当前位置:文档之家› 带有中间热集成的精馏塔序列及其性能

带有中间热集成的精馏塔序列及其性能

带有中间热集成的精馏塔序列及其性能
带有中间热集成的精馏塔序列及其性能

带有中间热集成的精馏塔序列及其性能

作者:许良华, 陈大为, 罗祎青, 袁希钢, XU Lianghua, CHEN Dawei, LUO Yiqing, YUAN Xigang 作者单位:天津大学化工学院,化学工程联合国家重点实验室,天津300072

刊名:

化工学报

英文刊名:CIESC Jorunal

年,卷(期):2013,64(7)

本文链接:https://www.doczj.com/doc/077704289.html,/Periodical_hgxb201307027.aspx

精馏塔的设计及选型

精馏塔的设计及选型 目录 精馏塔的设计及选型 (1) 目录 (1) 1设计概述 0 1.1工艺条件 0 1.2设计方案的确定 0 2塔体设计计算 (1) 2.1有关物性数据 (1) 2.2物料衡算 (3) 2.3塔板数的确定 (4) 2.4精馏塔的工艺条件及相关物性数据 (8) 2.5塔体工艺尺寸的设计计算 (11) 2.6塔板工艺尺寸的设计计算 (14) 2.7塔板流体力学验算 (18) 2.8负荷性能图 (22) 2.9精馏塔接管尺寸计算 (27) 3精馏塔辅助设备的设计和选型 (31) 3.1原料预热器的设计 (32) 3.2回流冷凝器的设计和选型 (34) 3.3釜塔再沸器的设计和选型 (38) 3.4泵的选择 (40) 3.5筒体与封头 (41)

1设计概述 1.1工艺条件 (1)生产能力:2836.1kg/d(料液) (2)工作日:250天,每天4小时连续运行 (3)原料组成:35.12%丙酮,64.52%水,杂质0.35%,由于杂质含量较小且不会和丙酮一起蒸馏出去,所以可以忽略。所以此母液可以视为仅含丙酮和水两种成分,其质量组成为:35.12%丙酮,水64.88%(下同) (4)产品组成:馏出液99%丙酮溶液,回收率为90%,由此可知塔釜残液中丙酮含量不得高于5.16% 即每天生产99%的丙酮905.54kg。 (5)进料温度:泡点 (6)加热方式:间接蒸汽加热 (7)塔顶压力:常压 (8)进料热状态:泡点 (9)回流比:自选 (10)加热蒸气压力:0.5MPa(表压) (11)单板压降≤0.7kPa 1.2设计方案的确定 (1)、精馏方式及流程: 在本设计中所涉及的浓度范围内,丙酮和水的挥发度相差比较大,容易分离,且丙酮和水在操作条件下均为非热敏性物质,因此选用常压精馏,并采取连续精馏方式。母液经过换热器由塔底采出液预热到泡点,在连续进入精馏塔内,塔顶蒸汽经过塔顶冷凝器冷凝后,大部分连续采出,采出部分经冷却器后进入储罐内备用,少部分进行回流;塔底液一部分经过塔釜再沸器气化后回到塔底,一部分连续采出,采出部分可用于给原料液预热。塔顶装有全凝器,塔釜设有再沸器,进料输送采用离心泵,回流液采用高位槽输送。 (2)、进料状态:泡点进料。 (3)、加热方式:间接蒸汽加热。 (4)、加热及冷却方式:原料用塔釜液预热至泡点,再沸器采用间接蒸汽加热,塔顶全凝器采用自来水作为冷却剂。优点是成本低,腐蚀性小,黏度小,比热容

精馏实验

精馏实验 一、简答题 1、电加热开关何时开启?精馏过程如何调节电压? 待塔釜料液加好后,将加热电压调节旋钮全关,再开电加热开关,以免启动功率过大,烧坏电加热管。刚开始加热电压可高些如200~220V,等塔釜温度稳定在九十几度也即釜温达泡点时,电压降至100~120V左右,注意加热电压不能太高,否则会出现淹塔现象。 2、其他条件都不变,只改变回流比,对塔性能会产生什么影响? 3、进料板位置是否可以任意选择,它对塔的性能有何影响? 4、为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 5、将本塔适当加高,是否可以得到无水酒精?为什么? 6、为什么精馏开车时,常先采用全回流操作? 精馏塔要保持稳定高效操作,首先必须使精馏塔从下到上建立起一整套与给定操作条件对应的逐板递升的浓度梯度和逐板递降的温度梯度。即使全塔的浓度梯度和温度梯度按需要渐变。所以,在精馏塔开车时,常先采用全回流操作,待塔内情况基本稳定后,再开始逐渐增大进料流量,逐渐减小回流比,同时逐渐增大塔顶塔底产品流量。 7、精馏塔操作时,若精馏段的高度已不能改变,要提高塔顶产品易挥发组分的浓度,则采用什么方法? 影响塔顶产品质量的诸因素中,影响最大而且最容易调节的是回流比。所以若需提高塔顶产品易挥发组分的浓度,常采用增大回流比的办法。 8、精馏塔操作时,若提馏段的高度已不能改变,要提高塔底产品中难挥发组分的浓度,则采用什么办法? 最简便的办法是增大再沸器上升蒸汽的流量与塔底产品的流量之比。 (由7、8题可见,在精馏塔操作中,产品的浓度要求和产量要求是相互矛盾的,为此必须统筹兼顾,不能盲目地追求高浓度或高产量。一般是在保证产品浓度能满足要求以及能稳定操作的前提下,尽可能提高产量。此时提高产量的办法是在允许的范围内采用尽可能小的回流比和尽可能大的再沸器加热量。) 9、精馏操作稳定的必要条件是什么?

精馏塔的控制

精馏塔的控制 12.1 概述? 精馏是石油、化工等众多生产过程中广泛应用的一种传质过程,通过精馏过程,使混合物料中的各组分分离,分别达到规定的纯度。 ?分离的机理是利用混合物中各组分的挥发度不同(沸点不同),使液相中的轻组分(低沸点)和汽相中的重组分(高沸点)相互转移,从而实现分离。 ?精馏装置由精馏塔、再沸器、冷凝冷却器、回流罐及回流泵等组成。 精馏塔的特点精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓、变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。而且从能耗的角度,精馏塔是三传一反典型单元操作中能耗最大的设备。 一、精馏塔的基本关系 (1)物料平衡关系总物料平衡: F=D+B (12-1) 轻组分平衡:F z f =D x D +B x B (12-2) 联立(12-1)、(12-2)可得: (2)能量平衡关系 在建立能量平衡关系时,首先要了解分离度的概念。所谓分离度s 可用下式表示: 回流泵 冷凝器 气液分离器 精馏塔 进料 再沸器 釜液 馏出液 冷剂 热剂 B,x B D,x D F,z F L L B L D V B D f D B B f D x x x z F D x x z D F x --= +-=)((12-3) ) 1()1(D B B D x x x x s --=(12-5)

可见,随着s 的增大,x D 也增大,x B 而减小,说明塔系统的分离效果增大。影响分离度s 的因素很多,如平均相对挥发度、理论塔板数、塔板效率、进料组分、进料板位置,以及塔内上升蒸汽量V 和进料F 的比值等。对于一个既定的塔来说: 式(12-6)的函数关系也可用一近似式表示: 或可表示为: 式中β为塔的特性因子由上式可以看到,随着V /F 的增加,s 值提高,也就是x D 增加, x B 下降,分离效果提高了。由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。由上分析可见, V /F 的增加,塔的分离效果提高,能耗也将增加。 对于一个既定的塔,包括进料组分一定,只要D /F 和V /F 一定,这个塔的分离结果,即 x D 和x B 将被完全确定。也就是说,由一个塔的物料平衡关系与能量平衡关系两个方程式, 可以确定塔顶与塔底组分待定因素。 上述结论与一般工艺书中所说保持回流比一定,就确定了分离结果是一致的。二、精馏塔的控制要求精馏塔的控制目标是,在保证产品质量合格的前提下,使塔的总收益(利润)最大或总成本最小。具体对一个精馏塔来说,需从四个方面考虑,设置必要的控制系统。 (1)产品质量控制; (2)物料平衡控制; (3)能量平衡控制; (4)约束条件控制(液泛限、漏液限、压力限、临界温差限等)。 防止液泛和漏液,可以塔压降或压差来监视气相速度。三、精馏塔的主要干扰因素精馏塔的主要干扰因素为进料状态,即进料流量F 、进料组分z f 、进料温度T f 或热焓F E 。 此外,冷剂与热剂的压力和温度及环境温度等因素,也会影响精馏塔的平衡操作。 所以,在精馏塔的整体方案确定时,如果工艺允许,能把精馏塔进料量、进料温度或热焓加以定值控制,对精馏塔的操作平稳是极为有利的。 12.3 精馏塔被控变量的选择 通常,精馏塔的质量指标选取有两类:直接的产品成分信号和间接的温度信号。 一、采用产品成分作为直接质量指标 成分分析仪表的制约因素: ①分析仪表的可靠性差; ②分析测量过程滞后大,反应缓慢; ③成分分析针对不同的产品组分,品种上较难一一满足。 二、采用温度作为间接质量指标 )(F V f s =(12-6) s F V ln β=) 1()1(ln D B B D x x x x F V --=β(12-7) (12-8)

浮阀式连续精馏塔及其主要附属设备设计说明书

化学工程与工艺专业 《化工原理》课程设计说明书 题目:浮阀式连续精馏塔及其主要附属设备设计姓名: 班级学号: 指导老师: 同组学生姓名: 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 评审 单元 评审要素 评审内涵 评审等级 检查 方法 指导 老师 评分 检阅 老师 评分 设计 说明书 35% 格式规范 是否符合规定的格式要求 5-4 4-3 3-2 2-1 格式 标准 内容完整 设计任务书、评分标准、 主要设备计算、作图、后记、参考文献、小组成员及 承担任务 10-8 8-6 6-4 4-1 设计 任务书 设计方案 方案是否合理及 是否有创新 10-8 8-6 6-4 4-1 计算 记录 工艺计算 过 程 计算过程是否正确、 完整和规范 10-8 8-6 6-4 4-1 计算 记录 设计 图纸 30% 图面布置 图纸幅面、比例、标题栏、明细栏是否规范 10-8 8-6 6-4 4-1 图面布 置标准 标注 文字、符号、代号标注 是否清晰、正确 10-8 8-6 6-4 4-1 标注 标准 与设计 吻合 图纸设备规格 与计算结果是否吻合 10-8 8-6 6-4 4-1 比较图纸与说明书 平时 成绩 20% 出勤 计算、上机、手工制图 10-8 8-6 6-4 4-1 现场 考察 卫生 与纪律 设计室是否整洁、 卫生、文明 10-8 8-6 6-4 4-1 答辩 成绩 15% 内容表述 答辩表述是否清楚 5-4 4-3 3-2 2-1 现场 考察 内容是否全面 5-4 4-3 3-2 2-1 回答问题 回答问题是否正确 5-4 4-3 3-2 2-1 总 分 综合成绩 成绩等级 指导老师 评阅老师 (签名) (签名) 年 月 日 年 月 日

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

精馏实验实验报告

精馏实验实验报告 一、实验目的 1.学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响; 2.学会精馏塔性能参数的测量方法,并掌握其影响因素; 3.测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、实验原理 1.理论塔板数的图解求解法 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的操作回流比、塔顶馏出液组成及塔底釜液组成计算得到操作线,从而使用图解求解法,绘图得到精馏操作的理论塔板数。 用图解法求算理论塔板的理论依据为:(1)根据理论塔板定义,离开任一塔板上气液两相的浓度x n和y n必在平衡线上;(2)根据组分物料衡算,位于任两塔板间两相浓度x n和y n+1必落在相应塔段的操作线上。 本实验采用全回流的操作方式,即。此时,精馏段操作线和提馏段操作线简化为: 2.总板效率 精馏操作的总板效率的计算公式为: 式中,N T为理论塔板数,N P为实际塔板数。 3.折光率与液相组成 本实验通过测量塔顶馏出液与塔底釜液的折光率,计算得到馏出液与釜液的组成。对30oC 下质量分率与阿贝折光仪读数之间关系可按下列回归式计算: 式中,w为质量分率,n30为30oC下的折光指数。 测量温度下的折光指数与30oC下的折光指数之间关系可由下式计算: 式中,n t为测量温度下的折光指数,t为测量温度。测量温度可从阿贝折光仪上读出。 馏出液与釜液的质量分数与摩尔分数之间的关系可由下式表示: 三、实验步骤 1.实验前检查实验装置上的各个旋塞、阀门均应处于关闭状态;电流电压表及电位器位置 均为零;

2.打开塔顶冷凝器的冷却水,冷却水的水量约为8升/分钟; 3.接上电源闸,按下装置上总电源开关,调节回流比控制器至全回流状态; 4.调节电位器使加热电压为70V,开始计时并测量塔顶温度。刚开始时每隔5分钟记录一 次塔顶温度,待温度变化明显后,每隔0.5分钟记录一次数据,至塔顶温度不再随时间发生明显变化; 5.测量每一块塔板上的温度,并收集塔顶馏出液与塔底釜液,使用阿贝折光仪测量两液体 的温度与折光率; 6.调节电位器使加热电压分别为90V和110V,待精馏塔稳定后,重复步骤(5); 7.检查数据合理后,关闭电源及加热开关,并在停止加热10分钟后,关闭冷却水,一切 复原。 四、实验数据及实验结果 1.在全回流条件下,塔顶温度随时间的变化情况 调节电位器使加热电压为70V,调节回流控制器至全回流状态,记录在不同时刻下的塔顶温度。并以开车时间为横坐标,以塔顶温度为纵坐标绘图,如下图所示。 从图中我们可以得到,在精馏塔开始工作的前35分钟里,由于没有蒸汽经过塔顶,因此塔顶温度与室温接近,并保持不变。从30分钟至40分钟,蒸汽上升至塔顶,使塔顶温度在短时间内快速升高。从40分钟至42分钟,精馏塔内趋于稳定,塔顶蒸汽中轻组分(乙醇)的组成比例逐渐提高,塔顶温度有小幅地下降。42分钟之后,精馏塔达到稳定状态,塔顶温度保持不变。 2.在全回流、稳定操作的条件下,塔体内温度随塔高的分布 分别测量在加热电压为70V、90V和110V时,全回流、稳定操作的条件下,精馏塔各塔板的温度,并得到在不同加热电压下塔体内温度随塔高的分布,数据如下表所示。 塔板数 1 3 4 5 6 7 8 9 高度(m)0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.0 塔体温度(oC) 70V79.9 84.7 82.5 83.7 85.4 87.3 88.6 93.8 90V80.1 85.6 85.7 88.2 90.3 91.8 92.5 94.7 110V80.2 87.5 86.9 89.2 91.5 92.4 93.2 95.4

精馏塔实验讲义

E T = ?100% C pm (t BP - t F ) + r m 精馏塔实验讲义 一、 实验目的 1. 充 分 利 用 计 算 机 采 集 和 控 制 系 统 具 有 的 快 速 、 大 容 量 和 实 时 处 理 的 特 点 , 进 行 精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2. 学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3. 学习精馏塔性能参数的测量方法,并掌握其影响因素。 4. 测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、 实验原理 1. 在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来字塔板下降的回流液,在塔板 上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是 精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分 离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全 部返回塔内中,这在生产中无实际意义。但是,由于此时所需理论塔板数最少,又易于达到 稳定,故常在工业装置的开停车、排除故障及科学研究时使用。 实际回流比常取最小回流比 1.2—2.0 倍。在精馏操作中,若回流系统出现故障,操作情 况会急剧恶化,分离效果也会变坏。 2. 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操 作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数 N T 。按照式(5-1)可以 得到总板效率 E T ,其中 N P 为实际塔板数。 N T N P 部分回流时,进料热状况参数的计算式为 q = r m 式中:

精馏塔基础知识

塔基础知识 1:化工生产过程中, 是如何对塔设备进行定义的? 答: 化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到 相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔 (合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率?其影响因素有哪些? 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1 。在实际 运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000, 否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm塔板水平度如果达不到要求, 则会造成液层高度不均匀, 使塔内上升的气相易从液层高度小的区域穿过, 使气液两相不能在塔板上达到预期的传热,传质要求. 使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢 流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除 3 —5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时, 应考虑哪些问题? 答:(1)在使用温度下有良好的力学性能,即较高的强度, 良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢, 氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

精馏塔常识

1,液泛? 在精馏操作中,下层塔板上的液体涌至上层塔板,破坏了塔的正常操作,这种现象叫做液泛。 液泛形成的原因,主要是由于塔内上升蒸汽的速度过大,超过了最大允许速度所造成的。另外在精馏操作中,也常常遇到液体负荷太大,使溢流管内液面上升,以至上下塔板的液体连在一起,破坏了塔的正常操作的现象,这也是液泛的一种形式。以上两种现象都属于液泛,但引起的原因是不一样的。 2,雾沫夹带? 雾沫夹带是指气体自下层塔板带至上层塔板的液体雾滴。在传质过程中,大量雾沫夹带会使不应该上到塔顶的重组分带到产品中,从而降低产品的质量,同时会降低传质过程中的浓度差,只是塔板效率下降。对于给定的塔来说,最大允许的雾沫夹带量就限定了气体的上升速度。 影响雾沫夹带量的因素很多,诸如塔板间距、空塔速度、堰高、液流速度及物料的物理化学性质等。同时还必须指出:雾沫夹带量与捕集装置的结构也有很大的关系。虽然影响雾沫夹带量的因素很多,但最主要的影响因素是空塔速度和两块塔板之间的气液分离空间。对于固定的塔来说,雾沫夹带量主要随空塔速度的增大而增大。但是,如果增大塔板间的距离,扩大分离空间,则相应提高空塔速度。 3,液体泄漏? 俗称漏液,塔板上的液体从上升气体通道倒流入下层塔板的现象叫泄漏。在精馏操作中,如上升气体所具有的能量不足以穿过塔板上的液层,甚至低于液层所具有的位能,这时就会托不住液体而产生泄漏。 空塔速度越低,泄漏越严重。其结果是使一部分液体在塔板上没有和上升气体接触就流到下层塔板,不应留在液体中的低沸点组分没有蒸出去,致使塔板效率下降。因此,塔板的适宜操作的最低空塔速度是由液体泄漏量所限制的,正常操作中要求塔板的泄漏量不得大于塔板上液体量的10%。泄漏量的大小,亦是评价塔板性能的特性之一。筛板、浮阀塔板和舌形塔板在塔内上升气速度小的情况下比较容易产生泄漏。4,返混现象? 在有降液管的塔板上,液体横过塔板与气体呈错流状态,液体中易挥发组分的浓度降沿着流动的方向逐渐下降。但是当上升气体在塔板上是液体形成涡流时,浓度高的液体和浓度低的液体就混在一起,破坏了液体沿流动方向的浓度变化,这种现象较做返混现象。返混现象能导致分离效果的下降。 返混现象的发生,受到很多因素的影响,如停留时间、液体流动情况、流道的长度、塔板的水平度、水力梯度等。 5,最适宜的进料板位置确定 最适宜的进料板位置就是指在相同的理论板数和同样的操作条件下,具有最大分离能力的进料板位置或在同一操作条件下所需理论板数最少的进料板位置。 在化学工业中,多数精馏塔都设有两个以上的进料板,调节进料板的位置是以进料组分发生变化为依据的。当进料组分中的轻关键组分比正常操作较低时,应将进料板的位置向下移,以增加精馏段的板数,从而提高精馏段的分离能力。反之,进料板的位置向上移,则是为增加提馏段的板数,以提高提馏段的分离能力。总之,在进料板上进料组分中轻关键组分的含量应该小于精馏段最下一块塔板上的轻关键组分的含量,而大于提馏段最上一块塔板上的轻组分的含量。这样就使进料后不至于破坏塔内各层塔板上的物料组成,从而保持平稳操作。 6,精馏操作的影响因素 除了设备问题以外,精馏操作过程的影响因素主要有以下几个方面:塔的温度和压力(包括塔顶、塔釜和某些有特殊意义的塔板);进料状态;进料量;进料组成;进料温度;塔内上升蒸汽速度和蒸发釜的加热量;回流量;塔顶冷剂量;塔顶采出量和塔底采出量。塔的操作就是按照塔顶和塔底产品的组成要求来对这几个影响因素进行调节。 7,进料组成的变化对精馏操作的影响 进料组成的变化,直接影响精馏操作,当进料中重组分的浓度增加时,精馏段的负荷增加。对于固定了精馏段板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。

最新乙醇水溶液连续板式精馏塔设计

乙醇水溶液连续板式精馏塔设计

第一章前言 乙醇在工业,医药,民用等方面,都有很广泛的应用,是一种很重要的原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,所以,想得到高纯度的乙醇很困难。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行,塔内装有若干层塔板和充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器,回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔形,特别是在石油,化学工业中使用最普遍。浮阀有很多种形式,但最常用的是F1型和V-4型。F1型浮阀的结构简单,制造方便,节省材料,性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,采用轻阀。浮阀塔具有下列优点:1,生产能力大。2,操作弹性大。3,塔板效率高。4,气体压强降及液面落差较小。5,塔的造价低。浮阀塔不宜处理宜结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

第二章绪论 §2.1 设计方案 本设计任务为分离乙醇-水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶 上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷 凝器冷却后送至储罐。该物系属易分离物系,故操作回流比取最小回流比的1.4 倍。塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。 §2.2 设计方案的确定及流程说明 §2.2.1选塔依据 浮阀塔是在泡罩塔的基础上发展起来的,它主要的改进是取消了升气管和泡罩,在塔板开孔上设有浮动的浮阀,浮阀可根据气体流量上下浮动,自行调节,使气缝速度稳定在某一数值。这一改进使浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面比泡罩塔优越。但在处理粘稠度大的物料方面,又不及泡罩塔可靠。浮阀塔广泛用于精馏、吸收以及脱吸等传质过程中。塔径从200mm到6400mm,使用效果均较好。 浮阀塔之所以这样广泛地被采用,是因为它具有下列特点: (1) 处理能力大,比同塔径的泡罩塔可增加20~40%,而接近于筛板塔。 (2) 操作弹性大,一般约为5~9,比筛板、泡罩、舌形塔板的操作弹性要大得多。 (3) 塔板效率高,比泡罩塔高15%左右。 (4) 压强小,在常压塔中每块板的压强降一般为400~660N/m2。 (5) 液面梯度小。 (6) 使用周期长。粘度稍大以及有一般聚合现象的系统也能正常操作。

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

乙醇-水精馏塔实验

乙醇-水精馏塔实验 一、实验目的: 1.了解板式精馏塔的结构和操作。 2.学习精馏塔性能参数的测量方法,并掌握其影响因素。 二、实验内容: 1.测定精馏塔在全回流条件下,稳定操作后的全塔理论塔板数和总板效率。 2.测定精馏塔在部分回流条件下,稳定操作后的全塔理论塔板数和总板效率。 三、实验原理: 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T .按照式1可以得到总板效率E T ,其中N P 为实际塔板数。 E T %100?= P T N N (1) 部分回流时,进料热状况参数的计算式为 m m F BP Pm r r t t C q +-= )( (2) 式中: t F — 进料温度,℃ 。 t BP — 进料的泡点温度,℃ 。 Cpm — 进料液体在平均温度(t F + t P )/2下的比热,kJ/(kmol ? ℃) r m — 进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 222111x M C x M C Cpm P P += kJ/(kmol ? ℃) (3) 222111x M r x M r r m += kJ/kmol (4) 式中: C P1, C P2 —分别为纯组份1和组份2在平均温度下的比热,kJ/(kg ? ℃)。 r 1,r 2 —分别为纯组份1和组份2在泡点温度下的汽化潜热,kJ/kg 。 M 1,M 2—分别为纯组份1和组份2的摩尔质量,kJ/kmol 。

x1,x2—分别为纯组份1和组份2在进料中的摩尔分率。 四、实验装置基本情况: 1.实验设备流程图(如图1所示): 图1 精馏实验装置流程图 1-储料罐;2-进料泵;3-放料阀;4-加热器;5-直接进料阀;6-间接进料阀;7-进料流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14-回流比流量计;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-冷却水流量计;19-塔釜储料罐;20-塔釜冷凝器;21-第8块板进料阀;22-第9块板进料阀;23-第10块板进料阀;24-液位计;25-料液循环阀;26-釜残液出料阀;27-进料入口阀;28-指针压力表

苯-乙苯连续精馏塔地设计

课程设计说明书 学院:生态与资源工程学院 专业班级:2012级化学工程与工艺(1)班课程名称:化工原理课程设计 题目:苯-乙苯连续精馏塔的设计学生姓名:蔡学号:20124121036 指导老师:杨自涛 2015年6

目录 一、设计说明书 (3) 2.1塔设备在化工生产中的作用和地位 (4) 2.2筛板塔的结构特点及应用场合 (4) 2.3主要物性数据 (4) 三、精馏塔的物料衡算 (5) 3.1进料组成 (5) 3.2全塔的物料衡算 (5) 3.3相对挥发度和回流比的确定 (5) 3.4塔板数的计算 (7) 3.4.1理论塔板数的计算 (7) 3.4.2实际塔板数的计算 (8) 四、精馏塔的工艺条件及有关物性数据的计算 (8) 4.1平均压力PM (8) 4.2平均温度tm (9) 4.3平均分子量 (9) 4.4平均密度 (10) 4.5液体的平均表面张力 (10) 4.6液体平均粘度 (11) 五、汽液负荷计算 (11) 六、精馏塔的塔体工艺尺寸计算 (11) 6.1塔径 (11) 6.2溢流装置 (13) 6.3弓形降液管宽度Wd和截面Af (14) 6.4降液管底隙高度 (15) 6.5塔高 (16) 七、塔板的流体力学验 (16) 7.1降液管液泛 (16) 7.2降液管内停留时间 (17) 7.3液沫夹带 (17) 7.4漏液 (17) 八、塔板负荷性能图 (18) 8.1液沫夹带线 (18) 8.2液泛线(气相负荷上限线) (18) 8.3液相负荷上限线 (19) 8.4漏液线(气相负荷下限线) (19) 8.5液相负荷下限线 (20) 8.6操作线与操作弹性 (20) 九、设计评述 (21) 十、参考文献 (21)

精馏塔的计算

4.3 塔设备设计 4.3.1 概述 在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。 在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。本项目以正丁醇精馏塔的为例进行设计。 4.3.2 塔型的选择 塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。 a.板式塔。塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。 b.填料塔。塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。 4.3.2.1 填料塔与板式塔的比较: 表4-2 填料塔与板式塔的比较

4.3.2.2 塔型选择一般原则: 选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。 (1)下列情况优先选用填料塔: a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度; b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔; c.具有腐蚀性的物料,可选用填料塔。因为填料塔可采用非金属材料,如陶瓷、塑料等; d.容易发泡的物料,宜选用填料塔。 (2)下列情况优先选用板式塔:

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

甲醇连续精馏塔设计概要

( 二〇一二年七月八日 化工原理课程设计说明书 题目:4.3万吨/年甲醇连续精馏塔设计学生姓名:胡浩学院:化工 学院专业:过程装备与控制工程班级:过控09-2 指导教师:武朝军教授 摘要 本设计是以甲醇-水物系为设计物系,以筛板塔为精馏设备分离甲醇和水。筛板塔是化工生产中主要的气液传输设备,广泛用于精馏、吸收等传质过程中。此设计针对二元物系甲醇-水的精馏问题进行分析,选取、计算、核算、绘图等,是比较完整的精馏设计过程。

通过逐板计算法得出理论半数为7块,回流比为2.286,算出塔回收率为94%,实际塔板数为17块,进料位置为第三块板,在板式塔主要工艺尺寸的设计计算中得出塔径为2.0m,有效塔高为9.375 m,人孔数3个。通过筛板塔板的流体力学验算,证明各指标数据均符合标准。本次设计过程正常,操作合适。 关键词:甲醇、水分离,二元精馏,筛板塔板连续精馏 摘要 (2 引言 (5 精馏与塔设备简介 (5 第1章二元连续板式精馏塔的工艺计算 (6 1.1设计方案 (6 1.2选塔依据 (6 1.3物料衡算与操作线方程 (6 1.3.1间接蒸汽加热方式下的物料守恒 (7 1.3.2 最小回流比的确定 (8 1.3.3 min N 的计算 (9 1.3.4 理论塔板N T 的确定 (9 1.3.5逐板计算法确定理论塔板数 (10 1.4实际塔板数的确定 (12 1.4.1塔板总效率的估计 (12 第2章塔和塔板主要工艺尺寸的设计 (14

2.1设计中所用的参数的确定 (14 2.1.1定性温度的确定 (14 2.1.2精馏段参数 (14 2.1.3提留段参数的确定 (15 2.1.4液体表面张力的确定: (16 2.2塔径的计算 (17 2.2.1精馏段塔径的计算 (17 2.2.2提留段塔径的计算 (18 2.3溢流装置与液体流型 (19 2.3.1溢流堰(出口堰 (19 2.3.2 降液管的相关计算 (20 第3章塔板的设计 (22 3.1塔板布局 (22 3.1.1开孔区的计算 (22 3.1.2溢流区 (22 3.1.3安定区 (22 3.1.4无效区 (23 3.2筛板塔筛孔的计算及其排列 (23 3.2.1筛孔的直径 (23

相关主题
文本预览
相关文档 最新文档