当前位置:文档之家› 实验五 集成运放的基本应用——信号运算电路

实验五 集成运放的基本应用——信号运算电路

实验五 集成运放的基本应用——信号运算电路
实验五 集成运放的基本应用——信号运算电路

福州大学集成电路应用实验一

《集成电路应用》课程实验实验一 4053门电路综合实验 学院:物理与信息工程学院 专业: 电子信息工程 年级: 2015级 姓名:张桢 学号: 指导老师:许志猛

实验一 4053门电路综合实验 一、实验目的: 1.掌握当前广泛使用的74/HC/HCT系列CMOS集成电路、包括门电路、反相 器、施密特触发器与非门等电路在振荡、整形、逻辑等方向的应用。 2.掌握4053的逻辑功能,并学会如何用4053设计门电路。 3.掌握多谐振荡器的设计原理,设计和实现一个多谐振荡器,学会选取和 计算元件参数。 二、元件和仪器: 1.CD4053三2通道数字控制模拟开关 2.万用表 3.示波器 4.电阻、电容 三、实验原理: 1.CD4053三2通道数字控制模拟开关 CD4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。CD4053的管脚图和功能表如下所示 4053引脚图

4053的8种逻辑功能 CD4053真值表 根据CD4053的逻辑功能,可以由CD4053由4053电路构成如下图所示8种逻辑门(反相器与非门或非门、反相器、三态门、RS 触发器、——RS 触发器、异或门等)。 输入状态 接通通道

]) 2)(()(ln[ T DD T DD T DD T V V V V V V V RC T -+--=2.多谐振荡器的设计 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 可以利用反相器设计出如下图所示的多谐振荡器 这样的多谐振荡器输出的信号周期计算公式为: 当R S ≈2R 时,若:VT=0.5VDD ,对于HC 和HCU 型器件,有 T ≈2.2RC 对于HCT 型器件,有 T ≈2.4RC 四、实验内容: 1. 验证CD4053的逻辑功能,用4053设计门电路,并验证其逻辑功能: (1)根据实验原理设计如下的反相器电路图: CD4053构成反相器电路

测控电路第五版李醒飞第五章习题答案

第五章 信号运算电路 5-1推导题图5-43中各运放输出电压,假设各运放均为理想运放。 (a)该电路为同相比例电路,故输出为: ()0.36V V 3.02.01o =?+=U (b)该电路为反相比例放大电路,于是输出为: V 15.03.02 1 105i o -=?-=-=U U (c)设第一级运放的输出为1o U ,由第一级运放电路为反相比例电路可知: ()15.03.0*2/11-=-=o U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 63.0o =U (d)设第一级运放的输出为1o U ,由第一级运放电路为同相比例电路可知: ()V 45.03.010/511o =?+=U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 51.0o =U 5-2 11 图X5-1 u

5-3由理想放大器构成的反向求和电路如图5-44所示。 (1)推导其输入与输出间的函数关系()4321,,,u u u u f u o =; (2)如果有122R R =、134R R =、148R R =、Ω=k 101R 、Ω=k 20f R ,输入4 321,,,u u u u 的范围是0到4V ,确定输出的变化范围,并画出o u 与输入的变化曲线。 (1)由运放的虚断虚短特性可知0==+-U U ,则有: f R u R u R u R u R u 0 44332211-=+++ 于是有: ??? ? ??+++-=44332211o U R R U R R U R R U R R U f f f f (2)将已知数据带入得到o U 表达式: ()4321o 25.05.02i i i i U U U U U +++-= 函数曲线可自行绘制。 5-4理想运放构成图5-45a 所示电路,其中Ω==k 10021R R 、uF 101=C 、uF 52=C 。图5-54b 为输入信号波形,分别画出1o u 和2o u 的输出波形。 前一级电路是一个微分电路,故()dt dU dt dU C R R i U i i o //*1111-=-=-= 输入已知,故曲线易绘制如图X5-2所示。 图X5-2 后一级电路是一个积分电路,故()??-=-=dt U dt U C R V o o 1122out 2/1 则曲线绘制如图X5-3所示。 图X5-3 /V

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

实验五 时序逻辑电路实验报告 计数器

实验五 时序逻辑电路实验 一、实验目的 1.掌握同步计数器设计方法与测试方法。 2.掌握常用中规模集成计数器的逻辑功能和使用方法。 二、实验设备 1.直流稳压电源、信号源、示波器、万用表、面包板 2.74LS190、74LS393、74LS04 3.1kΩ电阻、发光二极管 三、实验原理 1.计数器 计数器不仅可用来计数,也可用于分频、定时和数字运算。在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。 2.(1) 四位二进制(十六进制)计数器74LS161(74LS163) 74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。 74LSl63是同步置数、同步清零的4位二进制加法计数器。除清零为同步外,其他功能与74LSl61相同。二者的外部引脚图也相同,如图5.1所示。 表5.1 74LSl61(74LS163)的功能表 3.集成计数器的应用——实现任意M进制计数器 一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。第二类是由集成二进制计数器构成计数器。第三类是由移位寄存器构成的移位寄存型计数器。第一类,可利用时序逻辑电路的设计方法步骤进行设计。第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。两种实现方法:反馈置数法和反馈清零法。第三类,是由移位寄存器构成的移位寄存型计数器。 4.实验电路: 十进制计数器

六进制扭环计数器 具有方波输出的六分频电路 图5.1 74LS161(74LS163)外部引脚图 四、实验内容及步骤 1.集成计数器实验 (1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。 (2)根据电路图,首先用D触发器74LS7474构成一个不能自启的六进制扭环形计数器,同样将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。注意观察电路是否能自启,若不能自启,则将电路置位有效状态。接下来再用D触发器74LS7474构成一个能自启的六进制扭环形计数器,重复上述操作。 2.分频实验 同步置数法 同步清零法

测控电路课后答案(张国雄 第四版)第五章

第五章信号运算电路 5-1 图5-37中所示的电路称为放大极性系数电路,试推导出其输出电压U o 与输入电压 U i 的关系表达式。 输出电压U o 与输入电压U i 的关系表达式为: ()i o 2U n nq U ?=5-2 试画出一个能实现()()5i 2i 1i 5i 2i 1i o 5 151 U U U U U U U ′++′+′?+++= ??的加减混合运算电路。 该加减混合运算电路如图X5-1所示。 5-3 在粗糙度的标准中,平均波长a λ定义为a a a /π2?=R λ,现有代表a R 和a ?的电压信号a a ?U U R ,,试设计一电路,使其输出电压代表平均波长a λ 。 图X5-1 图5-37 第五章题1图 U o

a a 134个对数运算电路,其输入分别为代表2π、R a 和Δa 的电压U 2π、U R a 和U Δa 。U A 等于T 1和T 3的-U be 之和,它与)2ln(ln 2ln a a R R ππ?=??成正比,U B 与 -lnΔa 成正比。N 2是指数电路,T 2的-U be 等于U B -U A ,它与a R a ?π2ln 成正比,流经T 2的I a 与 a R a ?π2成正比,从而T 2输出与λa 成正比的电压。5-4图5-38中所示是利用乘法器和运算放大器组成的功率测量电路。设 t U u ωsin 2i =,)sin(2L ?ω?=t I i ,L i Z R <<,Z L 是负载,i R 3和i L 相比可以忽略, 试写出u o 和u i 、i L 的关系式,并证明当u o 经过RC 滤波器)/π2(ω>>RC 后,其平均值 U o 代表有功功率。 a

集成电路实训报告

集成电路课程设计 目录 1 .引言 (1) 1.1 课题目的与意义 (1) 1.2 设计题目与要求 (1) 1.3 Tanner软件的介绍 (2) 2反相器设计 (2) 2.1 S-edit设计反相器 (2) 2.2反相器的瞬时分析 (3) 2.3反相器直流分析 (4) 3 L-edit画PMOS和NMOS布局图 (5) 3.1 L-edit的使用 (5) 3.2 使用L-Edit画PMOS布局图 (5) 3.3 使用L-Edit画NMOS布局图 (6) 3.4 使用L-Edit画基板节点元件 (7) 3.5 L-edit画反相器布局并作瞬时和直流分析 (7) 3.6使用LVS对比反相器 (8) 3.7关于功耗和延迟方面的计算 (9) 4.仿真注意事项 (11) 5 总结 (12) 参考文献 (13)

1 .引言 集成电路产业是信息产业的核心,在全球集成电路产业重心转移的背景下,中国集成电路产业取得了前所唯有的发展,为信息产业向纵深发展奠定了一定的基础。在全球集成电路竞争中,中国国产集成电路仍然处于较弱的地位,一方面供给无法满足中国电子整机产品的需求,另一方面则是自主创新能力不足。同时,也应看到中国集成电路产业发展的希望与契机,作为全球集成电路产业增长最快的地区和全球最具发展潜力的市场,伴随市场需求的扩张、产业规模的升级、技术水准的提高,该看到中国集成电路产业发展的希望。作为全球第三大集成电路市场中国占了20%的份额,而且产业发展速度和市场潜力在全球首屈一指。如今,由于我国集成电路产业还处于发展初期,富有经验的中高层工程,技术人才、设计人才及企业管理运营人才缺口很大。我国集成电路产业对专业设计、制造、营销、管理人才的需求量是25万一30万人,但目前国内这方面的人才数量远远不够。人才短缺,将成为制约我国集成电路产业快速发展的另一个瓶颈。然而,这也是作为一位学生,也是我们的机会,是我们为国家的集成电路信息安全做贡献的机会。让我们国家的集成电路不受外国掣肘。 1.1 课题目的与意义 本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用集成电路设计软件,初步熟悉和掌握集成电路芯片系统设计→电路设计及模拟→版图设计→版图验证等正向设计方法。掌握微电子技术人员所需要的基本理论和技能,日后从事集成电路设计工作打下基础。 通过此课程设计使学生对集成电路设计有了初步的认识认识并熟练使用集成电路相关软件,熟练集成电路设计的技能及规则等方面有重要意义。 1.2 设计题目与要求 1设计时使用的工艺及设计规则:MOSIS:mhp-s5; 2根据所用的工艺,选取合理的模型库; 3选用以lambda(λ)为单位的设计规则; 4全手工、层次化设计版图; 5达到指导书提出的设计指标要求。

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

模电-模拟运算电路实验

实验五 模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 i F O U R U -=

关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图5-3 同相比例运算电路 4) 差动放大电路(减法器)

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

专用集成电路实验报告

实验3/4 反相器的特性

: 学号: 班级: 指导老师: 1、实验目的 1.了解反相器的电路结构和版图结构。 2.理解反相器的开关阈值。 3.理解反相器延时与电源和器件尺寸的关系。 4.理解反相器链的延时与器件尺寸的关系。 2、实验容 1.画出一个双阱工艺反相器的版图示意图(不严格要求尺寸和比例关系,画出阱、扩散区、 多晶栅极、栅接触孔、源极漏极接触孔、金属即可)。 2.一个0.25um工艺的反相器,NMOS管的尺寸为L = 0.250um,W = 0.375um;PMOS管的尺 寸为L = 0.250um,W = 1.125um。

a) 电源为2.5V ,从0到2.5V 扫描输入电压vin ,观察输出电压vout ,找到开关阈值; b) 仅修改PMOS 管的W = 2.750um ,找到此时的开关阈值; c) 恢复PMOS 管尺寸W = 1.125um ,电源分别为2.5V 、1.5V 、1V ,观察pHL t 和pLH t (50% 到50%); d) 修改PMOS 管的W = 0.750um ,电源为2.5V ,观察pHL t 和pLH t (50%到50%)。 3. 四个反相器级联,所有的NMOS 管的尺寸为L = 0.250um ,W = 0.375um ;所有的PMOS 管 的L = 0.250um ;电源为2.5V 。 a) 第一个反相器的PMOS 管W = 1.125um ,第二个反相器的PMOS 管W = 1.875um ,第三 个反相器的PMOS 管W = 3.000um ,第四个反相器的PMOS 管W = 5.250um ; b) 四个反相器的PMOS 管均为W = 1.125um ; c) 四个反相器的PMOS 管均为W = 1.875um ; d) 四个反相器的PMOS 管均为W = 3.000um ; 观察四种情况下反相器链的pHL t 和pLH t 。 一、双阱工艺反相器的版图示意图 双阱工艺反相器的版图示意图如图1.1所示

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

集成电路综合实验报告

集成电路设计综合实验 题目:集成电路设计综合实验 班级:微电子学1201 姓名: 学号:

集成电路设计综合实验报告 一、实验目的 1、培养从版图提取电路的能力 2、学习版图设计的方法和技巧 3、复习和巩固基本的数字单元电路设计 4、学习并掌握集成电路设计流程 二、实验内容 1. 反向提取给定电路模块(如下图1所示),要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。 图1 1.1 查阅相关资料,反向提取给定电路模块,并且将其整理、合理布局。 1.2 建立自己的library和Schematic View(电路图如下图2所示)。 图2 1.3 进行仿真验证,并分析其所完成的逻辑功能(仿真波形如下图3所示)。

图3 由仿真波形分析其功能为D锁存器。 锁存器:对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。简单地说,它有两个输入,分别是一个有效信号EN,一个输入数据信号DATA_IN,它有一个输出Q,它的功能就是在EN有效的时候把DATA_IN的值传给Q,也就是锁存的过程。 只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。其中使能端A 加入CP信号,C为数据信号。输出控制信号为0时,锁存器的数据通过三态门进行输出。所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号到来时才改变。锁存,就是把信号暂存以维持某种电平状态。 1.4 生成Symbol测试电路如下(图4所示) 图4

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

基本运算电路实验报告

基本运算电路实验报告 实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 双运算放大器LM358 三、 实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。 2.通用型集成运放的输入级电路,为啥 均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。 4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交 流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。 5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 专业: 姓名: 日期: 地点:紫金港 东三--

测控电路第五版李醒飞第五章习题答案复习进程

测控电路第五版李醒飞第五章习题答案

第五章 信号运算电路 5-1推导题图5-43中各运放输出电压,假设各运放均为理想运放。 (a)该电路为同相比例电路,故输出为: ()0.36V V 3.02.01o =?+=U (b)该电路为反相比例放大电路,于是输出为: V 15.03.02 1 105i o -=?-=-=U U (c)设第一级运放的输出为1o U ,由第一级运放电路为反相比例电路可知: ()15.03.0*2/11-=-=o U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 63.0o =U (d)设第一级运放的输出为1o U ,由第一级运放电路为同相比例电路可知: ()V 45.03.010/511o =?+=U 后一级电路中,由虚断虚短可知,V 5.0==+-U U ,则有: ()()k U U k U U o 50/10/1o -=--- 于是解得: V 51.0o =U 5-2试设计11 电路。

5-3由理想放大器构成的反向求和电路如图5-44所示。 (1)推导其输入与输出间的函数关系()4321,,,u u u u f u o =; (2)如果有122R R =、134R R =、148R R =、Ω=k 101R 、Ω=k 20f R ,输入4321,,,u u u u 的范围是0到4V ,确定输出的变化范围,并画出o u 与输入的变化曲线。 (1)由运放的虚断虚短特性可知0==+-U U ,则有: f R u R u R u R u R u 0 44332211-=+++ 于是有: ??? ? ??+++-=44332211o U R R U R R U R R U R R U f f f f (2)将已知数据带入得到o U 表达式: ()4321o 25.05.02i i i i U U U U U +++-= 函数曲线可自行绘制。 5-4理想运放构成图5-45a 所示电路,其中Ω==k 10021R R 、uF 101=C 、uF 52=C 。图5-54b 为输入信号波形,分别画出1o u 和2o u 的输出波形。 前一级电路是一个微分电路,故()dt dU dt dU C R R i U i i o //*1111-=-=-= 输入已知,故曲线易绘制如图X5-2所示。 图X5-2 后一级电路是一个积分电路,故()??-=-=dt U dt U C R V o o 1122out 2/1 则曲线绘制如图X5-3所示。 图X5-3 .5U o1-

语音信号处理实验报告11

实验一 语音信号的时域分析 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握语音信号短时能量和短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。 10~30ms 相对平稳,分析帧长一般为20ms 。 语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。 语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。定义短时平均能量 [][]∑∑+-=∞-∞=-=-= n N n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。 过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。而对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平

均过零数。 语音信号x (n )的短时平均过零数定义为 ()[]()[]()()[]()[]() n w n x n x m n w m x m x Z m n *--=---= ∑∞ -∞=1sgn sgn 1sgn sgn 式中,[]?sgn 是符号函数,即 ()[]()()()()???<-≥=01 01sgn n x n x n x 短时平均过零数可应用于语音信号分析中。发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。而发清音时.多数能量出现在较高频率上。既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。然而这种高低仅是相对而言,没有精确的数值关系。 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的

集成电路封装实验手册

实验一有限元分析软件Ansys 8.0 的认知 一、实验目的: ANSYS有限元软件包是一个多用途的有限元法,其主要的分析功能包括结构分析、非线性分析、热分析、电磁场分析、电场分析、流体分析、耦合场分析。结构分析用于计算那些载荷作用于结构或部件上所引起的位移、应力、应变和力。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、温度梯度、热流密度等。通过本实验,让学习学会如何运用Ansys软件进行MCM组件技术的热-结构分析。 二、实验内容 有限元分析过程分建模、计算和后处理三个阶段。建模是对实物形状和工况条件抽象为有限元分析的计算模型;计算是由分析程序控制并在计算机上完成的对模型的计算;后处理则是对计算结果进行的各种处理和研究。实验的具体内容主要包括:建立有限元模型、施加载荷、求解与后处理。 三、实验报告要求: 1、按照实验报告册中要求具体填写; 2、实验预习报告部分的实验注意事项填写该实验的一些特殊要求和特殊规定等之类; 3、“实验过程及数据记录”一项中详细填写使用Ansys建模的具体流程可以以流程或1、 2、3、4的顺序记录; 4、实验结果分析简要说明Ansys软件的应用流程; 5、实验总结中主要填写通过该实验所学到的方法和体会。

实验二倒装焊焊点热-结构数值模拟 一、实验目的: 焊点的热疲劳失效(可靠性)是电子封装领域的关键问题之一。电子器件在封装及服役条件下,由于功率耗散和环境温度的变化,因材料的热膨胀失配在SnPb焊点内产生交变的应力和应变,导致焊点的热疲劳失效。 由于BGA封装中的焊点的几何尺寸很小,用一般的实验方法难以对热循环过程中焊点的应力、应变进行实时检测。理论方法(如有限元分析方法)可以对复杂加载条件下焊点中的应力、应变分布及其历史进行详尽的描述,是评价焊点可靠性的重要途径。 二、实验内容及要求: 了解倒装焊的基本结构,并通过软件仿真对其热-结构进行数值模拟。运用ANSYS 有限元软件对球栅阵列(BGA)封装中复合SnPb 焊点的应力、应变的分布进行有限元模拟,观察SnPb 焊料的蠕变行为和应力松弛现象。 三、建模要求和相关材料特性参数: 二维建模;模型结构分3层:最上层板为硅芯片,中间层为PbSn焊点,焊点下为焊盘,最下层为基板层。其几何尺寸示例如下:芯片尺寸为9mm×0.8mm,焊点尺寸为直径0.89mm,基板尺寸为10mm×0.5mm,实际建模时各部分尺寸大小应与示例芯片尺寸大小数量级一致;焊点数为4~10左右;芯片正常工作温度50-100摄氏度之间均可,环境温度为20摄氏度。 材料参数: 四、实验报告要求: 1、按照实验报告册中要求具体填写; 2、实验预习报告部分的实验注意事项填写该实验的一些特殊要求和特殊规定等之类;

相关主题
文本预览
相关文档 最新文档