当前位置:文档之家› 2017_2018学年高中数学第二章参数方程第2节第2课时双曲线、抛物线的参数方程教学案新人教A版选修4_4含答案

2017_2018学年高中数学第二章参数方程第2节第2课时双曲线、抛物线的参数方程教学案新人教A版选修4_4含答案

2017_2018学年高中数学第二章参数方程第2节第2课时双曲线、抛物线的参数方程教学案新人教A版选修4_4含答案
2017_2018学年高中数学第二章参数方程第2节第2课时双曲线、抛物线的参数方程教学案新人教A版选修4_4含答案

第2课时 双曲线、抛物线的参数方程

[核心必知]

1.双曲线的参数方程

(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2

b 2=1的参数方程是?

????x =a sec φ,y =b tan φ,规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2

. (2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2

b 2=1的参数方程是?

????x =b tan φ,y =a sec φ. 2.抛物线的参数方程

(1)抛物线y 2=2px 的参数方程为?????x =2pt 2,y =2pt ,t ∈R . (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.

[问题思考]

1.在双曲线的参数方程中,φ的几何意义是什么?

提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.

2.如何由双曲线的参数方程判断焦点的位置?

提示:如果x 对应的参数形式是a sec φ,则焦点在x 轴上;

如果y 对应的参数形式是a sec φ,则焦点在y 轴上.

3.若抛物线的参数方程表示为?????x =2p tan 2α,y =2p tan α.则参数α的几何意义是什么?

提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.

在双曲线x 2-y 2

=1上求一点P ,使P 到直线y =x 的距离为 2. [精讲详析] 本题考查双曲线的参数方程的应用,解答本题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.

设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2

=2

得|1cos φ-sin φcos φ

|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2

φ),

即5sin 2φ-2sin φ-3=0.

解得sin φ=1或sin φ=-35

. sin φ=1时,cos φ=0(舍去).

sin φ=-35时,cos φ=±45

. ∴P 的坐标为(54,-34)或(-54,34

).

参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.

1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点.

证明:设双曲线为x 2-y 2=a 2

,取顶点A (a ,0),

弦B ′B ∥Ox ,B (a sec α,a tan α),则B ′(-a sec α,a tan α).

∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a

, ∴k B ′A ·k BA =-1.

∴以BB ′为直径的圆过双曲线的顶点.

连接原点O 和抛物线2y =x 2

上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.

[精讲详析] 本题考查抛物线的参数方程的求法及其应用.解答本题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.

设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,

抛物线的参数方程为?????x =2t ,y =2t 2,由中点坐标公式得?????x 0=4t ,y 0

=4t 2, 变形为y 0=14

x 20,即x 2=4y .表示的为抛物线.

在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标

2.已知抛物线C :?????x =2t 2

,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.

解:由?????x =2t 2

,y =2t 得y 2=2x , 即抛物线的标准方程为y 2

=2x .

又∵M 点的纵坐标为2,

∴M 点的横坐标也为2.

即M (2,2).

又∵抛物线的准线方程为x =-12

. ∴由抛物线的定义知|MF |=2-(-12)=2+12=52

. 即点M 到抛物线焦点的距离为52.

如果椭圆右焦点和右顶点分别是双曲线?

????x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.

[精讲详析] 本题考查椭圆及双曲线的参数方程,解答本题需要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条件求出椭圆的参数方程求解即可.

∵x 216-y 29

=1, ∴右焦点(5,0),右顶点(4,0). 设椭圆x 2a 2+y 2

b 2=1,∴a =5,

c =4,b =3. ∴方程为x 225+y 29

=1. 设椭圆上一点P (5cos θ,3sin θ),

双曲线一渐近线为3x -4y =0,

∴点P 到直线的距离d =|3×5cos θ-12sin θ|5

=3|41sin (θ-φ)|5(tan φ=54). ∴d max =3415

.

对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -Q 在双曲线上 ∴(2 2 33 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学必修二第二章经典练习题

绝密★启用前 201*年**中学同步教学测试试卷 **测试试卷 考试围:xxx;考试时间:100分钟;命题人:xxx 题号一二三四五总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请修改第I卷的文字说明 评卷人得分 一、单项选择 1. 在空间,下列哪些命题是正确的(). ①平行于同一条直线的两条直线互相平行 ②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行 ④垂直于不一个平面的两条直线互相平行 A.仅②不正确B.仅①、④正确 C.仅①正确D.四个命题都正确 2. 如果直线 a是平面α的斜线,那么在平面α() A 不存在与a平行的直线 B 不存在与a垂直的直线 C 与a垂直的直线只有一条 D 与a平行的直线有无数条3. 平面α有一四边形ABCD,P为α外一点,P点到四边形ABCD各边的距离相等,则这个四边形() A 必有外接圆 B 必有切圆 C 既有切圆又有外接圆 D 必是正方形 4. 已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( ) A.PB⊥AD B.平面PAB⊥平面PBC C.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45° 5. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交 B.异面 C.平行 D.异面或相交 6. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( ) A.不存在B.只有1个 C.恰有4个D.有无数多个 7. 设P是△ABC所在平面外一点,P到△ABC各顶点的距离相等,而且P 到△ABC各边的距离也相等,那么△ABC() A 是非等腰的直角三角形 B 是等腰直角三角形 C 是等边三角形 D 不是A、B、C所述的三角形 8. 已知正四棱锥S ABCD 的侧棱长与底面边长都相等,E是SB的中

高中数学-双曲线例题

高中数学-双曲线典型例题 一、根据方程的特点判断圆锥曲线的类型。 例1 讨论19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92, 16222=-=b a c ,这些椭圆有共同的焦点(-4,0) ,(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为:()16014162 2<<=+--λλ λy x ∵双曲线过点()223,,∴1441618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=-y x 三、求与双曲线有关的角度问题。 例3 已知双曲线116 92 2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小. 解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022 21=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索. 四、求与双曲线有关的三角形的面积问题。 例 4 已知1F 、2F 是双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ?的面积. 分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积. 解:∵P 为双曲线14 22 =-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F ∴在21F PF Rt ?中,202 2122 21==+F F PF PF

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

高中数学(人教版必修2)第二章2.1.2

2.1.2 空间中直线与直线之间的位置关系 一、基础过关 1.分别在两个平面内的两条直线间的位置关系是 ( ) A .异面 B .平行 C .相交 D .以上都有可能 2.若AB ∥A ′B ′,AC ∥A ′C ′,则有 ( ) A .∠BAC =∠B ′A ′C ′ B .∠BA C +∠B ′A ′C ′=180° C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180° D .∠BAC >∠B ′A ′C ′ 3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( ) A .空间四边形 B .矩形 C .菱形 D .正方形 4.“a 、b 为异面直线”是指: ①a ∩b =?,且aD \∥b ;②a ?面α,b ?面β,且a ∩b =?;③a ?面α,b ?面β,且α∩β=?;④a ?面α,b ?面α;⑤不存在面α,使a ?面α,b ?面α成立. 上述结论中,正确的是 ( ) A .①④⑤ B .①③④ C .②④ D .①⑤ 5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________. 7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12 AD , BE 綊12 F A , G 、 H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求: (1)BE 与CG 所成的角; (2)FO 与BD 所成的角.

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

高中数学必修2知识框架

高一数学知识框架第一章集合与函数概念

第二章基本初等函数(I)

必修二立体几何 第一章空间几何体知识结构如下 画三视图的原则:长对齐、高对齐、宽相等 直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面 (3)画侧棱(4)成图

第二章 点、直线、平面之间的位置关系 知识结构如下 第三章 直线与方程 从代数表示到几何直观(通过方程研究几何性质和度量) 直线的倾斜角概念:当直线l 与x 轴相交时, 取 x 轴作为基准 , x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角 .特别地,当直线l 与x 轴平行或重合时, 规定α= 0° 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等, 也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的 大写字母来表示,如平面AC 、平面ABCD 等。 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 公理1作用:判断直线是否在平面内 公理2:过不在一条直线上的三点,有且只有一 个平面。符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一 条过该点的公共直线。符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a 、b 、c 是三条直线 强调:公理4实质上是说平行具有传递 性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 直线与平面有三种位置关系: 1)直线在平面内:有无数个公共点 2)直线与平面相交: 有且只有一个公共点 3)直线在平面平行: 没有公共点 平面平行:一个平面内的两条交直线与另一个平面平行,则这两个平面平行 平面互相垂直:一个平面过另一个平面的垂线,则这两个平面垂直 斜率公式: 点到线距离: 平行线距离:

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

高中数学双曲线导学案及答案

高三理科数学 导学案 平面解析几何 编制: 审阅: 第二讲 双曲线(2课时) 班级 姓名 【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2. 理解数形结合的思想. 3.了解双曲线的简单应用. 【知识聚焦】(必须清楚、必须牢记) 1.双曲线定义 平面内与两个定点F 1,F 2的____________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做_____________,两焦点间的距离叫做_______________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当______________时,P 点的轨迹是双曲线;(2)当_____________时,P 点的轨迹是两条射线; (3)当_____________时,P 点不存在. 2.双曲线的标准方程和几何性质 3实轴和_________相等的双曲线叫做等轴双曲线.离心率e =2是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x 2-y 2=λ(λ≠0). 4.巧设双曲线方程 (1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (2)过已知两个点的双曲线方程可设为x 2m +y 2 n =1 (mn <0).

【链接教材】(打好基础,奠基成长) 1.(教材改编)若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2.(2015·安徽)下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2 -y 24=1 B.x 24-y 2=1 C .x 2 -y 2 2 =1 D.x 22 -y 2 =1 高三理科数学 导学案 平面解析几何 编制: 审阅: 3.(2014·广东)若实数k 满足00)的一个焦点,则点F 到C 的一条渐近线的距离为________. 5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为_______. 6. 设双曲线x 2a 2-y 2 9 =1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ) A.4 B.3 C.2 D.1 7 (2013·湖北)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2 sin 2θtan 2θ =1的( ) A.实轴长相等 B .虚轴长相等 C.焦距相等 D.离心率相等 8. 已知曲线方程x 2λ+2-y 2 λ+1 =1,若方程表示双曲线,则λ的取值范围是________________. 【课堂考点探究】 探究点一 双曲线定义的应用 例1 1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 2. 设P 是双曲线2 2 11620 y x -=上的一点,F1F2 分别是双曲线的左右焦点,若为 1 29PF PF ==则( ) A.1 B.17 C.1或17 D.以上答案均不对 [总结反思] 探究点二 双曲线的标准方程的求法 例2 1.根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为5 4 ;(2)经过两点P (-3,27)和Q (-62,-7). 2 .(2014·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 2 25=1 [总结反思] 变式题 (1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±1 2x ,则该双曲线的标准方程为

(完整)江苏省高中数学公式

高 中 数 学 公 式 (苏教版) 使用说明:本资料需要有经验老师讲解每一个公式,然后根据公式出一个题来运用、理解公式,天天坚持直到高考。这样效果极佳;另外术业教育每天出一份高考数学挑战题卡(上传到学优高考网),保证你的学生数学成绩能够从20分迅速提高到100分,这项成果经过我们十几年的教学实践总结,效果绝对好。 一、集合 1. 集合的运算符号:交集“I ”,并集“Y ”补集“C ”子集“?” 2. 非空集合的子集个数:n 2(n 是指该集合元素的个数) 3. 空集的符号为? 二、函数 1. 定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥) 2. 偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f 奇函数常用:0)0(=f 或0)1()1(=-+f f 3. 单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反 4. 指数函数计算:n m n m a a a +=?;n m n m a a a -=÷;n m n m a a ?=)(;m n m n a a =;10=a 指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<a 时,x a y log =为增函数

高中数学必修2第二章知识点总结90961

高中数学必修2知识点总结 立体几何初步 特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积'21ch S =正棱锥侧面积')(21 21h c c S +=正棱台侧面积 rh S π2=圆柱侧()l r r S +=π2圆柱表rl S π=圆锥侧面积()l r r S +=π圆锥表 l R r S π)(+=圆台侧面积()2 2R Rl rl r S +++=π圆台表 柱体、锥体、台体的体积公式 V Sh =柱13 V Sh =锥''1()3 V S S S S h =++台2V Sh r h π==圆柱h r V 23 1π=圆锥 ''2211 ()()33V S S S S h r rR R h π=++=++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=2 4R π 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据. 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b L A · α C · B · A · α P · α L β 共面直线 =>a ∥c

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学必修2第二章(免费)

第二章 点、直线、平面之间的位置关系 A 组 一、选择题 1.设 α,β为两个不同的平面,l ,m 为两条不同的直线,且l ?α,m ?β,有如下的两个命题:①若 α∥β,则l ∥m ;②若l ⊥m ,则 α⊥β.那么( ). A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题 2.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1角为60° 3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n . 其中真命题的序号是( ). A .①② B .③④ C .①④ D .②③ 4.给出下列四个命题: ①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行 ③若直线l 1,l 2与同一平面所成的角相等,则l 1,l 2互相平行 ④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线 其中假.命题的个数是( ). A .1 B .2 C .3 D .4 5.下列命题中正确的个数是( ). ①若直线l 上有无数个点不在平面 α 内,则l ∥α ②若直线l 与平面 α 平行,则l 与平面 α 内的任意一条直线都平行 (第2题)

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

高中数学公式双曲线

双曲线 Ⅰ、定义与推论: 1.定义1的认知 设M为双曲线上任意一点,分别为双曲线两焦点,分别为双曲线实轴端点,则有: (1)明朗的等量关系: (解决双焦点半径问题的首选公式) (2)隐蔽的不等关系:,(寻求某些基本量的取值范围时建立不等式的依据) 2.定义2的推论 设为双曲线上任意上点,分别为双曲线左、右焦点,则有 ,其中,为焦点到相应准线l i的距离 推论:焦点半径公式当点M在双曲线右支上时,; 当点M在双曲线左支上时,。 Ⅱ、标准方程与几何性质 3.双曲线的标准方程 中心在原点,焦点在x轴上的双曲线标准方程为① 中心在原点,焦点在y轴上的双曲线标准方程为② (1)标准方程①、②中的a、b、c具有相同的意义与相同的联系: (2)标准方程①、②的统一形式:或 (3)椭圆与双曲线标准方程的统一形式: 4.双曲线的几何性质 (1)范围: (2)对称性:关于x轴、y轴及原点对称(两轴一中心) (3)顶点与轴长:顶点 (由此赋予a,b名称与几何意义) (4)离心率: (5)准线:左焦点对应的左准线;右焦点对应的右准线 (6)双曲线共性:准线垂直于实轴;两准线间距离为; 中心到准线的距离为;焦点到相应准线的距离为 (7)渐近线:双曲线的渐近线方程:

Ⅲ、挖掘与延伸 1.具有特殊联系的双曲线的方程 对于双曲线 (a) (1)当λ+μ为定值时,(a)为共焦点的双曲线(系)方程:c 2 =λ+μ; (2)当 为定值时,(※)为共离心率亦为共淅近线的双曲线(系)方程: ; (3)以直线 为渐近线的双曲线(系)方程为: 特别:与双曲线 共渐近线的双曲线的方程为: (左边相同,区别仅在于右边的常数) 2.弦长公式 设斜率为k 的直线l 与双曲线交于不同两点 则 1、双曲线标准方程的两种形式是:12222=-b y a x 和122 22=-b x a y )00(>>b a ,。 2、双曲线12222=-b y a x 的焦点坐标是)0(,c ±,准线方程是c a x 2± =,离心率是a c e =,通径的长是a b 22,渐近线方程是02222=-b y a x 。其中2 22b a c +=。 3、与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x )0(≠λ,即共渐近线为x a b y ±=; 与双曲线12222=-b y a x 共焦点的双曲线系方程是122 2 2=--+k b y k a x 。 4、双曲线焦半径公式:设P(x 0,y 0)为双曲线22 221-=x y a b (a>0,b>0)上任一点,焦点为F 1(-c,0),F 2(c,0),则: (1)当P 点在右支上时,1020,=+=-+PF a ex PF a ex ; (2)当P 点在左支上时,1020,=--=-PF a ex PF a ex ;(e 为离心率); 另:双曲线12222=-b y a x (a>0,b>0)的渐进线方程为02222 =-b y a x ; 5、双曲线1222 2=-b y a x 的通径(最短弦)为a b 2 2,焦准距为2=b p c ,焦点到渐进线的距离为b; 6、处理双曲线的弦中点问题常用代点相减法,设A(x 1,y 1)、B(x 2,y 2)为双曲线1222 2 =-b y a x (a>0,b>0)上不同的两点,M(x 0,y 0)是AB 的中点,则K AB .K OM =22a b 。

双曲线习题及标准答案

圆锥曲线习题——双曲线 1. 如果双曲线2 42 2y x - =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A) 3 64 (B) 3 6 2 (C)62 (D)32 2. 已知双曲线C ∶22 221(x y a a b -=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的 圆的半径是 (A )a (B)b (C)ab (D)22b a + 3. 以双曲线 221916 x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .2 2 1090x y x +-+= B .22 10160x y x +-+= C .2 2 10160x y x +++= D .2 2 1090x y x +++= 4. 以双曲线2 2 2x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.2 2 430x y x +--= B.22 430x y x +-+= C.2 2 450x y x ++-= D.2 2 450x y x +++= 5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它到左准 线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 6. 若双曲线122 22=-b y a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心 率是( ) (A )3 (B )5 (C )3 (D )5 7. 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的 两条渐近线的交点分别为,B C .若1 2 AB BC = ,则双曲线的离心率是 ( )

高中数学双曲线题型归纳

高中数学双曲线题型归纳 类型一 双曲线的定义 【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________. 1-1设P 是双曲线120 162 2=- y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对 1-2已知F 是双曲线112 42 2=- y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .9 1-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 类型二 几何性质 【例2】设F 1,F 2分别为双曲线122 22=-b y a x (a >0,b >0)的左、右焦点.若在双曲线右 支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x +4y =0

2-1若双曲线()01322 2>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的4 1,则该双 曲线的虚轴长是( ) A .2 B .1 C . 5 5 D . 5 5 2 2-2设直线x -3y +m =0(m ≠0)与双曲线122 22=-b y a x (a >0, b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________. 2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.

高中数学公式大全(整理版)

高中数学公式大全(最新整理版) 1、二次函数的解析式的三种形式 (1)一般式; (2)顶点式; (3)零点式. 2、四种命题的相互关系 原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否;逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否;否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆;逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否 §函数 1、若,则函数的图象关于点对称; 若,则函数为周期为的周期函数. 2、函数的图象的对称性 (1)函数的图象关于直线对称 . (2)函数的图象关于直线对称

. 3、两个函数图象的对称性 (1)函数与函数的图象关于直线(即轴)对称. (2)函数与函数的图象关于直线对称. (3)函数和的图象关于直线y=x对称. 4、若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线 的图象. 5、互为反函数的两个函数的关系:. 6、若函数存在反函数,则其反函数为,并不是 ,而函数是的反函数. 7、几个常见的函数方程 (1)正比例函数,. (2)指数函数,. (3)对数函数,. (4)幂函数,.

(5)余弦函数,正弦函数,,§数列 1、数列的同项公式与前n项的和的关系 ( 数列的前n项的和为). 2、等差数列的通项公式;其前n项和公式为. 3、等比数列的通项公式;其前n项的和公式为 或. 4、等比差数列:的通项公式为 ;其前n项和公式为 . §三角函数 1、同角三角函数的基本关系式,=,.

2、正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3、和角与差角公式 ; ; . (平方正弦公式); . =(辅助角所在象限由点的象限决定, ). 4、二倍角公式 . .

相关主题
文本预览
相关文档 最新文档