当前位置:文档之家› 超高性能混凝土的水化、微观结构 和力学性能研究进展

超高性能混凝土的水化、微观结构 和力学性能研究进展

超高性能混凝土的水化、微观结构 和力学性能研究进展
超高性能混凝土的水化、微观结构 和力学性能研究进展

Hans Journal of Civil Engineering 土木工程, 2018, 7(2), 194-204

Published Online March 2018 in Hans. https://www.doczj.com/doc/098756070.html,/journal/hjce

https://https://www.doczj.com/doc/098756070.html,/10.12677/hjce.2018.72024

Hydration, Microstructure and Mechanical

Properties of the Research Progress

of Ultra-High-Performance Concrete

Pu Zhang*, Erli Wang, Yang Xia, Danying Gao, Pinwu Guan

Zhengzhou University, Zhengzhou Henan

Received: Feb. 26th, 2018; accepted: Mar. 14th, 2018; published: Mar. 21st, 2018

Abstract

Ultra-High Performance Concrete (UHPC) is an ultra-high strength cement-based material with ultrahigh strength, high toughness and low porosity. It has the features of impermeability, fatigue resistance and high durability. Although UHPC has many significant advantages, there are some examples of defects, such as the amount of cementitious materials up to 1000 kg/m3, which in-creases the heat of hydration, results in shrinkage and improves the project cost. The production of ultra-high performance concrete often adopts steam or autoclave curing, and the complicated production technology limits the application of UHPC in practical engineering. In order to better study the UHPC material, this paper introduces the development history and research status of UHPC based on the existing research results at home and abroad, summarizes the current re-search status of UHPC condensation hardening process hydration process, microstructure, me-chanical properties and durability, analyzes meso-mechanics of fiber reinforced toughening me-chanism. The results show that UHPC has made gratifying progress in both theoretical research and engineering applications. With the increasing emphasis on environmental protection in China, UHPC has broad application prospects.

Keywords

Ultra-High Performance Concrete, Hardening, The Hydration Heat, Microstructure, Durability

超高性能混凝土的水化、微观结构

和力学性能研究进展

张普*,王二丽,夏洋,高丹盈,管品武

郑州大学,河南郑州

*通讯作者。

张普 等

收稿日期:2018年2月26日;录用日期:2018年3月14日;发布日期:2018年3月21日

超高性能混凝土(Ultra-High Performance Concrete ,简称UHPC)是一种具有超高强度、高韧性、低孔隙率的超高强水泥基材料,具有抗渗、抗疲劳和高耐久的特点。尽管UHPC 拥有很多显著的优点,但也存在一些缺陷。例如其胶凝材料的用量高达1000 kg/m 3,这增大了水化热,产生收缩,提高了工程造价。生产超高性能混凝土时往往采用蒸汽或蒸压养护,复杂的生产工艺限制了UHPC 在实际工程中的应用。为了更好的研究UHPC 材料,本文基于国内外已有的研究成果,介绍了UHPC 的发展历史和研究现状,总结了UHPC 凝结硬化的水化过程、微观结构、力学性能和耐久性能的研究现状,并对纤维增强增韧机理细观力学分析。结果发现,UHPC 在理论研究与工程应用方面都取得了可喜的进展,随着我国对环保的日益重视,UHPC 有着广阔的应用前景。

关键词

UHPC ,硬化,水化热,微观结构,耐久性

Copyright ? 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/098756070.html,/licenses/by/4.0/

1. 前言

超高性能混凝土(Ultra High Performance Concrete ,UHPC)是由Rhodia 、Lafarge 和Bouygues 、VSL 专利公司研制出的一种新型水泥基复合材料[1]。UHPC 材料是以活性粉末混凝土(RPC)的研究为基础的。在UHPC 的研究中,有些继续采用RPC 的名称,有些直接称之为UHPC ,还有一些则称之为UHPFRC (超高性能纤维增强混凝土),如法国与日本的相关指南,有的则认为UHPFRC 就是RPC ,是UHPC 与FRC 相结合的产物,目前对这些名词还没有统一公认的定义。从内涵来看,RPC ,UHPC 与UHPFRC 有许多相同之处;相对来说,UHPC 的范围大些,RPC 和UHPFRC 的范围小些。

UHPC 是一种由级配良好的水泥、石英砂、活性掺合料、高效减水剂、钢纤维与水拌合后经湿热养护而成的一种新型超高性能水泥基复合材料,在房屋建筑,市政工程,桥梁等领域有着广泛的应用前景。与传统混凝土相比,超高性能混凝土有很多优点:超高性能混凝土的抗压强度约是传统混凝土的3倍以上,能达到150 MPa 以上的强度。超高性能混凝土的韧性和断裂能优异,和高性能混凝土相比,超高性能混凝土的韧性提高了300倍以上,和一些金属相当,这使得混凝土结构在超载环境下或地震中的结构可靠性更加优异[2]。

UHPC 几乎是不渗透的,基本无碳化,氯离子渗透和硫酸盐渗透率也近乎为零。UHPC 具有优异的耐久性,其优异的耐磨性能延长桥梁的使用寿命[3],而它的抗腐蚀性能为混凝土结构在恶劣环境下提供保护[4]。由于超高性能混凝土内部存在着大量的未水化水泥颗粒,在开裂情形下,UHPC 具有自修复功能[3]。超高性能混凝土结构自重仅仅是传统混凝土结构的1/3或1/2,显著降低了静荷载。自重的减少可以有效解决建筑中出现的肥梁胖柱的问题,有利于制造更细长的建筑结构,降低了混凝土结构的厚度[3]。此外,Open Access

张普等

超高性能混凝土能减少预应力钢筋使用,可以降低劳动成本,为建筑结构提供了更大的灵活[5]。

UHPC有很多其他混凝土不可比拟的优点,但是UHPC并没有在实际工程中得到广泛的应用,主要原因之一是它的掺和物中含有大量的水泥和硅灰,且必须配有较高含量的钢纤维,这使得超高性能混凝土的生产成本大大增加。而且水泥和硅灰的有效利用率还不到50%,造成了能源的浪费。为了解决上述问题,使用矿物掺和料是一个有效且实用的方法,并且该方法还能降低水化热,降低生产成本,降低CO2的排放量等益处。Yazici [6]等人以最大粒径为4 mm的玄武岩和最大粒径为0.1 mm的石英砂作为骨料,以粉煤灰、矿粉、硅灰、水泥作为胶凝材料配制超高性能混凝土,混凝土成型后分别在标准水养、蒸汽养护、蒸压养护。从试验结果来看,在蒸压养护下或者蒸汽养护下,可以使用大掺量粉煤灰或矿粉取代水泥配制出性能符合要求的超高性能混凝土。

近年来很多研究表明,超高性能混凝土优异的力学性能以及耐久性,已经让其在诸多领域中有了实际的应用,并且产生了良好的效益。但是由于配制UHPC往往需要高温养护,而且成本较高,这就限制了其在土木工程领域的广泛应用,因此如何配制出高性能低成本的UHPC可能成为一个新的研究方向。

本文在前人研究基础上,综述了超高性能混凝土的水化过程、微观结构、力学性能和耐久性能。

2. 水化过程和微观结构

UHPC是由水泥及具有火山灰活性的硅灰等细颗粒材料组成的,在凝结硬化过程中,水化反应及火山灰产生结晶体与凝胶体,结晶体与烧结铝矾土即细骨料构成弹性骨架来承受外力,产生弹性变形,而凝胶体产生塑性变形,二者共影响着其力学性能。

关于超高性能混凝土的水化反应和微观结构已有大量的研究,主要包括不同龄期的水化产物及含量、不同温度下的水化产物、C-S-H的链长、界面过渡区和微观结构特征,由于超高性能混凝土养护一般是高温和蒸压养护,所以这些研究主要集中于热养护下的超高性能混凝土的水化反应和微观结构,而且,不同矿物的不同掺量对UHPC的性能有着不同的影响。

2.1. 水化过程

超高性能混凝土胶凝材料的水化过程与普通混凝土相似。首先,水泥水化生成水化硅酸钙(C-S-H)和氢氧化钙(Ca(OH)2)。水化硅酸钙是一种凝胶体有较高的比表面积和范德华力,在水化产物中占50%~60%,是水泥强度的主要来源,其典型的微观结构如图1所示。氢氧化钙是一种六方板状晶体,范德华力较低,在水化产物中占20%~25%,是水泥耐久性差的主要根源,也是水泥石裂缝的发源地,其典型的微观结构如图2所示。

根据胶凝材料掺量的不同,硅灰、粉煤灰和矿粉等辅助性胶凝材料能完全或部分消耗掉水泥水化产生的氢氧化钙,生成水化硅酸钙,从而使水泥充分利用,增加混凝土结构的强度。与普通混凝土不同的是,超高性能混凝土往往采用热养护,热养护下超高性能混凝土的水化速度更加迅速。在20℃标准养护下,超高强混凝土的C-S-H平均链长相对较短,而且火山灰活性较弱。在90℃热养护下,热养护不仅增大了硅灰和石英粉的火山灰活性,也增大了C-S-H的平均链长,而且C-S-H的平均链长随着温度增大而增大。在250℃蒸压养护下,超高强混凝土的微观结构发生变化,产生了硬硅钙石[6] [7]。此外,当温度继续升高时,水化生成的C-S-H组成和结构也会发生变化,当养护温度高于250℃时,C-S-H大量脱水形成硬硅钙石。由于超高性能混凝土水胶比低,有时采用预压技术,使得超高性能混凝土结构非常致密,导致其孔隙率很低,孔径介于3.75 nm~100 μm的孔含量不超过9% (体积含量)。辅助性胶凝材料可以消耗掉水泥基体和骨料之间界面过渡区的氢氧化钙,使得超高性能混凝土基体与骨料相结合非常致密,无明显的界面过渡区。

张普 等

Figure 1. The microscopic appearance of C-S-H

图1. 水化硅酸钙的微观形貌

Figure 2. The microscopic appearance of Ca(OH)2

图2. 氢氧化钙的微观形貌

Korpa [8]通过量化XRD 分析法和热重分析法对早期UHPC 的水化及相变发展进行了研究,研究发现7 d 之后的各相含量变化开始减少,说明水化速度由此变缓。并且指出与普通混凝土体系相比,UHPC 体系中的晶体相含量低得多而无定形相含量较高,这是由于硅灰、粉煤灰等与水泥水化产物发生火山灰反应消耗Ca(OH)2晶体而生成C-S-H 凝胶所致。Ca(OH)2的消耗量在水化进行的第二天后开始显著增加,然而28 d 之后仍能检测到Ca(OH)2,说明此时的火山灰反应尚未完全进行。同时,对28 d 之后的UHPC 试件进行XR 检测,并未发现CaCO 3,说明试件没有显著的碳化发生。此外,水化的前两天检测到钙钒石(AFt)含量发生了波动,说明有部分钙钒石转变为单硫型硫铝酸钙(AFm),同时大量铝进入无定形的C-S-H 凝胶中。

2.1.1. 水泥的水化

洛赫尔[9]等人从水化产物形成及发展的角度,把水泥的硬化过程分为三个阶段,形象地描述了硅酸盐水泥水化浆体结构的形成过程。第一阶段从水泥掺水到初凝为止,C 3S (硅酸三钙)与水迅速反应生成饱和溶液,并析出Ca(OH)2晶体,与此同时石膏也进入溶液与C 3A (铝酸三钙)反应生成细小的钙矾石晶体,这一阶段水泥浆体呈塑性状态。第二阶段大约从初凝开始至24 hr 为止,这个阶段水泥水化开始加速,生成较多的和钙矾石晶体,同时水泥颗粒上长出纤维状的C-S-H

凝胶。水化产物的大量形成将各颗粒初步

张普等

连接成网状,随着网状结构的不断增强,强度相应增长,剩余的非结合水被分割成各种尺寸的粉煤灰水滴,填充在浆体孔隙之中。第三阶段是指水化后直到水化结束的吋间,这一阶段相对较长,随着水化的进行,水化产物数量不断增加,浆体结构更趋致密,强度进一步提高。

在纯水泥体系中,由于硅酸三钙(C3S)和硅酸二钙(C2S)的水化,早期生成大量的氢氧化钙。在水化的前三天内,也即水泥水化的前两个阶段,水泥迅速水化生成的氢氧化钙占最终生成氢氧化钙的80%以上。

随后,氢氧化钙含量缓慢增加,直到达到峰值。氢氧化钙的初始含量主要和胶凝材料组成中水泥用量的比例有关,掺入的矿物掺合料越多,水泥早期水化(3~7 d)产生的氢氧化钙初始含量越低[10]。

2.1.2. 硅灰的水化

在低水胶比的前提下,随着硅灰掺量的增大,超高强混凝土的氢氧化钙含量在不同龄期下均有所减小。超高强混凝土初始氢氧化钙含量主要取决于胶凝材料中水泥所占的比例。因此,可以清楚的看出,超高强混凝土中,掺入的硅灰越高,超高强混凝土的初始氢氧化钙含量越低。硅灰具有火山灰效应,可以和水泥水化产生的氢氧化钙反应[11],使得超高强混凝土的氢氧化钙含量进一步降低。随着硅灰掺量的增大,超高强混凝土的氢氧化钙含量降低[12]。

2.1.

3. 矿粉的水化

在低水胶比的前提下,在不同龄期下,随着矿粉掺量的增大,超高强混凝土的氢氧化钙含量均有所减小。矿粉的活性较高,在水化过程可以和水泥水化产生的氢氧化钙反应,生成水化硅酸钙[12]。另一方面,氢氧化钙的初始含量主要和水泥石中水泥用量的比例有关,掺入的矿粉越多,水泥早期水化(3~7 d)产生的氢氧化钙初始含量越低。

2.1.4. 粉煤灰的水化

研究表明,超高强混凝土的氢氧化钙含量随着硅灰掺量的增大而降低,随着粉煤灰掺量的增大而降低。随着矿物掺合料掺量的增大,氢氧化钙含量降低[12]。超高强混凝土初始氢氧化钙含量主要取决于胶凝材料中水泥所占的比例。因此,可以清楚的看出,超高强混凝土中,掺入的硅灰和粉煤灰越高,超高强混凝土的初始氢氧化钙含量越低。随后,由于矿物掺合料的火山灰效应,超高强混凝土的氢氧化钙含量进一步降低,在适当水胶比下,随着粉煤灰掺量的增大,超高强混凝土的氢氧化钙含量降低[12]。

2.2. 微观结构

赖建中[12]分别在标准养护、热水养护和蒸压养护制度下的三种超高性能混凝土基体进行了X-射线衍射(简称XRD)图谱分析,结果发现超高性能混凝土基体中水泥熟料(C2S、C3S)的特征峰强度比普通水泥基材高很多,这说明超高性能混凝土的水胶比很低,水泥颗粒并没有完全水化。但是随着养护温度的提高,C2S、C3S和Ca(OH)2的含量均有降低,水化程度有所增加,这种现象表明提高温度有利于水化程度的增加,同时能促进矿物掺合料与Ca(OH)2的二次水化。

在混凝土中,由于水泥浆体泌水,会在界面区形成一层以氢氧化钙和钙矾石为主要成分的多孔区,这一区域是混凝土中的最薄弱区。超高性能混凝土采用堆积理论进行设计,掺入了具有火山灰效应的辅助胶凝材料,并使用了预压技术,所以超高性能混凝土具有很低的孔隙率,孔径介于3.75 nm~100 μm的孔含量不超过9% (体积含量),当养护温度介于150℃~200℃之间时,这部分孔隙的体积含量为0 [13]。

龙广成[14]分析了超高性能混凝土试块的孔结构,发现超高性能混凝土的孔径基本集中分布在2~3 nm之间,总孔隙率测试结果为2.23%。同时,龙广成[15]采用SEM和背散射电子图像(BEI)对超高性能混凝土微观结构形貌进行了研究,并提出了超高性能混凝土微观结构的模型,见下图3 [15]。

从这个模型可以看到,超高性能混凝土由密实的基体相以及镶嵌在基体相中的骨料相组成,基体与

张普 等

骨料相紧密结合,没有明显的界面过渡区。基体相由大量的水化产物和未水化完全的水泥熟料颗粒和活性粉末颗粒组成,未水化完全的内核与水化产物之间形成了反应性界面,坚固的未水化完全的颗粒内核对基体起到了骨架作用,大大增强了基体相的性能。

借助微观结构的扫描电子显微镜技术,也可以观测到超高性能混凝土的结构相当致密,基体结构几乎没有可以让有害气体、水和侵蚀性溶液渗入的毛细孔道[16]。超高性能混凝土的水泥石和界面过渡区结构见图4 [17]、图5 [17]。

从扫描电镜图像(图4)可以看出,超高性能混凝土在180 d 龄期时,水泥石结构非常致密,只有一些空气孔洞。主要水化产物是均匀的C-S-H ,没有氢氧化钙与钙矾石。超高性能混凝土的界面过渡区(图5)结构紧密结合,观察不出明显的孔隙[17]。

2.3. 纤维增强增韧机理

基体掺入纤维后,纤维的三维乱向分布形成了纤维网骨架,桥接可能出现微裂缝的部位,限制了微

Figure 3. Ultra-High performance concretemicrostructure

model [15]

图3. 超高性能混凝土微观结构模型[15]

Figure 4. SEM photos of UHPC cement [17]

图4. UHPC 水泥石的SEM 照片[17]

张普 等

Figure 5. SEM photos of UHPC interface transition zone [17]

图5. UHPC 界面过渡区的SEM 照片[17]

裂缝的发展和宏观裂缝的产生。加之纤维与UHPC 基体的粘结锚固作用,使得纤维增强UHPC 的受压破坏并没有UHPC 基体的正倒相接四角锥体破坏形态的发生,且无严重崩裂现象,从而显著提高了的抗压强度[18]。混凝土结构受拉时,拉应力部分由纤维与基体之间的剪应力承担,尤其在基体开裂退出工作后,裂缝处的拉应力全部由纤维与基体间的粘结作用来传递的,因此,纤维的掺入可以显著提高UHPC 的抗拉强度。

2.4. 超高性能的形成机理

UHPC 设计从测量的纳米尺度力学性能出发,采用四层次多尺度微观结构模型,精确计算刚度,且证实了纤维–基体界面无缺陷。UHPC 的密实度与强度之间存在着高度的相关性,但是最大密实度并不代表最高强度,强度取决UHPC 于其微观结构和水化阶段的性能。高温可促进水泥、硅灰和石英粉的化学反应,当温度达到250℃时,RPC 中出现硬硅钙石。随着养护温度的增加,C-S-H 凝胶平均链长增加,碱激发水泥RPC(碱矿渣水泥基活性粉末混凝土ARPC)在抗压强度相同情况下,具有更高的抗弯性能、断裂能以及与钢筋的粘结性能;由于ARPC 的CaO/SiO 2较低,其纳米的孔结构有利于水分的逸出,内部孔压力较低,因此具有更好的抗火性能。

未掺入钢纤维,UHPC 表现更大脆性。UHPC 一般掺有纤维,故它也可视为基体与纤维的复合材料。UHPC 的伪应变强化效应与钢纤维的分布特征有较大的关系,但是纤维分布方向对抗压强度的影响较小。钢纤维对UHPC 的抗拉强度和韧性有明显提高作用,在不影响钢纤维分布均匀性的前提下,一般可以提高3.5%~4%,与钢纤维掺量成正比。对抗压强度,钢纤维也有一定的增强作用,但是一般认为存在一个界限掺量,其值约为2%,当超过这个掺量时,抗压强度不升反降。

3. 超高性能混凝土的力学性能

3.1. 基本力学性能

强度是水泥基材料最为重要的性能之一。目前已有很多国内外学者对影响UHPC

强度的因素进行了

张普等

系统的分析研究,包括:原材料中各组分及其掺量、不同纤维、不同养护制度以及不同凝胶体系对UHPC 强度的影响等,确定了各组分的合适掺量范围以及最优掺量机理,发现多元胶凝体系由于形态效应、火山灰效应和微集料效应的充分发挥能使UHPC获得更高的强度,同时养护制度和纤维掺量对试件强度性能影响显著。研究表明,超高性能混凝土具有优异的力学性能,根据原材料、养护方式和成型的不同,超高性能混凝土的抗压强度可达到200~800 MPa,抗拉强度达到8 MPa以上,抗折强度可达到30 MPa。和普通混凝土(以C50为例)相比,超高性能混凝土的抗压强度能高出2倍以上。由于原材料、养护制度、制备工艺不同,超高性能混凝土的强度也存在着较大的差异。为了将超高性能混凝土应用于实际工程中,应尽量减少超高性能混凝土的制备成本,简化其生产工艺。

3.2. UHPC的耐久性

对于UHPC的耐久性研究,其主要集中在水渗透性、抗氯离子渗透能力、抗碳化、抗冻性以及耐久性等方面。UHPC最具吸引力的另一个性能是潜在的超高耐久性。根据理论和试验研究结果,基本上可以确定:UHPC没有冻融循环、碱-骨料反应(AAR)和延迟钙矾石生成(DEF)破坏的问题;在无裂缝状态,UHPC的抗碳化、抗氯离子侵入、抗硫酸盐侵蚀、抗化学腐蚀、耐磨等耐久性能指标,与传统高强高性能混凝土(HSC/HPC)相比,有数量级或倍数的提高。但UHPC不耐硝酸氨腐蚀,因为钢纤维会较快锈蚀。

3.2.1. 耐火性

混凝土结构遇到高温作用时,混凝土的孔隙率增大,并发生热膨胀和热徐变,水化产物脱水。而钢纤维可抑制混凝土裂缝的扩展,因此,钢纤维具有提高混凝土耐火性能的潜力。Liu和Huang [17]对超高性能混凝土(UHPC)、高性能混凝土(HPC)以及普通混凝土(OC)的耐高温性能进行了比较,发现HPC在温度到达600℃时开始发生爆裂,OC的爆裂发生在690℃左右,而UHPC直到升温超过790℃才开始出现爆裂。在对三组试件进行500℃± 50℃的持续耐火试验后发现,其抗压强度无一例外地发生了降低,其中前60分钟强度降幅最大,UHPC、HPC和OC的剩余强度分别为原强度的62.2%、46.7%和58.5%,120 min后,其剩余强度分别为55.6%、34.6%和52.7%,这说明UHPC和OC的耐火性能要优于HPC,而且UHPC的耐火性能最好。

3.2.2. 抗碳化

混凝土碳化是指混凝土中的碱和环境中的CO2发生化学反应生成CaCO3的过程,碳化会降低混凝土的碱性,破坏钢筋表面的钝化膜,从而使钢筋容易锈蚀。而且,因碳化产生的混凝土收缩容易引起表面裂缝,不利于混凝土的耐久性。由于超高性能混凝土所用的水胶比较低,混凝土内部非常密实,CO2难以渗透到混凝土内部,因此超高性能混凝土具有优异的抗碳化性能。相关结果表明,90℃热养护的超高性能混凝土虽然掺入了大量的工业矿渣,但由于不同粒径的辅助性胶凝材料之间的三大效应(形态效应、活性效应和微集料效应)的充分发挥,提高了混凝土密实性,使得混凝土28 d平均碳化深度不超过0.30 mm。龙广成等人的研究结果也证实了这一点,对于超高性能混凝土体系,不管是在密封、标准养护还是经过热处理条件下的养护,均不发生碳化[19]。

3.2.3. 抗氯离子渗透性

混凝土抗氯离子渗透性是混凝土耐久性劣化的重要指标之一。相关结果表明,辅助性胶凝材料能够降低超高性能混凝土的水化热,减少收缩,降低开裂风险,提高混凝土的抗氯离子渗透性[20],从而提高混凝土的耐久性[21]。高性能混凝土和超高性能混凝土的渗透性和扩散系数远低于普通防水混凝土,且超高性能混凝土的扩散系数远低于高性能混凝土[22],甚至可以说超高性能几乎是不渗透的。

张普等

3.2.

4. 抗冻性

超高性能混凝土的孔隙率极低,所以外界水很难渗透到混凝土内部毛细管孔,产生静水压和渗透压。

而且,UHPC中钢纤维的存在,有效地抑制了裂缝的发展,从而能抑制温度应力和冻胀应力作用下混凝土的裂缝扩展,因此,超高性能混凝土有着比普通混凝土和高强混凝土更好的抗冻性。有研究表明,超高性能混凝土在经历600次冻融循环后,也不会产生破坏[23]。

3.2.5. 其他性能

UHPC具有非常好的微裂缝自愈能力。由于水胶比非常低,UHPC拌和水量仅能供部分水泥水化,绝大多数水泥颗粒的内部处于没有水化状态。因此,水或水汽进入UHPC的裂缝,暴露在裂缝表面的水泥颗粒未水化部分就会“继续”水化;结合了外界水分的水化产物体积大于水泥熟料体积,多出来的体积能够填堵裂缝。试验和工程验证表明,UHPC的裂缝自愈不仅能够封闭微裂缝降低渗透性和保持良好耐久性,同时还起“胶结”裂缝作用,可在一定程度上恢复混凝土因裂缝降低的力学性能。

与钢结构相比,UHPC结构的优势在于高耐久性和几乎没有维护费用,并容易达到建筑防火要求。

与传统的钢筋混凝土结构相比,UHPC结构寿命可成倍提高。根据理论分析、现有的暴露试验以及实际工程检验结果,预期UHPC结构寿命,在腐蚀性自然环境中(如海洋环境)可以超过200年以上;在非腐蚀环境(如城市建筑)可以达到1000年。相对保守的日本指南认为,在正常使用环境条件下,UHPC结构的设计工作寿命为100年。耐久性中的碳化、钢纤维与钢筋锈蚀、冻融循环、硫酸盐侵蚀和碱–骨料反应属于免检项目,但重化学腐蚀和耐火性能是需要检验的项目。

4. 结论

1) 低水胶比条件下掺入的胶凝材水化生成的C-S-H凝胶相微观结构致密均匀,未水化水泥颗粒在硬

化浆体中主要起到填充作用和微骨料作用。

2) 掺合料种类对高强混凝土工作性和力学性能影响显著。粉煤灰能够有效的改善低水灰比混凝土的

工作性能,但具有混凝土后期强度增长缓慢的特点。

3) UHPC的强度和耐久性要远远超过普通混凝土和高性能混凝土,它的工作性能满足一些特殊结构

的要求。

4) 常温养护下,针对采用辅助性胶凝材料制备超高强混凝土的微观结构研究还较少。因此应进一步

研究常温养护下,采用辅助性胶凝材料制备超高强混凝土的微观结构特征,并建立其胶凝材料组成和微观结构特征之间的关系。

5) UHPC从提出到现在已有20年的历史,在理论研究与工程应用方面都取得了可喜的进展。中国大

批研究人员紧跟国际的学术前沿,开展了大量的UHPC研究,为其今后的应用及推广奠定了坚实的基础。

但是中国对UHPC的研究较为分散,以小项目研究为主,系统性和合作有待加强,目前尚未形成全国性的专门研究的学术组织与定期会议。

6) 在应用方面,UHPC在高速铁路工程中应用相对较好,在公路工程中也已开始。但是与国外相比,

UHPC实际工程应用偏少,如果将其置于近30年来中国处于大规模的基础设施建设时期背景之下,就显得更少。

7) 本文基于国内外已有的研究成果,介绍了UHPC的发展历史和研究现状,总结了超高性能混凝土

凝结硬化的水化过程、微观结构、力学性能和耐久性能的研究现状,并对纤维增强增韧机理细观力学分析。结果发现,UHPC在理论研究与工程应用方面都取得了可喜的进展,随着我国对环保、可持续发展的日益重视,UHPC在今后相当长一段时间的基础设施建设中有着广阔的应用前景,有望在UHPC的理

张普等

论研究与工程应用方面赶上并超过世界先进水平。

基金项目

本文感谢国家自然科学基金项目(51508519)、河南省产学研项目(162107000024)、河南省教育厅高等学校重点项目(14B560014, 15A560040)等项目的支持。

参考文献

[1]Rebentrost, M. and Cavill, B. (2006) Reactive Powder Concrete Bridges. Austroads 6th Bridge Conference: Bridging

the Gap, Perth, 12-15 Septembe 2006, 1-11.

[2]Blais, P.Y. and Couture, M. (1999) Precast, Prestressed Pedestrian Bridge-World’s First Reactive Powder Concrete

Structure. PCIJ, 44, 60-71. https://https://www.doczj.com/doc/098756070.html,/10.15554/pcij.09011999.60.71

[3]Dauriac, C. (1997) Special Concrete May Give Steel Stiff Competition. The Seattle Daily Journal of Commerce, 1997,

15-17.

[4]Ji, W.Y., An, M.Z. and Yan, G.P. (2008) Study on Reactive Powder Concrete Used in the Side Walk System of the

Qinghai-Tibet Railway Bridge. Schmitz Ready Mix Inc., Milwaukee, 31-37.

[5]Dowd, W. (1999) Reactive Powder Concrete: Ultra-High-Performance Cement-Based Composite. Construction Inno-

vation Forum, Walbridge, 23-28.

[6]Yaz?c?, H. (2007) The Effect of Curing Conditions on Compressive Strength of Ultra High Strength Concrete with

High Volume Mineral Admixtures. Building and Environment, 42, 2083-2089.

https://https://www.doczj.com/doc/098756070.html,/10.1016/j.buildenv.2006.03.013

[7]Zanni, H., Cheyrezy, M., Vetal, M. (2003) Investigation of Hydration and Pozzolanic Reaction in Reactive Powder

Concrete (RPC) Using 29Si NMR. Cement and Concrete Research, 26, 93-100.

https://https://www.doczj.com/doc/098756070.html,/10.1016/0008-8846(95)00197-2

[8]Korpa, A., Kowald, T. and Trettin, R. (2009) Phase Development in Normal and Ultra High Performance Cementitious

Systems by Quantitative X-Ray Analysis and Thermoanalytical Methods. Cement and Concrete Research, 39, 69-76.

https://https://www.doczj.com/doc/098756070.html,/10.1016/j.cemconres.2008.11.003

[9]赖建中. 生态型RPC材料的力学行为、耐久性及微观机理研究[D]: [硕士学位论文]. 南京: 东南大学, 2003:

55-58.

[10]王德辉. 超高强混凝土的硬化过程[D]: [博士学位论文]. 长沙: 湖南大学, 2015: 66-68.

[11]Erdem, T.K. and Kirca, O. (2008) Use of Binary and Ternary Blends in High Strength Concrete. Construction and

Building Materials, 22, 1477-83.

[12]Kritsda, S. and Lutz, F. (2011) Evaluation of Calcium Hydroxide Contents in Pozzolanic Cement Pastesby a Chemical

Extraction Method. Construction and Building Materials, 25, 190-194.

https://https://www.doczj.com/doc/098756070.html,/10.1016/j.conbuildmat.2010.06.039

[13]Cheyrezy, M., Maret, V. and Frouin, L. (1995) Microstructural Analysis of RPC (Reactive Powder Concrete). Cement

and Concrete Research, 25, 1491-1500. https://https://www.doczj.com/doc/098756070.html,/10.1016/0008-8846(95)00143-Z

[14]龙广成. 活性粉末混凝土组分、结构与性能的研究[D]: [博士学位论文]. 上海: 同济大学, 2003: 127-128.

[15]Chan, Y.W. and Chu, S.H. (2004) Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Con-

crete. Cement Concrete Research, 34, 1167-1172. https://https://www.doczj.com/doc/098756070.html,/10.1016/j.cemconres.2003.12.023

[16]Alaee, F.J. (2001) Retrofitting of Concrete Structures using High Performance Fiber Reinforced Cementitious Compo-

site (HPFRCC). Dissertation, University of Wales, Cardiff, 220, 72-76.

[17]Wang, C., Yang, C.H., Liu, F., et al. (2012) Preparation of Ultra-High-Performance Concrete with Common Technol-

ogy and Materials. Cement & Concrete Composites, 34, 538-544. https://https://www.doczj.com/doc/098756070.html,/10.1016/j.cemconcomp.2011.11.005 [18]李妍, 刁波, 杨松霖, 等. 异形钢纤维体积率对超高性能混凝土力学性能的影响研究[C]//第19届全国结构工程

学术会议论文集. 第2册, 2010.

[19]龙广成, 谢友均, 王培铭, 等. 活性粉末混凝土的性能与微细观结构[J]. 硅酸盐学报, 2005, 4: 456-461.

[20]Hooton, R.D. and Titherington, M.P. (2004) Chloride Resistance of High-Performance Concretes Accelerated Curing.

Cement Concrete Research, 34, 1561-1567. https://https://www.doczj.com/doc/098756070.html,/10.1016/j.cemconres.2004.03.024

[21]Wang, K. and Zhi, G. (2003) Evaluating Properties of Blended Cements for Concrete Pavements. Final Report, Center

张普等

for Portland Cement Concrete Pavement Technology, Iowa State University, Ames, 22-26.

[22]Jooss, M. and Reinhardt, H.W. (2002) Permeability and Diffusivity of Concrete as Function of Temperature. Cement

Concrete Research, 32, 1497-1504. https://https://www.doczj.com/doc/098756070.html,/10.1016/S0008-8846(02)00812-8

[23]Shaheen, E. and Shrive, N. (2006) Optimization of Mechanical Properties and Durability of Reactive Powder Concrete.

ACI Materials Journal, 103, 444-451.

知网检索的两种方式:

1. 打开知网页面https://www.doczj.com/doc/098756070.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2326-3458,即可查询

2. 打开知网首页https://www.doczj.com/doc/098756070.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.doczj.com/doc/098756070.html,/Submission.aspx

期刊邮箱:hjce@https://www.doczj.com/doc/098756070.html,

普通混凝土力学性能试验方法标准的考试

混凝土力学试验考试(8月3日) 姓名:何延庆职位:得分: 一、填空题(15分) 1、《混凝土规范》规定以强度作为混凝土强度等级指标。(1分) 2、测定混凝土立方强度标准试块的尺寸是。(1分) 3、试件破坏荷载应大于压力机全量程的,且小于压力机 全量程的。(2分) 4、应定期对试模进行自检,自检周期宜为。(2分) 5、在搅拌站拌制的混凝土时,其材料用量应以质量计,称量的精度:水泥、掺合料、水和外加剂为,骨料为。(2分) 6、混凝土拌合物的稠度确定混凝土成型方法,塌落度的混凝土用振动振实,塌落度的混凝土用捣棒人工捣实。 (2分) 7、混凝土成型每层插捣次数。(2分) 8、进行混凝土抗压强度实验时,在试验过程中应连续均匀的加载,混凝土强度等级<C30时,加荷速度取每秒钟;混凝土强度等级≥C30且<C60时,取每秒钟;混凝土强度等级≥C60时,取每秒钟。(3分) 二、判断题(12分) 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。()

2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。() 3、采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.90。() 4、采用边长为200mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为1.10。() 5、普通混凝土力学性能试件应从不同车混凝土取样制件。() 6、混凝土试件在特殊情况下可以用Φ150*150的圆柱体标准试件。() 三、单项选择题(6分) 1、混凝土极限压应变值随混凝土强度等级的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 2、混凝土延性随混凝土强度等级的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 3、同强度等级的混凝土延性随加荷速度的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 4、地上放置一块钢筋混凝土板,在养护过程中表面出现微细裂缝,其原因是()。 A混凝土徐变变形的结果 B混凝土收缩变形的结果 C混凝土与钢筋产生热胀冷缩差异变形的结果 D是收缩与徐变共同作用的结果 5、以下关于混凝土收缩的论述()不正确? A混凝土水泥用量越多,水灰比越大,收缩越大 B骨料所占体

喷射混凝土检测取样方法

喷射混凝土质量检测方法 (一)抗压强度试验 1.检查试块的制作方法 (1)喷大板切割法 在施工的同时,将混凝土喷射在45cmx35cmxl2cm(可制成6块)或45cmx20cmx12cm(可制成3块)的模型内,在混凝土达到一定强度后,加工成10cmx10cmx10cm的立方体试块,在标准条件下养护至28d进行试验(精确到0.1MPa) (2)凿方切割淡 在具有一定强度的支护上,用凿岩机打密徘钻孔,,取出长约35cm、宽约15cm 的混凝上块,加工成10cmxl0cmxl0cm的立方体试块,在标准条件下养护至28d,进行试验(精确到0.1MPa)。 2.检查试块的数量 隧道(两车道隧道)每10延米,至少在拱部和边墙各取、组试样“,材料或配合比变更时另取一组,每组至少取3个试块进行抗压强度试验。 3.满足以下条件者为合格,否则为不合格。 (1)同批(指同一配合比)试块的抗压强度平均值,不低于设计强度或C20。(2)任意一组试块抗压强度平均值不得低于设计强度的80%。 (3)同批试块为3~5组时,低于设计强度的试块组数不得多于1组;试块为(一16组时,不得多于两组;17组以上,不得多于总组数的15%。 (二)喷射混凝土厚度的检测 1.喷层厚度可用凿孔或激光断面仪、光带摄影等方法检查。 (2)检查断面数量。每口延米至少检查一个断面)再从拱顶中线起每隔2m凿孔检查一个点。 (3)每个断面拱、墙分别统计,全部检查孔处喷层厚度应有60%以上不小于设计厚度,平均厚度不得小于设计厚度,最小厚度不应小于设计厚度的1/2。在软弱破碎围岩地段,喷层厚度不应小于设计规定的最小厚度,钢筋网喷射混凝土的厚度不应小于6cm。 (三)喷射混凝土与园岩粘结强度试验 1.检查试块的制作方法 (1)成型试验法 在模型内放置面积为10cmX10cmx厚5cm且表面粗糙度近似于实际情况的岩块,用喷射混凝土掩埋。在混凝土达到一定强度后,加工成10cmxl0cmX10cm的立方体试块,在标准条件下养护至28d,用劈裂法进行试验。 (2)直接拉拔法 在围岩表面预先设置带有丝扣和加力板的拉杆,用喷射混凝土将加力板埋人,喷层厚度约10cm,试件面积约30cmX30cm(周围多余的部分应予清除)。经28d 养护,进行拉拔试验。 (四)喷射混凝上粉尘、回弹检查 按《公路隧道施工技术规范>>(JTJ042—94)规定。 (五)其它试验 当有特殊要求时,对喷射混凝土的抗拉强度、弹性模量等项目应进行试验。 喷射混凝土施工质量评判

喷射砼原材料-要求

喷射混凝土原材料要求 6.2.1水泥:应符合第4.4.7条规定的要求。 6.2.2骨料应符合下列要求: 1粗骨料应选用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石料。 2细骨料应选用坚硬耐久的中砂或粗砂,细度模数不宜大于2.5。干拌法喷射时,骨料的含水率应保持恒定并不小于6%。 3喷射混凝土骨料级配宜控制在表6.2.2数据范围内。 表6.2.2 喷射混凝土骨料通过各筛经的累计质量百分率(%) 6.2.3拌合水应符合第4.4.8条规定的要求。 6.2.4喷射混凝土速凝剂应符合下列要求: 1掺加正常用量速凝剂的水泥净浆初凝不应大于3min,终凝不应大于12min; 2加速凝剂的喷射混凝土试件,28d强度应不低于不加速凝剂强度的90%; 3宜用无碱或低碱型速凝剂。 6.2.5喷射混凝土中的矿物掺合料,应符合以下规定: 1粉煤灰的品质应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB1596的有关规定。粉煤灰的级别不应低于Ⅱ级,烧失量不应大于5%。 2硅粉的品质应符合表6.2.5的要求。 表6.2.5 硅粉质量控制指标要求

3粒化高炉矿渣粉的品质应符合现行国家标准《用于水泥和混凝土中粒化高炉矿渣粉》GB/T18046的有关规定。 6.2.6纤维:喷射混凝土用钢纤维及合成纤维应符合以下规定: 1钢纤维 钢纤维的抗拉强度应不低于1000N/mm2,直径宜为0.40~0.80mm,长度 宜为25~35mm,并不得大于混合料输送管内径的0.7倍,长径比为35~80。 2合成纤维 合成纤维的抗拉强度不应低于280N/mm2,直径宜为10~100μm,长度宜 为4~25mm。 6.2.7喷射混凝土中各类材料的总碱量(Na2O当量)不得大于3 kg / m3;氯离 子含量不应超过胶凝材料总量的0.1%。 摘自:GB50086-2011《岩土锚固与喷射混凝土支护工程技术规范》 SL377-2007《水利水电工程锚喷支护技术规范》

普通混凝土试样取样依据及式样标准

混凝土取样方法 一、普通混凝土试样取样的依据 1、《混凝土结构工程施工质量验收规范》(GB50204— 2002); 2、《普通混凝土力学性能试验方法标准》(GB/T50081 —2002)。 二、普通混凝土试样标准 1、普通混凝土立方体抗压强度、抗冻性和劈裂抗拉强度试件为正方体,试件尺寸按表1米用,每组3块。 表1混凝土抗压强度试件允许最小尺寸表 混凝土强度等级v C60时,用非标准试件测得的强度值均应乘以尺寸换算系数。当混凝土强度等级》C60时,宜采用标准试件;使用非标准试件时,尺寸换算系数应由试验确定。 在特殊情况下,可采用? 150mm< 300mm的圆柱体标准试件或? 100mr K 200mm和? 200m M 400mm勺圆柱体非标准试件。 2、普通混凝土轴心抗压强度试验和静力受压弹性模量试验,采用150mm< 150m材300mm勺棱柱体作为标准试件,前者每组3块,后者每组6块。 3、普通混凝土抗折强度试验,采用150m< 150m< 600mm或550mm的棱柱体作为标准试件,每组3块。 4、普通混凝土抗渗性能试验试件采用顶面直径为175mm底面直径为185mm高度为150mm的圆台体或直径与高度均为150mm的圆柱体试件,每组6块。试块在移入标准养护室以前,应用钢丝刷将顶面的水泥薄膜刷去。 5、普通混凝土与钢筋粘结力(握裹力)试件为长方形棱柱体,尺寸为100m< 100m< 200mm骨料的最大粒径不得超过30mm棱柱体中心? 6光圆钢筋,表面光滑程度一致,粗细均匀,钢筋一端露出混凝土棱柱体端面10?20mm钢筋另一端露出混凝土棱柱体端面50?60mn,每组6块。

高性能混凝土的力学性能及耐久性试验研究 何达明

高性能混凝土的力学性能及耐久性试验研究何达明 发表时间:2018-03-21T17:10:56.310Z 来源:《基层建设》2017年第34期作者:何达明 [导读] 摘要:高性能混凝土是当前应用最为广泛的建筑材料,其力学性能及耐久性直接关系到建筑物的安全性能及质量。 广东建准检测技术有限公司广东广州 510000 摘要:高性能混凝土是当前应用最为广泛的建筑材料,其力学性能及耐久性直接关系到建筑物的安全性能及质量。本文结合C80机制砂高性能混凝土,对其力学性能及耐久性试验结果进行了分析,结果表明该C80机制砂混凝土具有良好的整体性能。 关键词:高性能混凝土;力学性能;耐久性 0 前言 随着我国经济的快速发展以及城市建设的不断进步,建筑行业取得了迅猛的发展,而混凝土作为建筑施工的重要材料之一,其性能越来越受重视。在这背景下,高性能混凝土在大型建筑结构中得到广泛的应用,但是其应用中存在着许多问题,如由于原材料应用及配合比设计不当等问题。因此,对高性能混凝土力学性能及耐久性试验进行深入研究十分必要。 1 原材料 (1)水:城市自来水。 (2)水泥:某地P?O52.5级水泥,安定性合格,3d和28d抗折、抗压强度分别为5.8MPa、8.6MPa、27.4MPa、57.3MPa。 (3)掺合料: ①粉煤灰:某市产F类Ⅱ级,性能指标符合GB/T1596—2005《用于水泥和混凝土中的粉煤灰》要求。 ②矿渣粉:某建材有限公司产,S95级,性能满足GB/T18046—2008《用于水泥和混凝土中的粒化高炉矿渣粉》要求。 ③硅粉:某硅粉,SiO2含量91.8%,比表面积18000m2/kg(BET法)。 (4)河砂:某地产,细度模数为2.9,Ⅱ区;某地产,细度模数为1.8,Ⅲ区;试验中的河砂均按90%:10%(质量比)掺配成细度模数2.7的中砂,Ⅱ区。 (5)机制砂:某地产,亚甲蓝值为0.8,细度模数为3.0,Ⅰ区,石粉含量7%(试验中机制砂不同石粉含量是将原机制砂中的石粉筛除配制而成)。 (6)碎石:某地产玄武岩,连续粒级5~20mm,含泥量为0.4%,泥块含量为0,母岩抗压强度为138MPa。 (7)外加剂:聚羧酸高性能减水剂,性能符合JG/T223—2007《聚羧酸高性能减水剂》相应指标要求。以上原材料均符合JGJ/T281—2012《高强混凝土应用技术规程》中相应技术指标要求。 2 C80机制砂混凝土的技术路线 根据C80河砂混凝土的经验选用基准配合比,利用正交技术对比选择最优配合比,并与同条件的河砂混凝土对比。考察机制砂和河砂在工作性、抗压强度、抗折强度、劈裂强度、干缩、早强抗裂性、电通量、氯离子渗透性及抗碳化方面的性能。 3 试验结果与分析 3.1 最优配合比选择 GB/T14684—2011《建设用砂》中规定:MB≤1.4或快速法试验合格,机制砂石粉含量≤10%;JGJ/T241—2011《人工砂混凝土应用技术规程》中规定,MB<1.4且≥C60的混凝土,机制砂石粉含量≤5%,实际生产出来的机制砂石粉含量在7%~10%左右,为充分利用资源,减少占地,保证机制砂良好的级配,本次正交试验选择5%、3%、1%为石粉含量的三水平,其它正交因素及相应水平见表1,用水量为150kg/m3,细骨料为771kg/m3,粗骨料为1023kg/m3,硅粉掺量为胶凝材料量的4%。 表1 C80正交试验表L9(34) 运用极差分析法,对表1正交试验的坍落度、扩展度、3d、28d抗压强度四项指标进行分析,由表2极差结果可知,对于坍落度,其影响因素的主次顺序及相应的水平为C3>(B2、B3)>D3>A1,对扩展度为D2>B2>C1>A2,即水胶比对坍落度的影响较大,掺合料的掺量和组合对扩展度的影响较大,综合考虑,影响混凝土和易性的因素及相应的水平为(A1、A2)B2(C1、C3)(D2、D3)。对早期(3d)强度和后期(28d)强度的影响顺序因素和水平不一样,早期(3d)强度的因素及相应水平为C1>A1>B3>D1,后期(28d)强度为C1>D1>A1>B2,则影响强度的因素、水平为A1(B2、B3)C1D1。综合考虑四因素三水平的正交试验对工作性、强度及和易性的影响结果,该组C80机制砂混凝土的最优配合比为A1B2C1D1,即5%石粉含量、41%砂率、0.26水胶比和5%FA+25%矿渣粉。 表2 C80正交试验L9(34)极差法分析结果 3.2 C80高掺量石粉含量机制砂混凝土力学性能 最优配合比中石粉含量为5%,达到JGJ/T241—2011、JGJ/T281—2012和JGJ52—2006《普通混凝土用砂、石质量检验方法标准》

2016继续教育-混凝土力学性能检测

千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100

您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。 答案:正确 您的答案:正确

钢筋混凝土材料的力学性能 复习题

第一章 钢筋混凝土的材料力学性能 一、填空题: 1、《混凝土规范》规定以 强度作为混凝土强度等级指标。 2、测定混凝土立方强度标准试块的尺寸是 。 3、混凝土的强度等级是按 划分的,共分为 级。 4、钢筋混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点 的钢筋,通常称它们为 和 。 5、钢筋按其外形可分为 、 两大类。 6、HPB300、 HRB335、 HRB400、 RRB400表示符号分别为 。 7、对无明显屈服点的钢筋,通常取相当于于残余应变为 时的应力作为名 义屈服点,称为 。 8、对于有明显屈服点的钢筋,需要检验的指标有 、 、 、 等四项。 9、对于无明显屈服点的钢筋,需要检验的指标有 、 、 等三项。 10、钢筋和混凝土是两种不同的材料,它们之间能够很好地共同工作是因 为 、 、 。 11、钢筋与混凝土之间的粘结力是由 、 、 组成的。其 中 最大。 12、混凝土的极限压应变cu ε包括 和 两部分, 部分越 大,表明变形能力越 , 越好。 13、钢筋的冷加工包括 和 ,其中 既提高抗拉又提高抗 压强度。 14、有明显屈服点的钢筋采用 强度作为钢筋强度的标准值。 15、钢筋的屈强比是指 ,反映 。 二、判断题: 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。( ) 2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。( ) 3、采用边长为100mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 0.95。( ) 4、采用边长为200mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 1.05。( ) 5、对无明显屈服点的钢筋,设计时其强度标准值取值的依据是条件屈服强度。( ) 6、对任何类型钢筋,其抗压强度设计值y y f f '=。( )

普通混凝土力学性能试验方法

普通混凝土力学性能试验方法 1 、试件的制作和养护方法 1.1成型前,应检查试模尺寸并符合有关规定要求;试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 1.2取样或试验室拌制的混凝土应在拌制后尽短的时间内成型,一般不宜超过15min。 1.3根据混凝土拌合物的稠度确定混凝土成型方法,坍落度不大于70mm的混凝土用振动振实;大于70mm的用捣棒人工捣实; 1.4取样或拌制好的混凝土拌合物应至少用铁锨再来回拌合三次; 1.4.1用振动台振实制作试件应按下述方法进行: a) 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口; b) 试模应附着或固定在振动台上,振动时试模不得有任何跳动,振动应持续到表面出浆为止;不得过振; 1.4.2 用人工插捣制作试件应按下述方法进行: a) 混凝土拌合物应分两层装入模内,每层的装料厚度大致相等; b) 插捣应按螺旋方向从边缘向中心均匀进行。在插捣底层混凝土时,捣棒应达到试模底部;插捣上层时,捣棒应贯穿上层后插入下层20~30mm;插捣时捣棒应保持垂直,不得倾斜。然后应用抹刀沿试模内壁插拔数次; c) 每层插捣次数100mm试模不得少于12次,150mm试模不得少于25次; d) 插捣后应用橡皮锤轻轻敲击试模四周,直至插捣棒留下的空洞消失为止。 1.5试件成型后应立即用不透水的薄膜覆盖表面。 1.6 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护。标准养护室内的试件应放在支架上,彼此间隔10~20mm,试件表面应保持潮湿,并不得被水直接冲淋。 2 、立方体抗压强度试验 2.1 试件从养护地点取出后,将试件擦试干净,测量尺寸,并检查外观。试件尺寸测量精确至1mm,并据此计算试件的承压面积。 2.2 将试件安放在试验机的下压板上,试件的承压面与成型时的顶面

喷射混凝土设计

喷射混凝土设计 喷射混凝土的配比与强度 喷射混凝土的常用配比 在锚喷支护巷道中,喷射混凝土的主要目的是封闭围岩,防止围岩风化和裂隙的演化。为确保质量,必须使喷层密实、均匀,达到设计强度。煤矿中常用喷射混凝土的强度为25~33MPa,常用的配比为水泥:砂:石子=1:2:2,优选配比为水泥:砂:石子=1:1.8:2.2,或1:2.25:2.75,或1:2.3:2.7。 影响喷射混凝土强度质量的因素很多,除了水泥、石子、砂的配比外,还有水泥种类与标号、品质,砂与石子的粒度、品质和级配,养护条件、温度与喷射厚度,速凝剂质量与掺量等。要得到具体的水泥、砂、石子和速凝剂条件下强度指标,需要经过大量的试验才能取得,并且试验结果具有较大的离散性。 喷射混凝土配比与强度指标 影响喷射混凝土强度的因素分析 (1)水泥 喷射混凝土常用的是普通硅酸盐水泥,这种水泥来源广,又能满足普通喷射混凝土的大部分要求,而且同速凝剂有较好的相容性。水

泥标号不低于325号。当岩石、地下水或配制用水含有可溶性硫酸盐时,应使用抗硫酸盐水泥。当要求喷射混凝土具有较高早期强度时,可以使用硫铝酸盐水泥或其他早强水泥。 (2)水灰比 水灰比是影响喷射混凝土强度的主要因素。在混凝土中,水的作用主要是与水泥发生化学反应,使混凝土产生强度。但这种起作用的水仅占水泥重量约15~25%,而多余的水份只是在混凝土内起润滑作用,使所喷的混凝土在喷射过程中具有足够的和易性,不满足施工要求。 喷射混凝土喷射到岩石后,在硬化过程中,多余的水份逐渐蒸发,使混凝土产生微细的孔隙,造成喷射混凝土的密实性和强度降低。因此,在满足施工条件的情况下.应将水灰比控制在较低范围。煤矿井下喷射混凝土的水灰比应控制在0.4~0.45范围内。如水泥用量过多,将导致喷射混凝土产生收缩裂缝的可能性加大。增大水灰比则又降低了混凝土的强度。另外,喷射混凝土施工时,水灰比的控制完全是由喷射手的感觉和经验来判断的。因此,提高喷射手的喷射理论水平和施工操作技术是保证喷射强度稳定的重要环节。 (3)速凝剂掺量 速凝剂掺量直接影响喷射混凝土早期及后期强度。速凝剂能加快喷射混凝土早期强度的增长,但后期强度也相应的有所损失。一般来说,混凝土早期强度增长愈快,其后期强度损失也愈大。因此,速凝剂的掺量要严格控制在正确范围,速凝剂掺量应以水泥初凝时间为3~5min.,终凝10min.以内。一般速凝剂掺入量为水泥的2.5%~4%。 (4)砂、石质量及级配 砂、石质量的好坏,对喷射混凝土强度有着很大的影响。 ①砂:砂子级配不良或砂子太细,都要增加水泥用量或加大水灰比。喷射混凝土应用质地坚硬、洁净,级配良好的中砂,细度模量应大于2.5。其中,直径小于0.075mm的颗粒应少于20%。为取得最大

钢筋和混凝土的力学性能.

《混凝土结构设计原理》习题集 第1章 钢筋和混凝土的力学性能 一、判断题 1~5错;对;对;错;对; 6~13错;对;对;错;对;对;对;对; 二、单选题 1~5 DABCC 6~10 BDA AC 11~14 BCAA 三 、填空题 1、答案:长期 时间 2、答案:摩擦力 机械咬合作用 3、答案:横向变形的约束条件 加荷速度 4、答案:越低 较差 5、答案:抗压 变形 四、简答题 1.答: 有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度y f 作为钢筋的强度极限。另一个强度指标是钢筋极限强度u f ,一般用作钢筋的实际破坏强度。 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。

设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb ,其中σb 为无明显流幅钢筋的极限抗拉强度。 图2-2硬钢拉伸试验的应力应变曲线 2.答: 目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3.答: 钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 4.答: 混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm 的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm 2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度f ck ,单位N/mm 2。 A F f ck f ck ——混凝土立方体试件抗压强度; F ——试件破坏荷载; A ——试件承压面积。 5. 答: 我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm 棱

普通混凝土的组成及性能

模块5 普通混凝土的组成及性能 一、教学要求 1.知识要求 (1)混凝土的含义、分类; (2)混凝土组成材料的作用; (3)水泥强度等级的选择; (4)粗、细集料的含义和种类; (5)集料粗细程度和颗粒级配的含义和表示方法; (6)针、片状颗粒对混凝土质量的影响; (7)粗集料强度的表示方法; (8)混凝土拌合用水的基本要求; (9)混凝土外加剂的含义和分类,减水剂的含义、作用机理和常用品种,早强剂的含义和种类,泵送剂的含义和特点; (10)普通混凝土的和易性(流动性、黏聚性、保水性)的含义、测定方法和影响因素,恒定用水量法则的含义; (11)混凝土抗压强度试验方法、强度等级和影响因素; (12)混凝土耐久性的含义和内容,碱-集料反应产生的条件与防止措施。 2.技能要求 (1)能根据筛分结果,正确评定细集料的粗细程度和颗粒级配; (2)能合理选择粗集料的最大粒径; (3)能对普通混凝土拌合物的坍落度进行选择和调整; (4)会混凝土非标试件强度值的换算,能正确运用混凝土强度公式,能采用合理措施提高混凝土的强度; (5)能合理采用提高混凝土耐久性的具体措施。 3.素质要求 (1)培养学生严谨科学的工作和学习态度; (2)培养学生的安全和团队意识。 二、重点难点 1.教学重点 (1)砂的筛分与细度模数; (2)普通混凝土的和易性、强度、耐久性等性质; (3)混凝土强度的影响因素 (4)减水剂的含义与应用。

2.教学难点 (1)集料级配; (2)砂的筛分试验与细度模数的计算和级配评定; (3)减水剂的作用机理。 三、教学设计 【参见:学习情境教学设计(模块5)】 四、教学评价 通过理论考试和校内实验操作、企业实践见习、在线学习记录、课堂学习状态等考查,采取学生讨论和教师评价相结合的方式对学生进行考核,重点评价学生对建筑材料基础知识的掌握情况和对建筑材料综合应用的相关技能。 五、教学内容 第1讲普通混凝土用的水泥和集料 混凝土,过去简称“砼”,是指由胶凝材料将集料胶结成整体的工程复合材料。 普通混凝土是指用水泥作胶凝材料,砂、石作集料,与水(可选择添加剂和矿物掺合料)按一定比例配合,经搅拌、成型、养护而成的人造石材。 混凝土原料丰富、价格低廉、生产工艺简单、抗压强度高、耐久性能好、强度等级范围宽,在土木工程中广为使用。但也存在自重大、养护周期长、抗拉强度低、导热系数大、生产周期长、变形能力差、易出现裂缝等缺点。 ◆混凝土的分类: 按胶结材料分:水泥混凝土、沥青混凝土、石膏混凝土、聚合物混凝土等。 按体积密度分:重混凝土(ρ0>2800kg/m3)、普通混凝土(ρ0=2000-2800kg/m3)、轻混凝土(ρ0<1950kg/m3) 。 按强度等级分:普通混凝土(f c<60MPa)、高强混凝土(f c=60-100MPa)、超高强混凝土(f c >100MPa)。 按用途分:结构混凝土、水工混凝土、特种混凝土(耐热、耐酸、耐碱、防水、防辐射等)。 按施工方法分:预拌混凝土、泵送混凝土、碾压混凝土、喷射混凝土等。 ◆普通混凝土的基本组成材料是胶凝材料、粗集料(石子)、细集料(砂)和水。胶凝材料是混凝土中水泥和掺合料的总称。 砂、石在混凝土中起骨架作用,称为集料(骨料)。 胶凝材料和水形成灰浆,包裹在粗细集料表面并填充集料间的空隙。

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能 问答题参考答案 1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增 f作为钢筋的强度极限。另一个强度指标是加以致无法使用,所以在设计中采用屈服强度 y f,一般用作钢筋的实际破坏强度。 钢筋极限强度 u 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。 设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

图2-2硬钢拉伸试验的应力应变曲线 2. 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级? 答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi ,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV 、20MnSiNb 、20MnTi ,符号,Ⅲ级)、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3. 钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法? 答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。 冷加工方法有冷拨、冷拉、冷轧、冷扭。 冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。 4. 什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质? 答:均匀伸长率δgt 为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。 s b gt E l l l 000'σδ+-= 0l ——不包含颈缩区拉伸前的测量标距;'l ——拉伸断裂后不包含颈缩区的测量标距;0b σ——实测钢筋拉断强度;s E ——钢筋弹性模量。 均匀伸长率δgt 比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。 5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是

普通混凝土力学性能试验方法标准

普通混凝土力学性能试验方法 2004-5-23 15:57:28 admin 普通混凝土力学性能试验方法GBJ81―85 主编部门:城乡建设环境保护部批准部门:中华人民国计划委员会施行日期:1986 年7 月1 日关于发布《普通混凝土拌合物性能试验方法》等三本标准的通知计标〔1985〕1889 号根据原建委(78)建发设字第562 号通知的要求,由城乡建设部中国建筑科学研究院会同有关单位共同编制的《普通混凝土拌合物性能试验方法》等三本标准,已经有关部门会审。现批准《普通混凝土拌合物性能试验方法》GBJ80 -85、《普通混凝土力学性能试验方法》GBJ81-85 和《普通混凝土长期性能和耐久性能试验方法》GBJ82―85 等三本标准为标准,自一九八六年七月一日起施行。该三本标准由城乡建设部管理,其具体解释等工作由中国建筑科学研究院负责。出版发行由我委基本建设标准定额研究所负责组织。

计划委员会一九八五年十一月二十五日编制说明本标准是根据原建委(78)建发设字第562 号通知的要求,由中国建筑科学研究院会同各有关单位共同编制而成的。在编制过程中,作了大量的调查研究和试验论证工作,收集并参考了国际标准和其它国外有关的规标准,经过反复讨论修改而成的。在编制过程中曾多次征求全国各有关单位的意见,最后才会同有关部门审查定稿。本标准为普通混凝土基本性能中有关力学性能的试验方法。容包括立方体抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度以及抗折强度等五个方法。由于普通混凝土力学性能试验涉及围较广,本身又将随着仪器设备的改进和测试技术的提高而不断发展,故希望各单位在执行本标准过程中,注意积累资料、总结经验。如发现有需要修改补充之处,请将意见和有关资料寄中国建筑科学研究院混凝土研究所,以便今后修改时参考。城乡建设环境保护部一九八五年七月第一章总则第1.0.1 条为了在确定混凝土设计特征值、检验或控制现浇混凝土工程或预制构件的质量时,有一个统一的混凝土力学性能试验方法,特制订本标准。第1.0.2 条本标准适用于工业与民用建筑和一般构筑物中所用普通混凝土的基本性能试验。

普通混凝土习题

水泥混凝土习题(四) 一. 名词解释 1. 环箍效应 2. 混凝土强度等级 3.混凝土立方体抗压标准强度 4. 混凝土的龄期 5. 自然养护 6. 混凝土标准养护 7. 蒸汽养护8. 蒸压养护9. 混凝土强度保证率 10. 混凝土配制强度11. 轴心抗压强度12. 抗折强度 二. 是非判断题(对的画√,错的画×) 1. 混凝土制品采用蒸汽养护的目的,在于使其早期和后朗强度都得提高。 ( ) 2. 流动性大的混凝土比流动性小的混凝土强度低。( ) 3. 在其它原材料相同的情况下,混凝土中的水泥用量越多混凝土密实度和强 越高。( ) 4. 在常用水灰比范围内,水灰比越小,混凝土强度越高,质量越好。( ) 5. 普通混凝土的强度与水灰比成线性关系。( ) 6. 混凝土的强度平均值和标准差,都是说明混凝土质量的离散程度的。 ( ) 7.混凝土立方体抗压强度的标准试件尺寸为100mm。( ) 8.混凝土强度等级用立方体抗压强度来划分。() 9.P8表示在一定试验条件下混凝土能抵抗的最大水压力为0.8MPa。 ( ) 10.用高强度等级的水泥一定能配制出强度高的混凝土。( ) 11.粉煤灰水泥适用于有早强要求的混凝土工程。( ) 12.流动性大的混凝土比流动性小的混凝土强度低。( ) 13.在其它材料相同的情况下,混凝土中水泥用量越大,混凝土越密实,强度越高。( ) 14.砂率不影响混凝土的强度。( ) 15.配制混凝土的水泥的强度等级并非越高越好。( ) 16.混凝土中水泥浆的用量是根据混凝土的强度而确定的。 ()

17.混凝土的流动性越小,其强度就会越低。 ( ) 18.水灰比越大,混凝土的强度越高。 ( ) 三. 填空题 1. 通用的混凝土强度公式是 ;而混凝土试配强度与设计标号之 间的关系式是 2. 确定混凝土材料的强度等级,其标准试件尺寸为 ,其标准养 温度 ,湿度 ,养护 d 测定其强度值。 3. 混凝土用砂当其含泥量较大时,将对混凝土产生 、 和 等影响。 4. 混凝土的非荷载变形包括 和 。 四.单项选择 1. 混凝土施工规范中规定了最大水灰比和最小水泥用量,是为了保证( )。 A 、强度 B 、耐久性 C 、和易性 D 、混凝土与钢材的相近线膨胀系数 2. 用标准方法测得某混凝土抗压强度为27Mpa ,该混凝土的强度等级为 ( )。 A 、C30 B 、C15 C 、C20 D 、C25 3. 掺用引气剂后混凝土的( )显著提高。 A 、 强度 B 、抗冲击性 C 、 弹性模量 D 、抗冻性 4. 混凝土的棱柱体强度f cp 与混凝土的立方体强度f cu 二者的关系()。 A 、 cu cp f f > B 、 cu cp f f = C 、 cu cp f f < D 、cu cp f f ≤ 五.问答题 1.水灰比影响混凝土的和易性以及强度吗?说明它是如何影响的。 2.砂率影响混凝土的和易性以及强度吗?说明它是如何影响的。 3.普通混凝土的强度等级是如何划分的?有哪几个强度等级? 4. 为什么混凝土的试配强度必须高于其设计强度等级? 5. 用数理统计法控制混凝土质量可用哪些参数? 6. 制备高强度混凝土可采取哪些措施? 7. 混凝土有几种变形?

高性能混凝土

研究生课程论文 学院土木工程专业建筑与土木工程课程名称高性能混凝土 研究生姓名 ****** 学号 ************ 开课时 ****** 至 ** 学年第 ** 学期

说明 一、研究生课程论文必须与本封面一起装订。阅卷教师务必用红笔批阅,并在本封面规定位置打分、写完评语后连同成绩登记表(一式两份)交学院研究生秘书,各学院研究生秘书在第二学期开学后两周内将成绩登记表交研究生学院。论文由开课学院研究生办公室保管。 二、该封面请用A4纸双面打印,将此说明打印于封面背面。

高性能混凝土的发展及其应用 ***(*******) 湖南科技大学土木工程学院,***** 摘要:本文阐述了高性能混凝土的发展现状及最新研究成果,讨论了高性能混凝土的定义,对其优异特性进行了较为详尽的分析"在总结了高性能混凝土成分设计的基础上,提出了一些需要关注的意见和建议。最后,列举了近三十年来高性能混凝土在国内外路桥建设中的应用实例!从中可知高性能混凝土已经成为路桥工程建设中最为重要的结构材料之一。 关键字:高性能混凝土;性能;成分设计;路桥建设 1高性能混凝土的定义 关于高性能混凝土的研究最早是由挪威学者在1986年提出的:掺入挪威盛产的硅灰,能大大提高混凝土的强度"抗渗性、抗氯离子扩散性、从而提高混凝土的耐久性。而高性能混凝这个概念则是在1990年5月由美国混凝土协会( (ACI)正式提出。高性能混凝土指的是具有高耐久性、高强度性、优良工作性、高体积稳定性的混凝土材料。各国学者对高性能混凝土的研究有着自己的侧重点。美国学者更强调耐久性和尺寸稳定性,而日本学者偏重高工作性。我国大多数研究者比较赞同冯乃谦、吴中伟等提出的观点: 高性能混凝土应具备高耐久性,要在高强度基础上与使用环境结合考虑;此外,良好流动性也必不可少。当然,在实际研究与应用中,需要综合考量各方面因素,对高性能混凝土中的某些性能酌情偏重。 2高性能混凝土的特性 Neville等认为高性能混凝土在成分上与一般混凝土有较大的区别(首先,高性能混凝土通常含有硅灰+粉煤灰或磨细高炉矿渣等活性矿物掺合料;其次,骨料的粒径要小于普通混凝土,再者,必须使用新型高效减水剂"在合理控制配合参数和施工工艺后,高性能混凝土能表现出以下一些特性。 2.1工作性 高性能混凝土具有优良的工作性能,包括高流动性、高聚性、可浇注性等、塑性

喷射混凝土支护

目录 一、喷射混凝土支护的主要特点 (2) 二、喷射混凝土的原材料及其配比 (3) 三、喷射混凝土的主要工艺参数 (5) 四、喷射混凝土支护结构 (8)

喷射混凝土支护 一、喷射混凝土支护的主要特点 喷射混凝土是一种原材料与普通混凝土相同,而施工工艺特殊的混凝土。喷射混凝土是将水泥、砂、石、按一定的比例混合搅拌后,送入混凝土喷射机中,用压缩空气将干拌合料压送到喷头处,在喷头的水环处加水后,高速喷射到巷道围岩表面,起支护作用的一种支护形式和施工方法。在矿山井巷,采用与锚杆支护相结合的喷射混凝土支护,取代原有的料石砌碹、混凝土衬砌,取得了明显的效果。 喷射混凝土支护的主要特点:O1技术上先进,质量上可靠。过去用钢、木支护、料石、混凝土碹支护只有消极地承受上部松动围岩的重量,维持巷道的稳定性。喷射混凝土支护则是充分考虑和积极发挥围岩本身自稳作用,喷射混凝土与围岩自稳能力相结合,变被动为主动,变消极为积极。喷射混凝土利用压气高速喷射到围岩表面的节理、裂隙中,把节理、裂隙分隔的岩体联结起来,有效地阻止岩块的松动和滑移。喷射混凝土形成一种紧贴岩面的封闭层,隔绝了水和空气对围岩的风化和剥蚀作用,防止因围岩风化、剥蚀而影响巷道稳定性和正常使用。喷射混凝土支护可填补由于爆破而形成的巷道围岩表面凸凹不平,使其成形圆滑规整,避免了应力集中。喷射混凝土支护紧跟掘进工作面,以最快的速度施工,有效减少围岩的暴露时间,有利于迅速控制或稳定围岩因爆破引起的扰动,从而大大地提高了围岩的稳定性和自撑能力。同时喷射混凝土同围岩岩层紧密粘结在一起,实际上组成了围岩和支护为一体的共同受力系统。把过去认为是荷载的岩层转化的承

相关主题
文本预览
相关文档 最新文档