地反映情况,?如有三个??很突出,就写三个??,只是写某???时,要把主要事迹突出出来。 简要事迹?般来说,?少要包括两个??的内容。?是基本情况。简要事迹开头,往往要??段?字来表述?些基本情况。如写?个单位的简要事迹,应包括这个单位的?员、 承担的任务以及?段时间以来取得的主要成绩。如写个?的简要事迹,应包括该同志的性 别、出?年?、参加?作时间、籍贯、民族、?化程度以及何时起任现职和主要成绩。这 样上级组织在看了材料的开头,就会对这个单位或个?有?个基本印象。?是主要特点。 这是简要事迹的主体部分,最突出的事例有?个??就写成?块,并按照?定的逻辑关系进 ?排列,把同类的事例排在?起,?个??通常由?个?然段或?个?然段组成。 写作时,特别要注意以下四点: 1.?第三?称。就是把所要写的对象,是集体的?“他们”来表述,是个?的称之为“他(她)”。 (她)”,单位可直接写名称,个?可写其姓名。 为了避免连续出现?个“他们”或“他 2.掌握好时限。?论是单位或个?的简要事迹,都有?个时间跨度,既不要扯得太远,也不 要故意混淆时间概念,把过去的事当成现在的事写。这个时间跨度多长,要根据实际情况 ?定。如上级要某个同志担任乡长以来的情况就写他任乡长以来的事迹;上级要该同志两年 来的情况,就写两年来的事迹。当然,有时为了需要,也可适当地写?点超过这个时间的 背景情况。 3.?点他?的语?。就是在写简要事迹时,可?些群众的语?或有关?员的语?,这样会给??种?动、真切的感觉,衬托出写作对象?较?的思想境界。在?他?语?时,可适当加?,但不能造假。 4.?事实说话。简要事迹的每?个??可分为多个层次,?个层次先??句话作为观点,再???两个突出的事例来说明。?事实说话时,要尽量把?个事例说完整,以给?留下深 刻印象。

函数证明问题专题训练

函数证明问题专题训练 ⑴.代数论证问题 ⑴.关于函数性质的论证 ⑵.证明不等式 6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根. (Ⅰ)当x >a 时,求证:()f x <x ; (Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); (Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

最新树立榜样的个人事迹简介怎么写800字

树立榜样的个人事迹简介怎么写800字 榜样是阳光,温暖着我们的心;榜样如马鞭,鞭策着我们努力奋斗;榜样似路灯,照亮着我们前进的方向。今天小编在这给大家整理了树立榜样传递正能量事迹作文,接下来随着小编一起来看看吧! 树立榜样传递正能量事迹1 “一心向着党”,是他向着社会主义的坚定政治立场;“人的生命是有限的,可是,为人民服务是无限的,我要把有限的生命投入到无限的为人民服务中去”,是他的至理名言;“甘学革命的“螺丝钉”,是他干一行爱一行、钻一行的爱岗敬业态度。他——雷锋,是我们每一个人的“偶像”…… 雷锋的事迹传遍大江南北,他,曾被人们称为可敬的“傻子”。一九六零年八月,驻地抚顺发洪水,运输连接到了抗洪抢险命令。他强忍着刚刚参加救火工作被烧伤的手的疼痛,又和战友们在上寺水库大坝连续奋战了七天七夜,被记了一次二等功。望花区召开了大生产号召动员大会,声势很大,他上街办事,正好看到这个场面,他取出存折上在工厂和部队攒的200元钱,那时,他的存折上只剩下了203元,就跑到望花区党委办公室要为之捐献出来,为建设祖国做点贡献,接侍他的同志实在无法拒绝他的这份情谊,只好收下一半。另100元在辽阳遭受百年不遇洪水的时候,他捐献给了正处于水深火热之中的辽阳人民。在我国受到严重的自然灾害的情况下,他为国家建设,为灾区捐献出自已的全部积蓄,却舍不得喝一瓶汽水。就这样,他毫不犹豫的捐出了自己的所有积蓄,不求功名,不求名利,只求自己心安理得,只求为

革命献出自己的微薄之力,甘愿做革命的“螺丝钉”——在一次施工任务中,他整天驾驶汽车东奔西跑,很难抽出时间学习,他就把书装在挎包里,随身带在身边,只要车一停,没有其他工作时,就坐在驾驶室里看书。他曾经在自己的日记中写下这样一段话:”有些人说工作忙,没时间学习,我认为问题不在工作忙,而在于你愿不愿意学习,会不会挤时间来学习。要学习的时间是总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钉进去呢?这就是靠压力硬挤进去的。由此看来,钉子有两个长处:一个是挤劲,一个是钻劲。我们在学习上也要提倡这种”钉子“精神,善于挤和钻。”这就是他,用自己的实际行动来证明自己,用自己的亲生经历来感化世人,用自己的所作所为来传颂古今……人们都拼命地学习他的精神,他的精神被不同肤色的人所敬仰。现在,一切都在变,但是,那些决定人类向前发展的基本要素没有变,那些美好的事物没有变,那些所谓的“螺丝钉”精神没有变——而这正是他的功劳,是他开启了无私奉献精神的大门,为后人树立了做人的榜样…… 这就是他,一位中国家喻户晓的全心全意为人民服务的楷模,一位共产主义战士!他作为一名普通的中国人民解放军战士,在他短暂的一生中却助人无数。而且,伟大领袖毛泽东主席于1963年3月5日亲笔为他题词:“向雷锋同志学习”。 正是因为如此,全国刮起了学习雷锋的热潮。雷锋已经离开我们很长时间了。但是雷锋的精神却深深地在所有中国人心中扎下了根,现在它已经长成一株小树。正以其顽强的生命力,茁壮成长。我坚信,

函数的证明方法

一般地,对于函数f(x) ⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。 ⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。 ⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 ⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 定义域互为相反数,定义域必须关于原点对称 特殊的,f(x)=0既是奇函数,又是偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言。 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。 ④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。 ⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x3【-∞,-2】或【0,+∞】(定义域不关于原点对称) ⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0 注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

大学生先进事迹简介怎么写

大学生先进事迹简介怎么写 苑xx,男,汉族,1990年07月22日出生,中国共青团团员,入党积极分子,现任xx学院电气优创0902班班长,担任xx学院09级总负责人、xx学院团委学生会科创部干事、xx学院文艺团主持部部长。 步入大学生活一年以来,他思想积极,表现优秀,努力向党组织靠拢,学习刻苦,品学兼优,工作认真负责,脚踏实地,生活勤俭节约,乐于助人。一直坚持多方面发展,全面锻炼自我,注重综合能力、素质拓展能力的培养。再不懈的努力下获得了多项荣誉: ●获得09-10学年xx大学“百佳千优”(文化体育)一等奖学金和“百佳千优”(班级建设)二等奖学金; ●获得09-10学年xx大学“优秀学生干部”荣誉称号; ●2010年xx大学普通话知识竞赛中获得一等奖; ●2010年xx大学主持人大赛中获得一等奖,被评为金话筒; ●xx学院首届“大学生文明修身”活动周——再生比赛中获得一等奖; ●xx学院首届“大学生文明修身”活动周——演讲比赛中获得一等奖。 一、刻苦钻研树学风 作为班长,他在学习方面,将班级同学分成各个学习小组,布置每日学习任务,分组竞争,通过开展各项趣味学习活动,全面调动班级同学的积极性,如:排演英语戏剧、文学常识竞答、数学辅导小组等。他带领全班同学努力学习、勤奋刻苦,全班同学奖学金获得率达91%,四级通过率达66%。 二、勤劳负责建班风

在日常班级工作中,他尽心尽力,通过网络组织建立班级博客,把班级的日常情况,班级比赛,特色主题班会等活动,及时上传到 班级博客,以方便更多同学了解自己的班级,也把班级的魅力、特色,更全面、更具体的展现出来。 在班级建设中,他带领全班同学参加学院组织的各项文体活动中也收获颇多: ●在xx学院首届“大学生文明修身”活动周中荣获第二名, ●xx学院首届乒乓球比赛中荣获第一名、精神文明奖, ●在xx学院“迎新杯”男子篮球赛中荣获第四名、最佳组织奖。 除了参加学院组织的各项活动外,为了进一步丰富班级同学们的课余生活,他在班级内积极开展各式各样的课余活动: ●普通话知识趣味比赛,感受中华语言的魅力,复习语文文学常识,为南方同学打牢普通话基础,推广普通话知识。 ●“我的团队我的班”主题班会活动中,创办特色活动“情暖你我心”天使行动,亲切问候、照顾其他同学的生活、学习方面细节 小事,即使在寒冷的冬天,也要让外省的同学感受到家一样的温暖。 ●“预览科技知识”科技宫之行,作为现代大学生,不能只顾书本知识,也要跟上时代,了解时代前沿最新科技。 ●感恩节“感谢我们身边的人”主题班会活动,在这个特殊的节日里,他带领同学们通过寄贺卡、送礼物等方式,来感谢老师辛勤 的付出;每人写一封家书,寄给父母,感谢父母劳苦的抚育,把他们 的感激之情,转化为实际行动来感化周围的人;印发感恩宣传单,发 给行人,唤醒人们的感恩的心。 三、热情关怀暖人心 生活中,他更能发挥榜样力量,团结同学,增强班级凝聚力。时刻观察每一位同学的情绪状态,在心理上帮助同学。他待人热情诚恳,积极帮助生活中有困难的同学:得知班级同学生病高烧,病情 严重,马上放下午饭,赶到同学寝室,背起重病同学到校医院进行

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n ,小于n 且和n 互质的正整数(包括1)的个数,记作φ(n) 。 完全余数集合: 定义小于n 且和n 互质的数构成的集合为Zn ,称呼这个集合为n 的完全余数集合。显然|Zn| =φ(n) 。 有关性质: 对于素数p ,φ(p) = p -1 。 对于两个不同素数p,q ,它们的乘积n = p * q 满足φ(n) = (p -1) * (q -1) 。 这是因为Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} ,则φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) 。 欧拉定理: 对于互质的正整数 a 和n ,有aφ(n)≡ 1 mod n。 证明: ( 1 ) 令Zn = {x1, x2, ..., xφ(n)} ,S= {a * x1mod n, a * x2mod n, ... , a * xφ(n)mod n} ,则Zn = S 。 ① 因为a 与n 互质,x i(1 ≤ i ≤ φ(n)) 与n 互质,所以a * x i与n 互质,所以a * x i mod n ∈ Zn 。 ② 若i ≠ j ,那么x i≠ x j,且由a, n互质可得a * x i mod n ≠ a * x j mod n (消去律)。( 2 ) aφ(n) * x1 * x2 *... * xφ(n)mod n ≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n ≡ (a * x1mod n) * (a * x2 mod n) * ... * (a * xφ(n)mod n) mod n ≡x1 * x2 * ... * xφ(n) mod n 对比等式的左右两端,因为x i(1 ≤ i ≤ φ(n)) 与n 互质,所以aφ(n)≡ 1 mod n (消去律)。 注: 消去律:如果gcd(c,p) = 1 ,则ac ≡ bc mod p ? a ≡ b mod p 。 费马定理: 若正整数 a 与素数p 互质,则有a p - 1≡ 1 mod p。 证明这个定理非常简单,由于φ(p) = p -1,代入欧拉定理即可证明。 ********************************************************************* ******** 补充:欧拉函数公式 ( 1 ) p k的欧拉函数 对于给定的一个素数p ,φ(p) = p -1。则对于正整数n = p k,

建筑结构功能的三性要求是指性

练习题 一、填空 1.建筑结构功能的“三性”要求是指:()性、()和()。 2.阳台的整体倾覆应为不满足()极限状态。 3、现阶段建筑结构设计方法()设计法. 4、混凝土的基本强度指标是()强度。 5、建筑结构应能承受()和()时出现的各种作用。 6、钢筋按其生产工艺,机械性能与加工条件的不同可分为()、()、()和()。 #7、采用约束混凝土不仅可以提高混凝土的()强度,而且可以提高构件的耐受()的能力。#8、混凝土在荷载长期作用下,随()而增长的变形称为徐变,其影响因素可分为:内在因素;环境因素; ()。 9、结构的极限状态分为两种,它们是()极限状态与()极限状态。在正常使用极限状态计算中,要考虑 荷载作用持续时间的不同区分为两种荷载效应组合:荷载的()效应组合和()效应组合。 10、结构可靠度是指结构在()内,在()下,完成预定()的概率。 11.混凝土的立方体强度可分别用200mm、150mm、100mm?的立方体试块来测定,?用200mm试块比用150mm 试块测得的抗压强度(),而用100mm试块比用150mm试块测得的抗压强度(),这种影响一般称为()。 12.在对有明显屈服点的钢筋进行质量查验时,主要应测定()、()、()和()四项指标。 13.在对没有明显屈服点的钢筋进行质量查验时,主要应测定()、()和()三项指标。 14.热轧钢筋分为四级,随着等级的提高,钢筋的屈服强度(),极限抗拉强度(),延伸率()。 15.对于没有明显屈服点的钢筋,取相应于()为0.2%时的应力作为没有明显屈服点钢筋的假想屈服点。 16.荷载效应S 和抗力R 之间的关系不同,结构构件将处于不同的状态,当()时,结构处于安全状态;当 ()时,结构处于极限状态;当S> R时,结构处于()状态。 17.无明显屈服点的钢筋的假想屈服点指相应于残余塑性应变为()的应力。 18.失效概率P f的大小可以通过可靠指标B来度量,即B越大,P f ()。 19 荷载效应泛指由荷载产生引起的各种()。 20、双筋矩形截面梁中,所采用的受压钢筋的抗压设计强度的取值原则是:当钢筋的抗拉设计强度 f y 小于 或等于()时,取钢筋的抗压设计强度f y/=()。当钢筋的抗拉设计强度大于()时,取钢筋的抗压设计 强度为()。 二、简答题 1、混凝土的立方体抗压强度f cu,k 是如何确定的?与试块尺寸有什么关系? 2、混凝土的割线模量、弹性模量有何区别?#它们与弹性系数有何关系? 3、什么叫混凝土的徐变?产生徐变的原因是什么?混凝土的收缩和徐变有何本质区别? 4、解释条件屈服强度、#屈强比、伸长率? 5 一对称配筋的钢筋混凝土构件,其支座之间的距离固定不变。试问由于混凝土的收缩,混凝土及钢筋中将产生哪些应力? 结构应满足哪些功能要求? 6、何谓结构的极限状态?结构的极限状态有几类?主要内容是什么? 7、何谓结构的可靠性及可靠度? 8、试说明材料强度平均值、标准值、设计值之间的关系。 9、论述在正常使用极限状态计算时,根据不同的设计要求,应采用哪些荷载组合? 10、筋混凝土结构共同工作的机理是什么? 答:钢筋和混凝土这两种力学性质不同的材料之所以能共同工作是因为:混凝土与钢筋之间具有良好的 粘结力,两者能成为共同受力的整体;钢筋与混凝土的温度线膨胀系数大致相同,钢筋 a =1.0 X 10-5 ;混凝

个人事迹简介

个人事迹简介 我是来自计算机与与软件学院的学生,现在为青年志愿者协会的干事,在班级担任生活委员。在过去的一年里,我注重个人能力的培养积极向上,热心公益,服务群众,奉献社会,热忱的投身于青年支援者的行动中!一年时间虽短,但在这一年的时间里,作为一名志愿者,我确信我成长了很多,成熟了很多。“奉献、友爱、互助、进步”这是我们志愿者的精神,在献出爱心的同时,得到的是帮助他人的满足和幸福,得到的是无限的快乐与感动。路虽漫漫,吾将上下而求索!在以后的日子里,我会在志愿者事业上做的更好。 在思想上,我积极进取,关心国家大事,并多次与同学们一起学习志愿者精神,希望我们会在新的世纪里继续努力,发扬我国青年的光传统,不懈奋斗,不断创造,奋勇前进,为实现中华民族的伟大复兴做出了更大的贡献。 在学习上刻苦认真,抓紧时间,不仅学习好学科基础知识,更加学好专业课知识,在课堂上积极配合老师的教学,乐意帮助其它同学,有什么好的学习资料,学习心得也与他们交流,希望大家能共同进步。在上一个年度总成绩在班级排名第四,综合考评在班级排名第二。在工作中,我认真负责,出色的完成老师、同学交给的各项任务,所以班级人际关系良好。

此外参加了学院组织的活动,并踊跃地参加,发挥自己的特长,为班级争得荣誉。例如:参加校举办的大合唱比赛并获得良好成绩;参加了计算机与软件学院党校学习并顺利结业;此外,参加了计算机与软件进行的“计算机机房义务打扫与系统维护”的活动。在这些活动中体验到了大学生生活的乐趣。 现将多次参与各项志愿活动汇报如下:2013年10月26日,参加计算机与软件学院团总支实践部、计算机与软件学院青年志愿者协会组织“志愿者在五福家园的健身公园开展义务家教招新活动”;2013年11月7日,参加组成计算机与软件学院运动员方阵在田径场参加学院举办的学校运动会;2013年12月5日,参与学校学院组织的”一二.五“大合唱比赛;2014年3月12日,参加由宿舍站长组织义务植树并参与植树活动;2014年3月23日,在计算机与软件学院团总支书记茅老师的带领下,民俗文化传承协会、计算机与软件学院青年志愿者协会以及学生会的同学们参观了“计算机软件学院的文化素质教育共建基地--南京市民俗博物馆”的活动;2014年3月26日,参加有宿舍站长组织的“清扫宿舍公寓周围死角垃圾”的活动;2014年4月5日,参加由校青年志愿者协会、校实践部组织的“南京市雨花台扫墓”活动,2014年4月9日,作为班级代表参加计算机软件学院组织部组织的“计算机应用office操作大赛”的活动。 在参与各项志愿活动的同时,我的学习、工作、生活能力得到了提高和认可,丰富生活体验,提供学习的机会,提供学习的机会。

浅谈常见函数的导函数证明及推导

浅谈常见函数的导函数证明及推导 西南大学数学与统计学院 彭兵 【摘要】:随着新课程的改革,导数及其应用这一节凸显了其作用,利用导数知识研究函数、不等式的证明、数列求和等问题是高考中最常见的,占每年高考数学试卷总分的20%左右。但导数这一章又是最难学的知识点之一,让很多一线教师表示很无奈。据笔者观察,大部分老师在第二节“几种常见函数的导数”的教学中,只是要求学生背住这几个公式即可,没有深入去探讨去讲解这几种导函数的本质,证明过程肯定也是省略掉了。但笔者认为,这恰好失去了一次引导学生,培养学生发散思维能力的机会。笔者通过自己对教材的理解,谈一谈对常用函数的导函数证明及推导。 【关键词】常见函数 导函数 证明 引导 导数的重要性正如本章的导言中所说的: “……,它是数学发展史上继欧氏几何后的又一个具有划时代意义的伟大创造,被誉为数学史上的里程碑……”。而在高中教学中,由于其应用的广泛性,导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具,并且在许多问题上起到居高临下和以简驭繁的作用。] 1[变化率是数学史上一个重要的转折, 由此数学发展到了变量数学的新阶段, 开辟了数学研究的崭新天地。 这一节知识点是近年来高考命题的热点之一, 这部分内容可以加强对考生由有限到无限的辩证思想的教育,使考生能以导数为工具研究函数的变化率, 为解决函数的极值问题提供有效的途径及更简便的手段, 加强对函数的深刻理解和直观认识, 同时为解决几何问题提供新的方法, 从而使学生掌握一种科学的语言和工具, 学习一种理性的思维模式。学好这部分内容是十分重要的。 一、准确把握导函数的背景和概念 1、教学背景 高中导数教学中,对导数的介绍比较抽象,仅仅是一种极限思想的应用,具体的表达式是 ()()()x x f x x f x f x ?-?+=→?0 'lim ,这与之前所学到的知识和内容有很差距,所以这也就要求 教师在教学的过程中可以适当地结合实际问题,以实际问题为背景,在不断变化,充分体会导数的概念和内涵,这样也可以收到很好的效果。 2、导数的几何意义 函数()x f y =在点0x 的导数的几何意义就是表示了函数曲线在点()000,y x p 处的斜率。 利用导数的几何意义求曲线切线斜率是高考的热点。所以导数的几何意义可以看做是教学工作的重点和难点,学生需要充分理解导数的概念和意义,才能在此基础上深刻理解导数的几何意义,理解导数的内涵,为导数以后的学习打下良好的基础。 二、导数在高考中的运用 1、导数体现在函数问题中

相关主题
文本预览
相关文档 最新文档