如东市2011届高三第一次数学模拟考试试卷
- 格式:doc
- 大小:835.50 KB
- 文档页数:12
江苏省南通市2011届高三第一次调研测试数学试卷一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.......... 1.已知集合M={-1,1},{|124}x N x =≤≤,则M N = .2.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)的概率为 . 3.设(12i)34i z +=-(i 为虚数单位),则||z = . 4.根据右图的算法,输出的结果是 .5.某校对全校1200名男女学生进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生抽了85人,则该校的男生数应是 人.6.若“2230x x -->”是“x a <”的必要不充分条件,则a 的最大值为 . 7.设a ,b 为空间的两条直线,α,β为空间的两个平面,给出下列命题: (1)若a ∥α,a ∥β,则α∥β; (2)若a ⊥α,a ⊥β,则α∥β; (3)若a ∥α,b ∥α,则a ∥b ; (4)若a ⊥α,b ⊥α,则a ∥b . 上述命题中,所有真命题的序号是 .8.双曲线221412x y -=上一点M 到它的右焦点的距离是3,则点M 的横坐标是 .9.函数()()sin f x x x x ωω=∈R ,又()2f α=-,()0f β=,且αβ-的最小值等于π2,则正数ω的值为 .10.若圆C :22()(1)1x h y -+-=在不等式10x y ++≥所表示的平面区域内,则h 的最小值为 . 11.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在AOB ∠的平分线上,且OC =C 的坐标是 .12.已知函数3221()(21)13f x x x a x a a =++-+-+,若()0f x '=在(1,3]上有解,则实数a 的取值范围为 .13.已知21(),()()2x f x x g x m ==-,若对[]11,3x ∀∈-,[]20,2x ∃∈,12()()f x g x ≥,则实数m 的取值范围是 .14,则该三角形的面积的最大值是 .For from 1 to 10End for Print EndS I S S I S ←←+(第4题)二.解答题:本大题共6小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知向量a ,b 满足|a |=2,|b |=1,|a -b |=2. (1)求a·b 的值; (2)求|a +b |的值. 16.(本题满分14分)如图,已知□ABCD ,直线BC ⊥平面ABE ,F 为CE 的中点. (1)求证:直线AE ∥平面BDF ;(2)若90AEB ∠= ,求证:平面BDF ⊥平面BCE . 17.(本题满分15分)如图,某市准备在道路EF 的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC ,该曲线段是函数2πsin()3y A x ω=+()0,0A ω>>,[]4,0x ∈-时的图象,且图象的最高点为B (-1,2)。
江苏某重点中学2011年高三摸底试卷数学[内部资料]2010.07一、选择题(本大题共12小题,,每小题5分,共60分.在每小题给出的四个选项中,选出一个符合题目要求的选项)1.已知全集=⋃≤=≤==)(},12|{},0lg |{,B A C x B x x A R U U x 则集合 ( )A .)1,(-∞B .),1(+∞C .]1,(-∞D .),1[+∞2.已知抛物线x y 82=的焦点与双曲线1222=-y ax 的一个焦点重合,则该双曲线的离心率为( )A .5154 B .332 C .3D .33.已知关于x 的二项式n xax )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为( )A .1B .1±C .2D .2± 4.若)232cos(,31)6sin(απαπ+=-则的值为( )A .31 B .31-C .97 D .97-5.已知数列n a a a a n n n +==+11,1,}{中,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是( )A .?8≤nB .?9≤nC .?10≤nD .?11≤n6.若直线032:1:22=--++=x y x C kx y l 被圆截得的弦最短,则直线l 的方程是( ) A .0=x B .1=yC .01=-+y xD .01=+-y x7.设函数,))((为奇函数R x x f ∈=+=+=)5(),2()()2(,21)1(f f x f x f f 则 ( )A .0B .1C .25 D .58.已知函数))()(()(b a b x a x x f >--=其中的图像如图所示,则函数x x b a x g +=)(的图像是 ( )9.已知直线βαβα⊂⊥m l m l ,,,,,且平面,给出下列四个命题 ①若m l ⊥则,//βα;②若βα//,则m l ⊥;③若m l //,则βα⊥;④若βα⊥则,//m l 其中正确命题的个数是 ( )A .0B .1C .2D .310.已知y x z c y x y x x y x +=⎪⎩⎪⎨⎧≥++-≤+≥302,42,且目标函数满足的最小值是5,则z 的最大值是 ( )A .10B .12C .14D .1511.已知函数a axxx x f 其中,1ln )(-+=为大于零的常数,若函数),1[)(+∞在区间x f 内调递增,则a 的取值范围是A .(,1]-∞B .(,1]-∞-C .[1,)+∞D .[1,)-+∞12.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为 ( ) A .6种 B .12种C .18种D .24种二、填空题(本大题共4小题,每小题5分,共20分)13.已知=≤≤-=-≤≤--)13(,4.0)13(),,1(~2x P X P N X 则若σ .14.在R 上定义运算1)()(,1(:<+⊗--=⊗⊗a x a x y x y x 若不等式对一切实数x 都成立,则实数a 的取值范围是 .15.在区间[1,4]上任取实数a ,在区间[0,3]上任取实数b ,使函数b x ax x f ++=2)(有两个相异零点的概率是 .3eud 教育网 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 教学资源集散地。
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1B .2C .3D .43.已知复数1cos23sin 23z i =+和复数2cos37sin37z i =+,则12z z ⋅为 A .1322i - B .3122i + C .1322i + D .3122i - 4.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<5.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-327.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如16511=+,30723=+.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .114B .112C .328D .以上都不对8.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .1409.已知等差数列{}n a 的前n 项和为n S ,且43a =-,1224S =,若0+=i j a a (*,i j ∈N ,且1i j ≤<),则i 的取值集合是( ) A .{}1,2,3B .{}6,7,8C .{}1,2,3,4,5D .{}6,7,8,9,1010.下列命题中,真命题的个数为( ) ①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题. A .0 B .1C .2D .311.设全集U=R ,集合()2log 41{|}A x x =-≤,()()35{|}0B x x x =-->,则()U B A =( )A .[2]5,B .[2]3,C .[)24,D .[)34,12.已知向量(1,0)a =,(1,3)b =,则与2a b -共线的单位向量为( )A .13,2⎛ ⎝⎭B .132⎛- ⎝⎭C .3221⎛⎫- ⎪ ⎪⎝⎭或3,221⎛⎫- ⎪ ⎪⎝⎭D .13,22⎛- ⎝⎭或132⎛- ⎝⎭ 二、填空题:本题共4小题,每小题5分,共20分。
高三数学考前模拟练习(密卷)I 卷(文理科必做)(满分 160分 时间 120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知z 和iz -+12都是纯虚数,那么=z . 2.设全集U ={1,3,5,7},集合M ={1,a -5},M ⊆U ,U M ={5,7},则实数a = . 3.某工厂生产了某种产品3000件,它们来自甲、乙、丙三条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线抽取的个数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则乙生产线生产了 件产品.4.若()f x =sin()4a x π++3sin()4x π-是偶函数,则实数a = . 5.从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于4的概率是 .6.如右图,函数y =()f x 的图象在点P 处的切线方程,y =-x +5,在(3)f -/(3)f = .7.定义某种新运算⊗:S =a ⊗b 的运算原理如右边流程图所示,则5⊗4-3⊗6= .8.如图,四边形ABCD 中,若AC =3,BD =1,则AB DC AC BD ⋅(+)(+)= .9.有三个球和一个正方体,第一个球与正方体的各个面相切,第二个球与正方体的各条棱相切,第三个球过正方体的各个顶点,则这三个球的表面积之比为 . 10.若A ,B ,C 为△ABC 的三个内角,则4A+1B C +的最小值为 .11.双曲线2222x y a b-=1(a >0,b >0)的左、右焦点分别是1F ,2F ,过1F 作倾斜角30︒的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率e = .12.设)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,若函数)()(x g x f +的值域为)3,1[,则)()(x g x f -的值域为 .13.已知函数()f x =3x +2(1)a x -+3x +b 的图象与x 轴有三个不同交点,且交点的横坐标分别可作为抛物线、双曲线、椭圆的离心率,则实数a 的取值范围是 . 14. 对正整数n ,设曲线)1(x x y n-=在2=x 处的切线与y 轴交点的纵坐标为n a , 则数列⎭⎬⎫⎩⎨⎧+1n a n 的前n 项和=n S . 二、解答题:本大题共6小题,共计90分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且A ,B,C 成等差数列.(1)若AB BC ⋅=32-,b ,求a +c 的值;(2)求2sin sin A C -的取值范围.16.(本小题满分14分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)求三棱锥D -AEC 的体积;(3)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE.17.(满分14分)本题有2小题,第1小题6分,第2某分公司经销某种品牌产品,每件产品的成本为a 元(62≤≤a )的管理费,预计当每件产品的销售价为x 元(97≤≤x )时,一年的销售量为)12(x -万件.(1)求该分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,该分公司一年的利润L 最大,并求L 的最大值)(a Q .18.(本小题满分16分)已知圆C 过点P (1,1),且与圆M :2(2)x ++2(2)y +=2r (r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值;(3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.19.(本小题满分16分)设数列{}n a 的前n 项和为n S ,且满足n S =2-n a ,n =1,2,3,…. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1b =1,且1n b +=n b +n a ,求数列{}n b 的通项公式; (3)设n c =n (3-n b ),求数列{}n c 的前n 项和为n T .20.(本小题满分16分)已知二次函数g (x )对任意实数x 都满足()()21121g x g x x x -+-=--,且()11g =-.令()19()ln (,0)28f xg x m x m x =+++∈>R .(1)求 g (x )的表达式;(2)若0x ∃>使()0f x ≤成立,求实数m 的取值范围;(3)设1e m <≤,()()(1)H x f x m x =-+,证明:对12[1]x x m ∀∈,,,恒有12|()()| 1.H x H x -<高三数学考前模拟练习(密卷) II 卷(满分:40分 时间:30分钟)一、选做题:本大题共4小题,请从A 、B 、C 、D 这4题中选做2小题,如果多做,则按所做的前两题记分.每小题10分,共20分.解答时应写出文字说明、证明过程或演算步骤. 21.B (4-2矩阵与变换,本题满分10分)已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11⎡⎤⎢⎥⎣⎦,求矩阵A .21.C (4-2极坐标与参数方程,本题满分10分)椭圆中心在原点,离心率为12,点(,)P x y 是椭圆上的点,若2x -的最大值为10,求椭圆的标准方程.二、必答题:本大题共2小题,共20分,请在答题卡指定区域.......内作答,解答应写出文字说明,证明步骤或演算步骤.22. 如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与A C 所成角的余弦值;(2)求二面角A -BE -C 的余弦值.23.(本题满分10分)已知1(1)2nx +展开式的各项依次记为1231(),(),(),(),()n n a x a x a x a x a x +.设1231()()2()3(),()(1)()n n F x a x a x a x na x n a x +=+++++.(Ⅰ)若123(),(),()a x a x a x 的系数依次成等差数列,求n 的值; (Ⅱ)求证:对任意12,[0,2]x x ∈,恒有112|()()|2(2)1n F x F x n --≤+-.高三数学考前模拟练习(密卷)答题纸2011053014小题,每小题5分,共计70分1. 2. 3.A OE C (第22题)4. 5. 6.7. 8. 9.10. 11. 12.13. 14.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)17.(本小题满分14分)18.(本小题满分16分) 19.(本小题满分16分)高三数学考前模拟练习(密卷)答案1. i 22.8.解析:由a -5=3,得a =8.3.1000.解析:因为a ,b ,c 构成等差数列,根据分层抽样的原理,所以甲、乙、丙三条生产线生产的产品数也成等差数列,其和为3000件,所以乙生产线生产了1000件产品. 4.-3.解析:由()f x 是偶函数可知,()f x -=()f x 对任意的x ∈R 恒成立,即sin()4a x π-++3sin()4x π--=sin()4a x π++3sin()4x π-,化简得2a =-6,a =-3. 5.15.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有5×5=25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.6.3.解析:函数y =()f x 的解析式未知,但可以由切线y =-x +5的方程求出(3)f =2,而/(3)f =k 切=-1,故(3)f -/(3)f =3.7.1.解析:由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1. 8.2.解析:AB DC AC BD ⋅(+)(+)=AC CB DB BC AC BD ⋅(+++)(+)=AC DB AC BD ⋅(+)(+)=AC BD AC BD ⋅(-)(+)=22AC BD -=2.9.1︰2︰3.解析:不妨设正方体的棱长为1,则这三个球的半径依次为12,2,从而它们的表面积之比为1︰2︰3. 10.9π.解析:因为A +B +C =π,且(A +B +C )·(4A +1B C+)=5+4·B C A ++AB C +≥5+24B C A A B C +⋅⋅+=9,因此4A +1B C +≥9π,当且仅当4·B C A +=AB C +,即A =2(B +C )时等号成立.11.3.解析:如图,在Rt △12MF F 中,∠12MF F =30︒,12F F =2c ,所以1MF =2cos30c ︒=433c ,2MF =2tan30c ⋅︒=233c .所以2a =1MF -2MF =433c -233c =233c ,故e =ca=3.12. ]1,3(--13.(-3,-2).解析:由题意知,三个交点分别为(1,0),(1x ,0),(2x ,0),且0<1x <1<2x .由(1)f =0可知b =-a -3,所以()f x =3x +2(1)a x -+3x +b =(x -1)(2x +ax +a +3),故2x +ax +a +3=0的两根分别在(0,1),(1,+∞)内.令()g x =2x +ax +a +3,则(0)0(1)0g g >⎧⎨<⎩,,得-3<a <-2.14..2221)21(21-=--=+n n n S 15.解析:(1)因为A ,B ,C 成等差数列,所以B =3π. 因为AB BC ⋅=32-,所以cos()ac B π-=32-,所以12ac =32,即ac =3.因为b =3,2222cos b a c ac B =+-,所以22a c ac +-=3,即2()3a c ac +-=3. 所以2()a c +=12,所以a +c =23.(2)2sin sin A C -=22sin()sin 3C C π--=312(cos sin )sin 22C C C +-=3cos C .因为0<C <23π,所以3cos C ∈3(3)2-,.所以2sin sin A C -的取值范围是3(3)2-,.16.解:(2)31==--ADC E AEC D V V ×22×342= (3)在三角形ABE 中过M 点作MG ∥AE 交BE 于G 点,在三角形BEC 中过G 点作GN ∥BC 交EC 于N 点,连MN,则由比例关系易得CN =CE 31.MG ∥AE MG ⊄平面ADE, AE ⊂平面ADE, ∴MG ∥平面ADE同理, GN ∥平面ADE ∴平面MGN ∥平面ADE 又MN ⊂平面MGN ∴MN ∥平面ADE∴N 点为线段CE 上靠近C 点的一个三等分点17.解:(1)该分公司一年的利润L (万元)与每件产品的售价x 的函数关系式为:)12)(2(x a x L ---=,]9,7[∈x .………………………6分(2)当42<≤a 时,此时,92148<+≤a , 所以,当214+=a x 时,L 的最大值4)10()(2a a Q -=, ……………3分当64≤≤a 时,此时,102149≤+≤a , 所以,当9=x 时,L 的最大值)7(3)(a a Q -=.…………………3分 答:若42<≤a ,则当每件产品售价为214+a 元时,该分公司一年的利润L 最大,最大值4)10()(2a a Q -=;若64≤≤a ,则当每件产品售价为9元时,该分公司一年的利润L 最大,最大值)7(3)(a a Q -=. ……………………2分18.(1)设圆心C (a ,b ),则2220222 1.2a b b a --⎧++=⎪⎪⎨+⎪=⎪+⎩,解得00.a b =⎧⎨=⎩,则圆C 的方程为2x +2y =2r ,将点P 的坐标代入,得2r =2,故圆C 的方程为2x +2y =2.(2)设Q (x ,y ),则2x +2y =2,且PQ MQ ⋅=(x -1,y -1)·(x +2,y +2)=2x +2y +x +y -4=x +y -2,所以PQ MQ ⋅的最小值为-4(可由线性规划或三角代换求得).(3)由题意,知直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1). 由221(1)2y k x x y -=-⎧⎨+=⎩,,得22(1)k x ++2k (1-k )x +2(1)k --2=0. 因为点P 的横坐标x =1一定是该方程的解,故可得A x =22211k k k --+,同理B x =22211k k k +-+.所以AB k =B A B A y y x x --=(1)(1)B A B A k x k x x x -----=2()B A B Ak k x x x x -+-=1=OP k . 所以直线OP 和AB 一定平行.19.(1)因为n =1时,1a +1S =1a +1a =2,所以1a =1.因为n S =2-n a ,即n a +n S =2,所以1n a ++1n S +=2.两式相减:1n a +-n a +1n S +-n S =0,即1n a +-n a +1n a +=0,故有12n a +=n a . 因为n a ≠0,所以1n n a a +=12( n ∈*N ). 所以数列{}n a 是首项1a =1,公比为12的等比数列,n a =112n -⎛⎫⎪⎝⎭( n ∈*N ).(2)因为1n b +=n b +n a ( n =1,2,3,…),所以1n b +-n b =112n -⎛⎫⎪⎝⎭.从而有21b b -=1,32b b -=12,43b b -=212⎛⎫⎪⎝⎭,…,1n n b b --=212n -⎛⎫ ⎪⎝⎭( n =2,3,…).将这n -1个等式相加,得n b -1b =1+12+212⎛⎫ ⎪⎝⎭+…+212n -⎛⎫⎪⎝⎭=1112112n -⎛⎫- ⎪⎝⎭-=2-1122n -⎛⎫⎪⎝⎭.又因为1b =1,所以n b =3-1122n -⎛⎫⎪⎝⎭( n =1,2,3,…).(3)因为n c =n (3-n b )=1122n n -⎛⎫⎪⎝⎭,所以n T =022111111223(1)22222n n n n --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. ① 12n T =123111111223(1)22222n nn n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. ② ①-②,得12n T =021111122222n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-122nn ⎛⎫⎪⎝⎭.故n T =1124112n⎛⎫- ⎪⎝⎭--142n n ⎛⎫ ⎪⎝⎭=8-82n -142nn ⎛⎫ ⎪⎝⎭=8-1(84)2n n +( n =1,2,3,…).20. 【解】 (1)设()2g x ax bx c =++,于是()()()()2211212212g x g x a x c x -+-=-+=--,所以121.a c ⎧=⎪⎨⎪=-⎩, 又()11g =-,则12b =-.所以()211122g x x x =--.…………………4分(2)()2191()ln ln (0).282f x g x m x x m x m x =+++=+∈>R , 当m >0时,由对数函数性质,f (x )的值域为R ;当m =0时,2()02x f x =>对0x ∀>,()0f x >恒成立;………………6分当m <0时,由()0mf x x x x'=+=⇒=[]min ()2mf x f m ==-+这时, []min0()0e<0.20mm f x m m ⎧-+⎪>⇔⇒-<⎨⎪<⎩, ……………………8分 所以若0x ∀>,()0f x >恒成立,则实数m 的取值范围是(e 0]-,. 故0x ∃>使()0f x ≤成立,实数m 的取值范围()(,e]0-∞-+∞,.…………… 10分(3)因为对[1]x m ∀∈,,(1)()()0x x m H x x--'=≤,所以()H x 在[1,]m 内单调递减.于是21211|()()|(1)()ln .22H x H x H H m m m m -≤-=--2121113|()()|1ln 1ln 0.2222H x H x m m m m m m -<⇐--<⇔--<……… 12分记13()ln (1e)22h m m m m m =--<≤,则()221133111()022332h'm m m m =-+=-+>,所以函数13()ln 22h m m m m =--在(1e],是单调增函数,………………… 14分所以()()e 3e 1e 3()(e)1022e 2eh m h -+≤=--=<,故命题成立.……………… 16分21 B .解:设a b A c d ⎡⎤=⎢⎥⎣⎦,由1203a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得,23a c =⎧⎨=⎩, ………5分由1133113a b c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦得,33a b c d +=⎧⎨+=⎩,所以2b d =⎧⎨=⎩ 所以2130A ⎡⎤=⎢⎥⎣⎦. ………10分 21 C .解:离心率为12,设椭圆标准方程是2222143x y c c +=,它的参数方程为⎧⎨⎩2cos 3x y θθ==(θ是参数) ………5分23x 4cos 3sin 5sin()c c c θθθϕ=+=+最大值是5c ,依题意510c =,2c =,椭圆的标准方程是2211612x y += ………10分22. 解:(1)以O 为原点,OB ,OC ,OA 分别为x ,y ,z 轴建立空间直角坐标系. 则有A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). 2 0 00 1 02 1 00 2 1EB AC =-=-=-(,,)(,,)(,,),(,,), ……………………2分cos<,EB AC >2555==-⋅. ………………………………4分由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.………………5分(2)(2 0 1)AB =-,,,(0 1 1)AE =-,,,设平面ABE 的法向量为1()x y z =,,n , 则由1AB ⊥n ,1AE ⊥n ,得20,0.x z y z -=⎧⎨-=⎩目 取n =(1,2,2),平面BEC 的一个法向量为n 2=(0,0,1),………………………………7分1212122cos ||||3144⋅<>===⋅++,n n n n n n .……9分由于二面角A -BE -C 的平面角是n 1与n 2的夹角的补角,其余弦值是-23.… 10 23.解:(Ⅰ)依题意111()()2k k k n a x C x --=,1,2,3,,1k n =+,123(),(),()a x a x a x 的系数依次为01n C =,1122n n C ⋅=,221(1)()28n n n C -⋅=, 所以(1)2128n n n -⨯=+,解得8n =; ………4分(Ⅱ)1231()()2()3(),()(1)()n n F x a x a x a x na x n a x +=+++++01221111112()3()()(1)()2222n n n n n n n n n C C x C x nC x n C x --=+++++0121(2)23(1)n nn n n n n F C C C nC n C -=+++++ 设012123(1)n n n n n n n n S C C C nC n C -=+++++, 则1210(1)32n n n n nn n n S n C nC C C C -=+++++考虑到k n kn n C C -=,将以上两式相加得: 01212(2)()n n n n n n n n S n C C C C C -=+++++所以1(2)2n n S n -=+又当[0,2]x ∈时,'()0F x ≥恒成立,从而()F x 是[0,2]上的单调递增函数, 所以对任意12,[0,2]x x ∈,112|()()|(2)(0)(2)21n F x F x F F n --≤-=+-.………10分。
2008-2009学年度第一学期如东高级中学第一次阶段测试高 三 数 学 试 题(理) 2008.8.22一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在相应位置上 1.设全集U = Z ,A={1,3,5,7,9},B={1,2,3,4,5,6},则右图中阴影部分表示的集合是 ▲ .2.命题“∃x∈R,x 2-2x+l≤0”的否定形式为 ▲ .3.若}06|{},065|{2=-==+-=ax x B x x x A ,且A B A = ,则 a 的值的集合 ▲ .4.0a <是方程2210ax x ++=至少有一个负数根的 ▲ 条件. 5.已知cos tan 0θθ<,那么角θ是第 ▲ 象限角. 6.函数2lg(421)y x x =--的定义域是 ▲ .7.已知x x x f cos 3sin 2)(cos 2-=,则)30(sinf =___ __▲ ______.8.如图,函数()f x 的图象是折线段ABC ,其中A BC ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =___ _▲______.9. 已知函数y =f (x )是定义在R 上的奇函数,且对于任意x ∈R ,都有(3)()f x f x +=-,若f (1)=1,tan 2α=, 则(2005sin cos )f αα的值为 ▲ . 10.已知()x f 是定义域为()()+∞⋃∞-,00,的奇函数,在区间()+∞,0上单调递增,当0>x 时,()x f 的图像如右图所示:若:()()[]0<--⋅x f x f x ,则x 的取值范围是 ▲ .11.若2()log (24)a f x x ax =-+在[,)a +∞上为增函数,则a 的取值范围是_ ▲ _. 12.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=_ _ ▲ _____. 13.若x∈A 则x 1∈A,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为_____▲_____.14.某同学在研究函数 f (x ) = x1 + | x |(x R ∈) 时,分别给出下面几个结论:①等式()()0f x f x -+=在x R ∈时恒成立; ②函数 f (x ) 的值域为 (-1,1); ③若x 1≠x 2,则一定有f (x 1)≠f (x 2);④函数()()g x f x x =-在R 上有三个零点.其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上)二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,再将得到的图象上各点的横坐标伸长到原来的 4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递减区间.16.(14分)已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数。
高中数学学习材料马鸣风萧萧*整理制作2015-2016学年江苏省南通市如东县高三(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分1.设集合A={x|﹣1≤x≤2},B={x|0<x<4},则A∩B=______.2.某校春季高考对学生填报志愿情况进行调查,采用分层抽样的办法抽取样本,该校共有200名学生报名参加春季高考,现抽取了一个容量为50的样本,已知样本中女生比男生多4人,则该校参加春季高考的女生共有______名.3.如果复数z=(i为虚数单位)的实部与虚部互为相反数,那么|z|=______.4.函数f(x)=ln(x﹣x2)的单调递减区间为______.5.如图是一个算法的流程图,则输出的k的值是______.6.若将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,则每个盒子中球数不小于其编号的概率是______.7.设等差数列{a n}的前n项和为S n,若S3≥6,S5≤20,则a6的最大值为______.8.若α,β∈(0,),cos(α﹣)=,sin(﹣β)=﹣,则cos(α+β)的值等于______.9.设向量=(sin,cos),=(sin,cos)(n∈N+),则(•)=______.10.已知直线l:x﹣2y+m=0上存在点M满足与两点A(﹣2,0),B(2,0)连线的斜率k MA与k MB之积为﹣1,则实数m的取值范围是______.11.某工广生产一种无盖冰激凌纸筒为圆柱形,现一客户定制该圆柱纸筒,并要求该圆柱纸筒的容积为27πcm3,设该圆柱纸筒的底面半径为r,则工厂要求制作该圆柱纸筒的材料最省时,r的值为______cm.12.已知等比数列{a n},首项a1=2,公比q=3,a p+a p+1+…+a k=2178(k>p,p,k∈N+),则p+k=______.13.设函数f(x)=,若函数y=f(x)﹣2x+b有两个零点,则参数b的取值范围是______.14.对任意实数x>1,y>,不等式p≤+恒成立,则实数p的最大值为______.二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.15.已知函数f(x)=2cos2x+sin2x.(1)求函数f(x)的最小正周期;(2)在△ABC中,若C为锐角,f(A+B)=0,AC=2,BC=3,求AB的长.16.如图,在正三棱柱ABC﹣A1B1C1中,D是边BC上异于C的一点,AD⊥C1D.(1)求证:AD⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:平面A1EB∥平面ADC1.17.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右准线方程为x=4.(1)求椭圆的标准方程;(2)设P(x1,y1),M(x2,y2)(y2≠y1)是椭圆C上的两个动点,点M关于x轴的对称点为N,如果直线PM,PN与x轴交于(m,0)和(n,0),问m•n是否为定值?若是,求出该定值;若不是,请说明理由.18.如图,某景区有一座高AD为1千米的山,山顶A处可供游客观赏日出,坡角∠ACD=30°,在山脚有一条长为10千米的小路BC,且BC与CD垂直,为方便游客,该景区拟在小路BC上找一点M,建造两条直线型公路BM和MA,其中公路BM每千米的造价为30万元,公路MA每千米造价为30万元.(1)设∠AMC=θ,求出造价y关于θ的函数关系式;(2)当BM长为多少米时才能使造价y最低?19.已知a>0,且a≠1,函数f(x)=a x﹣1,g(x)=﹣x2+xlna.(1)若a>1,证明函数h(x)=f(x)﹣g(x)在区间(0,+∞)上是单调增函数;(2)求函数h(x)=f(x)﹣g(x)在区间[﹣1,1]上的最大值;(3)若函数F(x)的图象过原点,且F′(x)=g(x),当a>e时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.20.已知等差数列{a n}的公差为d,等比数列{b n}的公比为q,且数列{b n}的前n项和为S n.(1)若a1=b1=d=2,S3<a1006+5b2﹣2016,求整数q的值;(2)若S n+1﹣2S n=2,试问数列{b n}中是否存在一点b k,使得b k恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由?(3)若b1=a r,b2=a s≠a r,b3=a t(其中t>s>r,且(s﹣r)是(t﹣r)的约数),证明数列{b n}中每一项都是数列{a n}中的项.2015-2016学年江苏省南通市如东县高三(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分1.设集合A={x|﹣1≤x≤2},B={x|0<x<4},则A∩B={x|0<x≤2} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣1≤x≤2},B={x|0<x<4},∴A∩B={x|0<x≤2},故答案为:{x|0<x≤2}2.某校春季高考对学生填报志愿情况进行调查,采用分层抽样的办法抽取样本,该校共有200名学生报名参加春季高考,现抽取了一个容量为50的样本,已知样本中女生比男生多4人,则该校参加春季高考的女生共有108名.【考点】分层抽样方法.【分析】根据样本容量和女生比男生多4人,可得样本中女生数,再根据抽取的比例可得总体中的女生人数.【解答】解:∵样本容量为50,女生比男生多4人,∴样本中女生数为27人,又分层抽样的抽取比例为=,∴总体中女生数为27×4=108人.故答案为:108.3.如果复数z=(i为虚数单位)的实部与虚部互为相反数,那么|z|=.【考点】复数求模.【分析】利用复数的运算法则及其实部与虚部互为相反数,解得a,再利用复数模的计算公式即可得出.【解答】解:复数z===的实部与虚部互为相反数,∴+=0,解得a=0.∴z=.∴|z|==.故答案为:.4.函数f(x)=ln(x﹣x2)的单调递减区间为[,1).【考点】复合函数的单调性.【分析】令t=x﹣x2>0,求得函数的定义域,f(x)=g(t)=lnt,本题即求函数函数t在定义域内的减区间,再利用二次函数的性质可得结论.【解答】解:令t=x﹣x2>0,求得0<x<1,可得函数的定义域为(0,1),f(x)=g(t)=lnt.本题即求函数t在定义域内的减区间,函数t在定义域内的减区间为[,1),故答案为:[,1).5.如图是一个算法的流程图,则输出的k的值是4.【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:第一次循环,s=5,k=1,第二次循环,s=13,k=2,第三次循环,s=13,k=3,第四次循环,s=29,k=4,退出循环,输出k=4.故答案为:4.6.若将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,则每个盒子中球数不小于其编号的概率是.【考点】古典概型及其概率计算公式.【分析】将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,先求出基本事件总数,每个盒子中球数不小于其编号的情况是1号盒中放1个,2号盒中放2个,求出有多少种放法,由此能求出每个盒子中球数不小于其编号的概率.【解答】解:将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,基本事件总数n=23=8,每个盒子中球数不小于其编号的情况是1号盒中放1个,2号盒中放2个,有=3种放法,∴每个盒子中球数不小于其编号的概率:p=.故答案为:.7.设等差数列{a n}的前n项和为S n,若S3≥6,S5≤20,则a6的最大值为10.【考点】等差数列的前n项和.【分析】由等差数列的前n项和公式得到,由此能求出a6的最大值.【解答】解:∵等差数列{a n}的前n项和为S n,若S3≥6,S5≤20,∴,∴,∴a6=a1+5d=﹣3(a1+d)+4(a1+2d)≤﹣3×2+4×4=10,∴a6的最大值为10.故答案为:10.8.若α,β∈(0,),cos(α﹣)=,sin(﹣β)=﹣,则cos(α+β)的值等于﹣.【考点】两角和与差的正弦函数.【分析】根据题意可得α﹣=±,﹣β=﹣,由此求得α+β的值,可得cos(α+β)的值.【解答】解:∵α,β∈(0,),cos(α﹣)=,sin(﹣β)=﹣,∴α﹣=±,﹣β=﹣,∴α=β=或α+β=0(舍去).∴cos(α+β)=﹣,故答案为:﹣.9.设向量=(sin ,cos ),=(sin ,cos)(n ∈N +),则(•)= ﹣1 .【考点】平面向量数量积的运算.【分析】化简•=cos.于是根据诱导公式可得+=+=+=…=+=0,所以(•)=+=cos +cos π=﹣1.【解答】解: •=sin sin +coscos=cos (﹣)=cos .∴+=cos +cos =0,同理,+=0,+=0,…+=0.∴(•)=+=cos +cos π=﹣1.故答案为﹣1.10.已知直线l :x ﹣2y +m=0上存在点M 满足与两点A (﹣2,0),B (2,0)连线的斜率k MA 与k MB 之积为﹣1,则实数m 的取值范围是 [﹣2,2] .【考点】圆方程的综合应用.【分析】设出M 的坐标,由k MA 与k MB 之积为3得到M 坐标的方程,和已知直线方程联立,化为关于x 的一元二次方程后由判别式大于等于0求得实数m 的取值范围.【解答】解:设M (x ,y ),由k MA •k MB =3,得•=﹣1,即x 2+y 2=4.联立,得5y 2﹣4my +m 2﹣4=0.要使直线l :x ﹣2y +m=0上存在点M 满足与两点A (﹣2,0),B (2,0)连线的斜率k MA 与k MB 之积为﹣1,则△=(4m )2﹣20(m 2﹣4)≥0,即m 2≤20.解得m ∈[﹣2,2].∴实数m 的取值范围是:[﹣2,2].故答案为:[﹣2,2].11.某工广生产一种无盖冰激凌纸筒为圆柱形,现一客户定制该圆柱纸筒,并要求该圆柱纸筒的容积为27πcm 3,设该圆柱纸筒的底面半径为r ,则工厂要求制作该圆柱纸筒的材料最省时,r 的值为 3 cm .【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】设底面半径为r,高为h,则由题意得S=2πrh+πr2=,由此利用导数能求出制作该圆柱纸筒的材料最省时,r的值.【解答】解:设底面半径为r,高为h,则由题意得h=,∴S=2πrh+πr2=,∴S′=,当0<r<3时,S′<0,当r>3时,S′>0,故r=3时,取得极小值,也是最小值,∴制作该圆柱纸筒的材料最省时,r的值为3.故答案为:3.12.已知等比数列{a n},首项a1=2,公比q=3,a p+a p+1+…+a k=2178(k>p,p,k∈N+),则p+k=10.【考点】数列的求和.【分析】通过a n=2•3n﹣1可知a p+a p+1+…+a k=3p﹣1(3k﹣p+1﹣1),利用2178=32•(35﹣1)比较即得结论.【解答】解:依题意,a n=2•3n﹣1,则2178=a p+a p+1+…+a k==3p﹣1(3k﹣p+1﹣1),又∵2178=9=32•(35﹣1),∴,即,∴p+k=10,故答案为:10.13.设函数f(x)=,若函数y=f(x)﹣2x+b有两个零点,则参数b的取值范围是(﹣∞,﹣2]∪(0,2ln2﹣1).【考点】根的存在性及根的个数判断.【分析】由y=f(x)﹣2x+b=0得f(x)=2x﹣b,作出函数f(x)和y=2x﹣b的图象,利用数形结合进行求解即可.【解答】解:作出函数f(x)的图象如图:,由y=f(x)﹣2x+b=0得f(x)=2x﹣b,当g(x)=2x﹣b经过点(0,2)时,满足两个函数有两个交点,此时﹣b=2,即b=﹣2,当﹣b≥2,即b≤﹣2时,满足条件,当g(x)=2x﹣b与f(x)=e x﹣1相切时,由f′(x)=e x=2得x=ln2,y=e ln2﹣1=2﹣1=1,即切点坐标为(ln2,1),此时2ln2﹣b=1,即b=2ln2﹣1,当直线g(x)=2x﹣b经过原点时,b=0,∴要使两个函数有两个交点,则此时0<b<2ln2﹣1,综上0<b<2ln2﹣1或b≤﹣2,故实数b的取值范围是(﹣∞,﹣2]∪(0,2ln2﹣1),故答案为:(﹣∞,﹣2]∪(0,2ln2﹣1)14.对任意实数x>1,y>,不等式p≤+恒成立,则实数p的最大值为8.【考点】函数恒成立问题.【分析】根据不等式p≤+恒成立,转化为求+的最小值即可,利用换元法,结合基本不等式进行求解即可.【解答】解:设a=2y﹣1,b=x﹣1,∵x>1,y>,∴a>0,b>0,且x=b+1,y=(a+1),则+=+≥2×=2×=2(++)≥2×(2+)=2(2+2)=8,当且仅当a=b=1,即x=2,y=1时,取等号.∴p≤8,即p的最大值为8,故答案为:8.二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.15.已知函数f(x)=2cos2x+sin2x.(1)求函数f(x)的最小正周期;(2)在△ABC中,若C为锐角,f(A+B)=0,AC=2,BC=3,求AB的长.【考点】余弦定理;三角函数的周期性及其求法.【分析】(1)由三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+)+1,利用周期公式可求f(x)的最小正周期T.(2)由已知可得sin(2A+2B+)=﹣,由A,B是△ABC的内角,解得:A+B=或A+B=,结合A+B+C=π,C为锐角,可得C=,由余弦定理即可求得AB的值.【解答】解:(1)∵f(x)=2cos2x+sin2x=cos2x+1+sin2x=2sin(2x+)+1,…4分∴函数f(x)的最小正周期T=.…7分(2)∵f(A+B)=0,∴sin(2A+2B+)=﹣,∵A,B是△ABC的内角,∴2A+2B+=,或2A+2B+=,解得:A+B=或A+B=,∵A+B+C=π,∴C=,或C=,∵C为锐角,∴可得C=,∵AC=2,BC=3,∴由余弦定理可得:AB2=AC2+BC2﹣2AC×BC×cosC=12+9﹣2×,即AB=.…14分16.如图,在正三棱柱ABC﹣A1B1C1中,D是边BC上异于C的一点,AD⊥C1D.(1)求证:AD⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:平面A1EB∥平面ADC1.【考点】直线与平面垂直的判定;平面与平面平行的判定.【分析】(1)由于正三棱柱中,CC1⊥平面ABC,得到AD⊥CC1又已知AD⊥C1D,利用线面垂直的判断定理得到结论.(2)连结A1C,交AC1于O,连结OD,推导出OD∥A1B,由点E是B1C1的中点,可得BD EC1,即BE∥DC1,由BE∩A1B=B,DC1∩OD=D,即可证明平面A1EB∥平面ADC1.【解答】(满分为14分)解:(1)在正三棱柱中,CC1⊥平面ABC,AD⊆平面ABC,∴AD⊥CC1.…又AD⊥C1D,CC1交C1D于C1,且CC1和C1D都在面BCC1B1内,∴AD⊥平面BCC1B1.…(2)连结A1C,交AC1于O,连结OD,∵正三棱柱ABC﹣A1B1C1中,点D在棱BC上,AD⊥C1D.平面C1AD⊥平面B1BCC1,∴D是BC中点,O是A1C中点,∴OD∥A1B,…∵点E是B1C1的中点,D是BC中点,∴BD EC1,∴四边形BDEC1为平行四边形,BE∥DC1,…∵BE∩A1B=B,DC1∩OD=D,且A1B,BE⊂平面A1EB,DC1,OD⊂平面ADC1,∴平面A1EB∥平面ADC1.…17.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右准线方程为x=4.(1)求椭圆的标准方程;(2)设P(x1,y1),M(x2,y2)(y2≠y1)是椭圆C上的两个动点,点M关于x轴的对称点为N,如果直线PM,PN与x轴交于(m,0)和(n,0),问m•n是否为定值?若是,求出该定值;若不是,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的离心率为,且右准线方程为x=4,列方程组解得a=2,c=1,由此能求出椭圆的标准方程.(2)由P(x1,y1),M(x2,y2),得N(x2,﹣y2),求出直线PM的方程和直线PN的方程,分别令y=0,得m和n,由此能推导出m•n为定值.【解答】解:(1)由题意,得,且,解得a=2,c=1,∴=,∴椭圆的标准方程为.(2)由P(x1,y1),M(x2,y2),得N(x2,﹣y2),∴+=1,,直线PM的方程为y﹣y1=,直线PN的方程为y﹣y1=(x﹣x1),分别令y=0,得m=,n=,∴mn====4为定值,∴m•n为定值4.18.如图,某景区有一座高AD为1千米的山,山顶A处可供游客观赏日出,坡角∠ACD=30°,在山脚有一条长为10千米的小路BC,且BC与CD垂直,为方便游客,该景区拟在小路BC上找一点M,建造两条直线型公路BM和MA,其中公路BM每千米的造价为30万元,公路MA每千米造价为30万元.(1)设∠AMC=θ,求出造价y关于θ的函数关系式;(2)当BM长为多少米时才能使造价y最低?【考点】函数模型的选择与应用.【分析】(1)通过锐角三角函数的定义易知AC=2、MC=、AM=、BM=10﹣,进而利用y=30(BM+2AM)化简即得结论;(2)通过令y=0可知cosθ=,结合α≤θ≤及tanα=可知θ=,通过求导判定函数的单调性,进而可得结论.【解答】解:(1)在Rt△ADC中,由AD=1、∠ACD=30°可知AC=2,在Rt△ACM中,MC=,AM=,则BM=10﹣,设造价y的单位为千万元,则y=30(BM+2AM)=30(10﹣+)=60(5+),(α≤θ≤,其中tanα=);(2)y=60•=60•,令y=0,得cosθ=,又∵α≤θ≤,其中tanα=,∴θ=,列表:θcosθy′﹣0 +y ↓最小值↑∴当θ=时y有最小值,此时BM=10﹣.答:当BM长为(10﹣)米时才能使造价y最低.19.已知a>0,且a≠1,函数f(x)=a x﹣1,g(x)=﹣x2+xlna.(1)若a>1,证明函数h(x)=f(x)﹣g(x)在区间(0,+∞)上是单调增函数;(2)求函数h(x)=f(x)﹣g(x)在区间[﹣1,1]上的最大值;(3)若函数F(x)的图象过原点,且F′(x)=g(x),当a>e时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.【考点】利用导数求闭区间上函数的最值.【分析】(1)求函数的导数,根据函数单调性和导数的关系进行证明.(2)求函数的解析式,根据函数单调性和最值如导数的关系进行求解.(3)求出函数F(x)的解析式,结合导数的几何意义进行求解.【解答】解:(1)h(x)=f(x)﹣g(x)=a x﹣1+x2﹣xlna,则h′(x)=(a x﹣1)lna+2x,∵a>1,∴当x>0时,a x﹣1>0,lna>0,∴h′(x)>0,即此时函数h(x)在区间(0,+∞)上是单调增函数.(2)由(1)知,当a>1时,函数h(x)在区间(0,+∞)上是单调增函数,则在区间(﹣∞,0)上是单调减函数,同理当0<a<1时,h(x)在区间(0,+∞)上是单调增函数,则在区间(﹣∞,0)上是单调减函数,即当a>0,且a≠1时,h(x)在区间[﹣1,0)上是减函数,在区间([0,1)上是增函数,当﹣1≤x≤1时,h(x)的最大值为h(﹣1)和h(1)中的最大值,∵h(1)﹣h(﹣1)=(a﹣lna)﹣(+lna)=a﹣﹣2lna,∴令G(a)=a﹣﹣2lna,a>0,则G′(a)=1+﹣=(1﹣)2≥0,∴G(a)=a﹣﹣2lna,在a>0上为增函数,∵G(1)=1﹣1﹣2ln1=0,∴a>1时,G(a)>0,即h(1)>h(﹣1),最大值为h(1)=a﹣lna,当0<a<1时,G(a)<0,即h(﹣1)>h(1),最大值为h(﹣1)=+lna.(3)∵F(x)的图象过原点,且F′(x)=g(x)=﹣x2+xlna,∴设F(x)=﹣x3+x2lna+c,∵F(x)的图象过原点,∴F(0)=0,即c=0,则F(x)=﹣x3+x2lna.设切点为B (x 0,﹣x 03+x 02lna ),则B 处的切线方程为:y ﹣(﹣x 03+x 02lna )=﹣(﹣x 02+x 0lna )(x ﹣x 0),将A 的坐标代入得m ﹣(﹣x 03+x 02lna )=﹣(﹣x 02+x 0lna )(1﹣x 0),即m=x 03﹣(1+lna )x 02+x 0lna (※),则原命题等价为关于x 0的方程(※)至少有2个不同的解,设φ(x )=x 3﹣(1+lna )x 2+xlna ,则φ′(x )=2x 02﹣(2+lna )x +lna=(x ﹣1)(2x ﹣lna ),∵a >e ,∴>1,当x ∈(﹣∞,1)和(,+∞)时,φ′(x )>0,此时函数φ(x )为增函数,当x ∈(1,)时,φ′(x )<0,此时函数φ(x )为减函数,∴φ(x )的极大值为φ(1)=﹣1﹣lna +lna=lna ﹣,φ(x )的极大值为φ(lna )=ln 3a ﹣ln 2a (1+lna )+ln 2a=﹣ln 3a +ln 2a ,设t=lna ,则t >,则原命题等价为对t >恒成立,∴由m ≤t ﹣得m ≤,∵s (t )=﹣t 3+t 2的最大值为s (4)=,∴由m ≥﹣t 3+t 2,得m ≥,即m=,综上所述当a >e时,函数F (x )过点A (1,m )的切线至少有2条,此时实数m 的值为.20.已知等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,且数列{b n }的前n 项和为S n . (1)若a 1=b 1=d=2,S 3<a 1006+5b 2﹣2016,求整数q 的值;(2)若S n+1﹣2S n =2,试问数列{b n }中是否存在一点b k ,使得b k 恰好可以表示为该数列中连续p (p ∈N ,p ≥2)项的和?请说明理由?(3)若b1=a r,b2=a s≠a r,b3=a t(其中t>s>r,且(s﹣r)是(t﹣r)的约数),证明数列{b n}中每一项都是数列{a n}中的项.【考点】等比数列的性质;等比数列的前n项和.【分析】(1)若数列{b n}的前n项和为S n,且a1=b1=d=2,S3<5b2+a88﹣180,借助于通项公式得到q的值.恰好可以表示为该数列中连(2)在(1)的条件下,假设数列{b n}中存在一项b k,使得b,k续P(P∈N,P≥2)项和,然后推理证明.(3)若b1=a r,b2=a s≠a r,b3=a t(其中t>s>r,且(s﹣r)是(t﹣r)的约数),要证明数列{b n}中每一项都是数列{a n}中的项,只要分析通项公式的特点可以得到.【解答】解:(1)由题意知a n=2+(n﹣1)×2=2n,,∵S3<a1006+5b2﹣2016,∴b1+b2+b3<a1006+5b2﹣2016,∴b1﹣4b2+b3<2012﹣2016,∴q2﹣4q+3<0,解得1<q<3,又q为整数,∴q=2.=2,n≥2,(2)由S n+1﹣2S n=2,得S n﹣2S n﹣1两式相减得b n+1﹣2b n=0,n≥2,∵等比数列{b n}的公比为q,∴q=2,又n=1时,S2﹣2S1=2,∴b1+b2﹣2b1=2,解得b1=2,∴.数列{b n}中存在一点b k,使得b k恰好可以表示为该数列中连续p(p∈N,p≥2)项的和,即b k=b n+b n+1+b n+2+…+b n+p,﹣1,∴2k>2n+p﹣1,∵,∴b k>b n+p﹣1∴k>n+p﹣1,∴k≥n+p,(*)又==2n+p﹣2n<2n+p,∴k<n+p,这与(*)式矛盾,∴假设不成立,故数列{b n}中不存在一点b k,使得b k恰好可以表示为该数列中连续p(p∈N,p≥2)项的和,证明:(3)∵b1=a r,b2=a s≠a r,b3=a t(其中t>s>r,且(s﹣r)是(t﹣r)的约数),∴b2=b1q=a r q=a s=a r+(s﹣r)d,∴d=,∴,∵a s≠a r,∴b1≠b2,∴q≠1,又a r≠0,∴q=,∵t>s>r,且(s﹣r)是(t﹣r)的约数,∴q是正整数,且q≥2,对于{b n}中的任一项b i(这里只讨论i>3的情形),有===)=,由于(s﹣r)(1q+…+q i﹣1)+1为正整数,∴b i一定是数列{a n}中的项.2016年9月16日。
江苏省东海高级中学2011届高三强化班期初数学摸底试题2010-9-1一、填空题:(每小题5分,共70分)1、已知函数:f A B →,其中A=B =R ,对应法则为2:23f x y x x →=++, 若B 中元素k 在集合A 中不存在原象,则k 的取值范围是 ▲ .2、已知全集B A U ⋃=中有m 个元素,)()(B C A C U U ⋃中有n 个元素.若B A ⋂非空,则B A ⋂的元素个数为____▲______;3、设2lg ,(lg ),a e b e c ===,则a bc 、、的从大到小顺序依次是 ▲ .4、已知函数2()f x x x =-,若2(1)(2)f m f --<,则实数m 的取值范围是▲ .5、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程220x x x +--=的一个近似根(精确到0.1)为 ▲ .6、已知函数2()(1)f x x k x k =+--恰有一个零点在区间(2,3)内,则实数k 的取值范围是 ▲ .7、设0a >,函数32()91f x x ax x =+--,若曲线()y f x =的切线中斜率最小的切线与直线120x y -=垂直,则a 的值为 ▲ .8、设a 为实数,给出命题p :关于x 的不等式112x a -⎛⎫≥ ⎪⎝⎭的解集为φ,命题q :函数()()29lg 28f x ax a x ⎛⎫=+-+⎪⎝⎭的定义域为R , 若命题p 和q 中有且仅有一个正确,则实数a 的取值范围是 ▲ . 9、若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =____▲___. 10、已知函数()f x =在()1,+∞上是增函数,则实数a 的取值范围为 ▲ . 11、对于集合M 和N ,定义{}N x M x x N M ∉∈=-,且,=⊕N M )(N M -)(M N - ,设{}x x y y A 32-==,{}xy y B 2-==,则=⊕B A ▲ .12、已知函数()()12822+--=x m mx x f ,()mx x g =,对∈∀x R ,()x f 与()x g 的值至少有一个为正数,则m 的取值范围是 ▲ .13、已知函数4)(x ax x f -=,]1,21[∈x ,B A ,是其图象上不同的两点.若直线AB 的斜率k 总满足421≤≤k ,则实数a 的值是 ▲ .14、如图放置的等腰直角三角形ABC 薄片(90ACB ∠=︒,2AC =)沿x 轴滚动,设顶点(),A x y 的轨迹方程是()y f x =,则()f x 在其相邻两个零点间的图像与x 轴所围区域的面积为 ▲ .二、解答题:(6小题,共90分) 15、(14分)已知{}0822≥-+=x x x A ,{}19239+≤-=x x x B ,{}0222≤++=ax x x C .(1)若不等式0102≥++c x bx 的解集为B A ,求b 、c 的值; (2)设全集=U R ,若B C ⊆ A C U ,求实数a 的取值范围.16、(14分)函数6)1(3)1()(22+-+-=x a x a x f ,(1)若)(x f 的定义域为R ,求实数a 的取值范围; (2)若)(x f 的定义域为[2,1]-,求实数a 的值.17.(14分) 函数()f x 的定义域为R ,并满足条件:① 对任意x R ∈,有()0f x >;② 对任意,x y R ∈,有()[()]yf x y f x ⋅=;③1()13f >. (1)求(0)f 的值;(2)求证:()f x 在R 上是单调递增函数;(3)若0a b c >>>,且2b ac =,求证()()2()f a f c f b +>.18、(16分)设函数()21f x ax bx =++ ()0,a b R >∈ 的最小值为a -,()0f x =两个实根为1x 、2x . (1)求12x x -的值;(2)若关于x 的不等式()0f x <解集为A ,函数()2f x x +在A 上不存在最小值,求a 的取值范围;(3)若120x -<<,求b 的取值范围.19、(16分)经济学中有一个用来权衡企业生产能力(简称“产能”)的模型,称为“产能边界”.它表示一个企业在产能最大化的条件下,在一定时期内所能生产的几种产品产量的各种可能的组合. 例如,某企业在产能最大化条件下,一定时期内能生产A 产品x 台和B 产品y 台,则它们之间形成的函数)(x f y =就是该企业的“产能边界函数”. 现假设该企业此时的“产能边界函数”为x y 2160015-=.① 这是一种产能未能充分利用的产量组合; ② 这是一种生产目标脱离产能实际的产量组合; ③ 这是一种使产能最大化的产量组合.(2)假设A 产品每台利润为)0(>a a 元,B 产品每台利润为A 产品每台利润的k 倍*∈>N k k ,0.在该企业的产能边界条件下,试为该企业决策,应生产A 产品和B 产品各多少台才能使企业获得最大利润?20、(16分)函数()21ln 2f x ax bx x =--,0a >,()10f '=. (1)①试用含有a 的式子表示b ;②求()f x 的单调区间;(2)对于函数图像上的不同两点()11,A x y ,()22,B x y ,如果在函数图像上存在点()00,P x y (其中0x 在1x 与2x 之间),使得点P 处的切线l ∥AB ,则称AB 存在“伴随切线”,当1202x x x +=时,又称AB 存在“中值伴随切线”。
江苏省重点学校2011届高三第一次调研联考数学测试试卷参考公式:一组样本数据n x x x ,,,21 ,方差2211()ni i s x x n ==-∑一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位置上.1.命题p :2,2x R x ∃∈>,则命题p 的否定为 ▲ . 2.若复数i i i z 其中,2)1(=+是虚数单位,则复数z z ⋅= ▲ .3.已知函数2,0(),0x x f x x x ≥⎧=⎨<⎩,则((2))f f -= ▲ . 4.若123123,,,,2,3,3,3,,3n nx x x x x x x x 的方差为则的方差为 ▲ .5.一个靶子上有10个同心圆,半径依次为1、2、……、10,击中由内至外的区域的成绩依次为10、9、……、1环,则不考虑技术因素,射击一次,在有成绩的情况下成绩为10环的概率为6.已知3tan(),45παα+=则tan = ▲ .7.直线110,l x ky -+=:210l kx y -+=:,则1l ∥2l 的充要条件是 ▲ .8.已知|a |=3,|b |=4,(a +b )⋅(a +3b )=33,则a 与b 的夹角为 .9.如果执行右面的程序框图,那么输出的S = ▲ .10.设1F 和2F 为双曲线22221(0,0)x y a b a b -=>>的两个焦点,若1F ,2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为 ▲ .11.函数2cos y x x =+在0,2π⎡⎤⎢⎥⎣⎦上取最大值时,x 的值是___▲___. 12.我们知道若一个边长为a ,面积为S 的正三角形的内切圆半径23Sr a =,由此类比,若一个正四面体的一个面的面积为S ,体积为V ,则其内切球的半径r = ▲ .13.设12a =,121n n a a +=+,211n n n a b a +=--,*n∈b 14.图为函数()1)f x x =<<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q ,点N(0,1),若△PQN 的面积为b时的点M 恰好有两个,则b 的取值范围为 ▲ .二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知函数21()2cos 22f x x x x =--∈R ,.(Ⅰ)求函数()f x 的最小值和最小正周期;(Ⅱ)设△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,且()0c f C ==,若sin 2sin B A =,求a ,b 的值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,AD CD =,DB 平分ADC ∠,E 为PC 的中点.(Ⅰ)证明://PA BDE 平面; (Ⅱ)证明:AC PBD ⊥平面.17. (本小题满分15分)如图,某小区准备在一直角围墙ABC 内的空地上植造一块“绿地ABD ∆”,其中AB 长为定值a ,BD 长可根据需要进行GFDC A DCBPE调节(BC 足够长).现规划在ABD ∆的内接正方形BEFG 内种花,其余地方种草,且把种草的面积1S 与种花的面积2S 的比值12S S 称为“草花比y ”.(Ⅰ)设DAB θ∠=,将y 表示成θ的函数关系式; (Ⅱ)当BE 为多长时,y 有最小值?最小值是多少?18. (本小题满分15分)已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(Ⅰ)求C 的方程;(Ⅱ)设Q为C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P 作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.19.(本小题满分16分)已知函数()ln a f x x x =-.(Ⅰ)求函数()f x 的单调增区间;(Ⅱ)若函数()f x 在[1,]e 上的最小值为32,求实数a 的值;(Ⅲ)若函数2()f x x <在(1,)+∞上恒成立,求实数a 的取值范围.20.(本小题满分16分)已知等差数列{}n a 的首项为a ,公差为b ,等比数列{}n b 的首项为b ,公比为a (其中,a b 均为正整数). (Ⅰ) 若1122,a b a b ==,求数列{}n a 、{}n b 的通项公式;(Ⅱ)在(Ⅰ)的条件下,若1213,,,k n n n a a a a a ,,,12(3)k n n n <<<<<成等比数列,求数列{}k n 的通项公式;(Ⅲ) 若11223a b a b a <<<<,且至少存在三个不同的b 值使得等式()m n a t b t N +=∈成立,试求a 、b 的值.附加题部分(满分40分) 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题;每题10分,共20分;解答时应写出文字说明,证明过程或演算步骤. A .选修4-1:几何证明选讲如图,⊙O 的半径OB 垂直于直径AC ,M 为AO 上一点,BM 的延长线交⊙O 于N ,过N 点的切线交CA 的延长线于P . (1)求证:PM2=PA·PC ;(2)若⊙O 的半径为,,求MN 的长.OCM NA PB (第1题)考试证号———————————————————————B .选修4-2:矩阵与变换试求曲线sin y x =在矩阵MN 变换下的函数解析式,其中M =1002⎡⎤⎢⎥⎣⎦,N =10201⎡⎤⎢⎥⎢⎥⎣⎦.C .选修4-4:坐标系与参数方程在极坐标系下,已知圆O:cos sin ρθθ=+和直线sin 4l ρθπ⎛⎫-=⎪⎝⎭:. (1)求圆O 和直线l 的直角坐标方程;(2)当(0,)θ∈π时,求直线l 与圆O 公共点的一个极坐标.D .选修4-5:不等式选讲用数学归纳法证明不等式:211111(1)12n n n n n n *++++>∈>++N 且.【必做题】第22题,23题,每题10分,共20分;解答时应写出文字说明,证明过程或演算步骤.22.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)(ξE .23.已知点F(0,1),点P 在x 轴上运动,M 点在y 轴上,N 为动点,且满足0PM PF ⋅=, PN PM +=0.(1)求动点N 的轨迹C 方程;(2)由直线y= -1上一点Q 向曲线C 引两条切线,切点分别为A ,B ,求证:AQ ⊥BQ .参考答案1、2,2x R x ∀∈≤ 2、2 3、4 4、18 5、1100 6、14-7、1- 8、120︒ 9、650 10、2 11、6π 12、34V S 13、201221- 14、18,427⎛⎫⎪⎝⎭ 15.解:(1)1cos 21()2sin 21226x f x x x +π⎛⎫=--=-- ⎪⎝⎭, (3分)则()f x 的最小值是-2,(4分)最小正周期是22T π==π;(6分)(2)()sin 210,sin 2166f C C C ππ⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭则, 110,022,2666C C C ππ<<π∴<<π∴-<-<π, 2,623C C πππ∴-==, (8分)sin 2sin B A =, 由正弦定理,得12a b =,① (10分) 由余弦定理,得222222cos ,33c a b ab a b abπ=+-=+-即, ②由①②解得1,2a b ==. (14分) 16.证明:(1)连结AC ,设ACBD H =,连结EH ,在ADC ∆中,因为AD CD =,且DB 平分ADC ∠,所以H 为AC 的中点,又∵E 为PC 的中点, ∴//EH PA ,……………………………4分 又EH BDE ⊂平面,且PA BDE ⊄平面, ∴//PA BDE 平面;……………………7分 (2)∵PD ABCD ⊥平面,AC ABCD ⊂平面, ∴PD AC ⊥,由(1)得BD AC ⊥, 又PDDB D =, 故AC PBD ⊥平面.……………14分17. 解:(Ⅰ)因为tan BD a θ=,所以ABD ∆的面积为21tan 2a θ((0,)2πθ∈)…(2分) 设正方形BEFG 的边长为t ,则由FG DG AB DB =,得tan tan t a t aa θθ-=,解得tan 1tan a t θθ=+,则2222tan (1tan )a S θθ=+…………………………………………………………(6分)所以222212211tan tan tan 22(1tan )a S a S a θθθθ=-=-+,则212(1tan )12tan S y S θθ+==- (9分)(Ⅱ)因为tan (0,)θ∈+∞,所以1111(tan 2)1(tan )2tan 2tan y θθθθ=++-=+1≥… (13分) 当且仅当tan 1θ=时取等号,此时2aBE =.所以当BE 长为2a时,y 有最小值1…………………………… (15分) 18. 解:(Ⅰ)设圆心C (,)a b ,则222022212a b b a --⎧++=⎪⎪⎨+⎪=⎪+⎩,解得00a b =⎧⎨=⎩…………… (3分) 则圆C 的方程为222x y r +=,将点P 的坐标代入得22r =,故圆C 的方程为222x y +=…………………… (5分) (Ⅱ)设(,)Q x y ,则222x y +=,且(1,1)(2,2)PQ MQ x y x y ⋅=--⋅++… (7分) =224x y x y +++-=2x y +-,所以PQ MQ ⋅的最小值为4-(可由线性规划或三角代换求得)…(10分)(Ⅲ)由题意知, 直线PA 和直线PB 的斜率存在,且互为相反数,故可设:1(1)PA y k x -=-,:1(1)PB y k x -=--,由221(1)2y k x x y -=-⎧⎨+=⎩,得222(1)2(1)(1)20k x k k x k ++-+--= …………………………………………(11分)因为点P 的横坐标1x =一定是该方程的解,故可得22211A k k x k --=+………… (13分) 同理,22211B k k x k +-=+, 所以(1)(1)2()1B A B A B A AB B A B A B Ay y k x k x k k x x k x x x x x x ------+====---=OP k所以,直线AB 和OP 一定平行……………………………………(15分)19、解:(1)由题意,()f x 的定义域为(0,)+∞,且221()a x a f x x x x +'=+=.……2分①当0a ≥时,()0f x '>,∴()f x 的单调增区间为(0,)+∞.………………(3分) ②当0a <时,令()0f x '>,得x a >-,∴()f x 的单调增区间为(,)a -+∞.…4分(2)由(1)可知,2()x af x x +'=①若1a ≥-,则0x a +≥,即()0f x '≥在[1,]e 上恒成立,()f x 在[1,]e 上为增函数,∴min 3[()](1)2f x f a ==-=,∴32a =-(舍去).…………… (6分) ②若a e ≤-,则0x a +≤,即()0f x '≤在[1,]e 上恒成立,()f x 在[1,]e 上为减函数,∴min 3[()]()12a f x f e e ==-=,∴2e a =-(舍去).………………………8分 ③若1e a -<<-,当1x a <<-时,()0f x '<,∴()f x 在(1,)a -上为减函数, 当a x e -<<时,()0f x '>,∴()f x 在(,)a e -上为增函数,∴min 3[()]()ln()12f x f a a =-=-+=,∴a =综上所述,a =………………………………………………………………10分(3)∵2()f x x <,∴2ln ax x x -<.∵0x >,∴3ln a x x x >-在(1,)+∞上恒成立……………………………12分令32()ln ,()()1ln 3g x x x x h x g x x x '=-==+-,则2116()6x h x x x x -'=-=. ∵1x >,∴()0h x '<在(1,)+∞上恒成立,∴()h x 在(1,)+∞上是减函数,∴()(1)2h x h <=-,即()0g x '<,∴()g x 在(1,)+∞上也是减函数,∴()(1)1g x g <=-.∴当2()f x x <在(1,)+∞恒成立时,1a ≥-.……………………………………16分20.解:(Ⅰ)由1122,a b a b ==得:a ba b ab=⎧⎨+=⎩,解得:0a b ==或2a b ==,,a b N +∈, 2a b ∴==,从而2,2nn n a n b ==…………………………………5分(Ⅱ)由(Ⅰ)得132,6a a ==,∴1213,,,k n n n a a a a a ,,,构成以2为首项,3为公比的等比数列,即:123k k n a +=⋅ ……………………………………………………… 7分1223k k n +=⋅,13k k n +∴=…………………………………………10分(Ⅲ) 由11223a b a <<<得:2a b a b ab a b <<+<<+,由a b ab +<得:()1a b b->;由2ab a b <+得:()12a b b-<,而*,,a b N a b ∈<,即:1b a >≥,从而得:12211241111b b a b b b b <+=<<=+≤----,2,3a ∴=,当3a =时,2b =不合题意,故舍去,所以满足条件的2a =. …………………………………………………………………12分 又2(1)m a b m =+-,12n n b b -=⋅,故()1212n b m t b -+-+=⋅,即:()1212n m b t--+=+①若1210n m --+=,则2t N =-∉,不合题意;………………………………… 14分②若1210n m --+≠,则1221n t b m -+=-+,由于121n m --+可取到一切整数值,且3b ≥,故要至少存在三个b 使得()m n a t b t N +=∈成立,必须整数2t +至少有三个大于或等于3的不等的因数,故满足条件的最小整数为12,所以t 的最小值为10,此时3b =或4或12…………………………………………………………………16分附加题部分21. A .(1)证明:连结ON .∵PN 切⊙O 于N ,∴∠ONP=90°.∴∠ONB+∠BNP=90°. ∵OB=ON ,∴∠OBN=∠ONB .∵BO ⊥AC 于O ,∴∠OBN +∠BMO=90°.∴∠BNP=∠BMO=∠PMN ,∴PM=PN . ∴PM2=PN2=PA·PC .………………………………………………………5分(2)解:OM=2,BO=BM=4.∵BM·MN=CM·MA=(+2)(-2)=8,∴MN=2.………………………………10分B .解:MN = 1002⎡⎤⎢⎥⎣⎦10201⎡⎤⎢⎥⎢⎥⎣⎦=10202⎡⎤⎢⎥⎢⎥⎣⎦,---------------------------------------------------4分即在矩阵MN 变换下122x x x y y y ⎡⎤''⎡⎡⎤⎤⎢⎥→=⎢⎢⎥⎥⎢⎥''⎦⎦⎣⎣⎢⎦⎣,-------------------------------------7分 则1sin 22y x ''''=,即曲线sin y x =在矩阵MN 变换下的函数解析式为2sin 2y x =.----------10分C .解:(1)圆O:cos sin ρθθ=+,即2cos sin ρρθρθ=+, 圆O 直角坐标方程为:22x y x y +=+,直线sin 4l ρθπ⎛⎫-= ⎪⎝⎭:, 即sin cos 1ρθρθ-=,则直线l 的直角坐标方程为:1y x -=; --------------------------------------6分(2)由220,10,x y x y x y ⎧+--=⎨-+=⎩得0,1,x y =⎧⎨=⎩故直线l 与圆O 公共点的一个极坐标为(1,)2π.----------------------------------10分D .证明:(1)当2n =时,左边=11113123412++=>,∴2n =时成立; ----------3分(2)假设当(2)n k k =≥时成立,即21111112k k k k ++++>++, 那么当1n k =+时,左边2221111()11(1)k k k k =++++++++ 222111111()11(1)k k k k k k =++++++-+++2221111(21)111(1)k k k k k k k -->++⋅-=+>++,∴1n k =+时也成立, --------------------------------------8分根据(1)(2)可得不等式对所有的1n >都成立. ---------------------------10分22.解:(1)分别记甲、乙、丙三个同学笔试合格为事件1A 、2A 、3A ;E 表示事件“恰有一人通过笔试”,则123123123()()()()P E P A A A P A A A P A A A =++0.60.50.60.40.50.60.40.50.4=⨯⨯+⨯⨯+⨯⨯0.38=;--------------5分(2)解法一:因为甲、乙、丙三个同学经过两次考试后合格的概率均为0.3p =,所以~(30.3)B ξ,,故()30.30.9E np ξ==⨯=.------------10分 解法二:分别记甲、乙、丙三个同学经过两次考试后合格为事件AB C ,,, 则()()()0.3P A P B P C ===所以2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=,3(3)0.30.027P ξ===. 于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=.23.解:(1)设N(x ,y).因PN PM +=0,故P 的坐标为(2x,0),M(0,-y),于是,(,)2x PM y =--,(,1)2x PF =-, 因0PM PF ⋅=,即得曲线C 的方程为x2=4y ; -------------------5分(2)设Q(m ,-1).由题意,两条切线的斜率k 均存在,故可设两切线方程为y=k(x-m)-1, 将上述方程代入x2=4y ,得x2-4kx+4km+4=0,依题意,∆=(-4k)2-4(4km+4)=0,即k2-mk-1=0,上述方程的两根即为两切线的斜率,其积为-1,即它们所在直线互相垂直. -------------------10分。
2018届高三年级第一次学情检测数 学 试 卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1. 已知全集U N =(N 是自然数集),集合{}20A x x =->,则U C A = ▲ .2. 函数()2ln 2()1x x f x x -=-的定义域是 ▲ .3. “12>a ”是“13>a ”的 ▲ 条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 4. )31<<x ,则)(x f 的值域是 ▲ . 5. 若0.330.30.3,0.3,log 3a b c ===,则,,a b c 的值从小到大的顺序是 ▲ . 6. 设2()2f x ax bx =++是定义在[1,2]a +上的偶函数,则()f x 的值域是 ▲ .7. 若命题“2 0t R t at a ∃∈--<,”是假命题,则实数a 的取值范围是 ▲ . 8. 若函数()22x f x b =--有两个零点,则实数b 的取值范围是 ▲ .9. 已知函数()22x x f x -=-,若不等式()()230f x ax a f -++>对任意实数x 恒成立,则实数a 的取值范围是 ▲ .10. ,若()f x 在区间[],4m 上的值域为[]1,2-,则实数m 的取值范围是 ▲ .11. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += ▲ .12. []12,2,3x R x ∀∈∃∈,使得2211221233x x x x x mx ++≥+-成立,则实数m 的取值范围是 ▲ . 13. 用()C A 表示非空集合A 中的元素个数,定义()(),()()*()(),()()C A C B C A C B A B C B C A C A C B -≥⎧=⎨-<⎩.若{}{}221,2,()(2)0A B x x ax x ax ==+++=,且*1A B =,设实数a 的所有可能取值组成的集合是S ,则()C S = ▲ .14.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是 ▲ .二、解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数()()()log 1log 3a a f x x x =++-(0a >且1a ≠),且()12f =. (1)求a 的值及()f x 的定义域;(2)若不等式()f x c ≤恒成立,求实数c 的取值范围.16.(本小题满分14分)已知0107:2<+-x x p ,034:22<+-m mx x q ,其中0>m . (1)已知4=m ,若q p ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.17.(本小题满分14分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式2()(5)2ay f x b x x ==+--,其中25x <<,,a b 为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克.(1)求函数()f x 的解析式;(2)若该商品的成本为2元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润()f x 最大.18.(本小题满分16分) 已知函数3211()(1)323a f x x a x x =-++-(a ∈R ). (1)若1a >,求函数()f x 的极值;(2)当01a <<时,判断函数()f x 在区间[]0,2上零点的个数.19.(本小题满分16分) 函数2()ln xf x x=. (1)求函数()y f x =在区间(2,e e ⎤⎦上的值域; (2)求()f x 的单调递减区间;(3)若存在0[e,)x ∈+∞,使函数21e()eln ln ()22a g x a x x x f x a +=+-⋅⋅≤成立,求实数a 的取值范围.20.(本小题满分16分) 已知函数1()2(1)(0).x a f x ae a a x+=+-+> ⑴当1a =时,求()f x 在点(1,(1))f 处的切线方程;⑵若对于任意的()0,x ∈+∞,恒有()0f x ≥成立,求实数a 的取值范围.2018届高三年级第一次学情检测数学加试试卷(物理方向考生作答)解答题(共4小题,每小题10分共40分,解答时应写出文字说明,证明过程或演算步骤) 1. 求下列函数的导函数3)23()1(-=x y )(12log )2(2+=x y2. 求曲线3232y x x x =-+过点()0,0的切线方程.3. 已知关于x 的不等式2320ax x -+>(a R ∈).(1)若不等式2320ax x -+>的解集为{1x x <或}x b >,求a ,b 的值; (2)求不等式2325ax x ax -+>-(a R ∈)的解集.4. 已知函数()()2221x f x e ax x =+-, a R ∈.(1)若函数()y f x =在(],2-∞-上单调递增,求实数a 取值范围; (2)当0x ≤时,()10f x +≥,求实数a 的取值范围.2018届高三年级第一次学情检测数学参考答案一、填空题: 本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上1. {}0,1,2;2.(0,1)⋃(1,2);3.必要不充分条件; 5 .c <b <a 6.[-10,2] 7. 8. ()0,29. ()2,6- 10.[]4,1-- 11. 11 12. 4m ≤ 13. 314.⎥⎦⎤⎢⎣⎡31,41二、解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数()()()log 1log 3a a f x x x =++-(0a >且1a ≠),且()12f =. (1)求a 的值及()f x 的定义域;(2)若不等式()f x c ≤恒成立,求实数c 的取值范围.解:(1)因为()12f =,所以2log 22a =,故2a =, …………………………2分所以()()()22log 1log 3f x x x =++-, 由1030x x +>⎧⎨->⎩得13x -<<,所以()f x 的定义域为()1,3-. ……………………………………7分(2)由(1)知,()()()22log 1log 3f x x x =++-()()2log 13x x =+-…………9分()22log 23x x =-++=()22log 14x ⎡⎤--+⎣⎦, 故当1x =时,()f x 的最大值为2,所以c 的取值范围是[)2,+∞. ……………………………………)53,31(.440a -≤≤14分16. 已知0107:2<+-x x p ,034:22<+-m mx x q ,其中0>m . (1)已知4=m ,若q p ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围. 解:(1)由01072<+-x x ,解得52<<x ,所以52:<<x p又03422<+-m mx x ,因为0>m ,解得m x m 3<<,所以m x m q 3:<<. 当4=m 时,124:<<x q ,又q p ∧为真,q p ,都为真,所以54<<x . …………………………………6分(2)由q ⌝是p ⌝的充分不必要条件,即q ⌝⇒p ⌝,p⌝≠>q ⌝,其逆否命题为p q q p ≠>⇒,, (8)分由(1)52:<<x p ,m x m q 3:<<, …………………………………10分所以⎪⎩⎪⎨⎧>≥≤0532m m m ,即:52.3m ≤≤ …………………………………14分17. 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式2()(5)2ay f x b x x ==+--,其中25x <<,,a b 为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克. (1)求函数()f x 的解析式;(2)若该商品的成本为2元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润()f x 最大.解:(1)由题意,(4)5,22(4.5) 2.3554a f b a b f ⎧=+=⎪⎪⎨⎪=+=⎪⎩, …………………………………2分解得4a b == , …………………………………4分故24()3(5)2f x x x =+--;25x << …………………………………6分(2)商场每日销售该商品所获得的利润为(2)()y x f x =-243(2)(5)y x x =+--(25)x << …………………………………8分9(3)(5)y x x '=--列表:由上表可得,3x =是函数()f x 在区间()2,5内的极大值点,也是最大值点所以,当3x =时,函数()f x 取得最大值,且最大值等于16 .故销售价格为3元/千克时,商场每日销售该商品所获得的利润最大. ………14分18.已知函数3211()(1)323a f x x a x x =-++-(a ∈R ). (1)若1a >,求函数()f x 的极值;(2)当01a <<时,判断函数()f x 在区间[]0,2上零点的个数. 解:(1…………………………………4分所以()f x 的极大值为221231()6a a f a a -+-=,极小值为1(1)(1)6f a =--.…………8分(2 所以()f x 在[]0,2上有两个零点 …………………………………11分,()f x 在()0,1上单调递增,上递增, 又因为所以()f x 在[]0,1上有且只有一个零点,在[]1,2上没有零点,所以在[]0,2上有且只有一个零点时,()f x 在[]0,2上有两个零点;时,()f x 在[]0,2上有且只有一个零点 …………………………………16分19. 已知函数2()ln xf x x=. (1)求函数()y f x =在区间(2,e e ⎤⎦上的值域; (2)求()f x 的单调递减区间;(3)若存在0[e,)x ∈+∞,使函数21e()eln ln ()22a g x a x x x f x a +=+-⋅⋅≤成立,求实数的取值范围.解:(1)由已知22(ln 1)()(ln )x f x x -'=,因为(2,x e e ⎤∈⎦,所以()0f x '>, 所以函数()y f x =在区间(2,e e ⎤⎦上单调递增,又因为()()222,f e e f e e ==,所以函数()y f x =的值域为(22,e e ⎤⎦ …………………………………4分(2)函数()f x 的定义域为(0,1)(1,)+∞,22(ln 1)'()(ln )x f x x -=,由'()0f x <,解得01x <<或1e x <<,函数()f x 的单调递减区间为(0,1)和(1,e). (8)分(3)因为21()eln (e)2g x a x x a x =+-+, 由已知,若存在0[e,)x ∈+∞使函数21()eln (e)2g x a x x a x a =+-+≤成立, 则只需满足当[e,)x ∈+∞时,min ()g x a ≤即可. (10)分又21()eln (e)2g x a x x a x =+-+, 则2e (e)e ()(e)'()(e)a x a x a x a x g x x a x x x-++--=+-+==, ……………12分①若e a ≤,则()0g x '≥在[),x e ∈+∞上恒成立, 所以()g x 在[),e +∞上单调递增,所以()()()22min122e g x g e ae e e a e ==+-+=-所以22e a -≥,又因为a e ≤,22e a e -≤≤ (14)分②若a e >,则()g x 在[),e a 上单调递减,在[),a +∞上单调递增 所以()g x 在[),e +∞上的最小值是()g a又因为()()202e g a g e <=-<,而0a e >>,所以一定满足条件综上所述,的取值范围是2e 2a -≥. ………………………………16分20. 已知函数1()2(1)(0).x a f x ae a a x+=+-+>⑴当1a =时,求()f x 在点(1,(1))f 处的切线方程;⑵若对于任意的()0,x ∈+∞,恒有()0f x ≥成立,求实数a 的取值范围. 解:()1当1a =时,2()4x f x e x =+-因为,22()x f x e x'=-所以, (1)2f e '=-所以, 所以,()f x 在点(1,(1))f 处的切线方程为(2)0e x y --= (4)分()21()2(1)(0)xa f x ae a a x+=+-+>因为.所以 22(1)(),x ax e a f x x -+'= 令2()(1)x g x ax e a =-+,则()(2)0xg x a x x e'=+>, (8)分()g x 所以在()0,+∞上单调递增, (0)(1)0,g a =-+<因为2(1)(1)0g a a a a =-+>+= , 所以存在()00,x ∈+∞,使0()0g x =,且()f x 在()00,x 上单调递减,()f x 在()0,x +∞ 上单调递增,000220002(1)()(1)0,=(1)=x x x a g x ax e a ax e a ae x +=-+=+因为所以,即, 因为对于任意的()0,x ∈+∞,恒有()0f x ≥成立,所以0min 001()()2(1)0x a f x f x ae a x +==+-+≥,………………………………12分所以200112(1)0a a a x x +++-+≥,2001120x x +-≥所以,所以200210x x --≤, 解得0112x -≤≤,因为020=(1)x ax e a +,∴0201=1x a x e a+>, 令0200()x h x x e =,而00200000()(2)(2)x x h x x x e x x e '=+=+, 当01,02x ⎡⎫∈-⎪⎢⎣⎭时,0()0h x '<,(]00,1x ∈时,0()0h x '>,所以0()h x 在1,02⎡⎫-⎪⎢⎣⎭上为减函数,在(]0,1上为增函数.又1(0)0,()(1)2h h h e =-=所以[]0()0h x e 的值域为, ,所以11a e a +<≤ ,解得11a e ≥- . 故所求实数a 的取值范围为1,1e ⎡⎫+∞⎪⎢-⎣⎭……………………………………16分数学(加试)参考答案1.下列函数的导函数(1)3(32)y x =- (2) (21)2log x y +=解:(1)223(32)39(32)y x x '=-⨯=- ………………………………5分(2)2(21)ln 2y x '=+ (10)分2. 求曲线3232y x x x =-+过点()0,0的切线方程.解:设切点坐标()00,P x y ,因为 2362y x x '=-+ 所以 2000()362f x x x '=-+ 曲线在()00,P x y 处的切线方程为32200000032(362)()y x x x x x x x -+-=-+- 又切线过点()0,0,所以32200000032(362)()x x x x x x -+-=-+- ……………………4分即3200230x x -=,解得0030.2x x ==或所以001()2()4f x f x ''==-或………………………………8分所以,12.4y x y x ==-切线方程为或 ………………………………10分3. 已知关于x 的不等式2320ax x -+>(a R ∈).(1)若不等式2320ax x -+>的解集为{1x x <或}x b >,求a ,b 的值; (2)求不等式2325ax x ax -+>-(a R ∈)的解集.解:(1)将1x =代入2320ax x -+=,则1a =因为,不等式为2320x x -+>,即()()120x x -->所以,不等式解集为{2x x >或}1x <,所以2b = (4)分(2)不等式为()2330ax a x +-->,即()()310ax x -+>当0a =时,原不等式解集为{}1x x <- (6)分当0a ≠时,方程()()310ax x -+=的根为13x a=,21x =-, ①当0a >时,31a >-,∴3x x a ⎧>⎨⎩或}1a <-②当30a -<<时,31a <-,∴31x x a ⎧⎫<<-⎨⎬⎩⎭③当3a =-时,31a=-,∴∅ ④当3a <-时,31a >-,∴31x x a ⎧⎫-<<⎨⎬⎩⎭………………………………10分4. 已知函数()()2221x f x e ax x =+-, a R ∈.(1)若函数()y f x =在(],2-∞-上单调递增,求实数a 取值范围; (2)当0x ≤时,()10f x +≥,求实数a 的取值范围.解:(1)()()22222x f x e ax a x '=++⎡⎤⎣⎦,因为函数()y f x =在(],2-∞-上单调递增所以()0f x '≥在(],2x ∈-∞-上恒成立,即()220ax a x ++≥在(],2x ∈-∞-时恒成立当0a =时,20x ≥,不合题意,当0a ≠时,0a >且22a a+--≥ 解得:2a ≥ 所以,实数a 取值范围为2a ≥ (4)分(2)因为,当0x ≤时, ()10f x +≥,即当0x ≤时, ()222110x e ax x +-+≥所以,当0x ≤时, 221210x ax x e+-+≥, 设()22121x h x ax x e =+-+,则()22212221x x h x ax ax e e ⎛⎫=+-=+- ⎪⎝⎭', (5)设()211x m x ax e =+-,则()22x m x a e=+'. ①当2a -≥时,因为0x ≤,所以222xe ≥从而()0m x '≥, 所以()211xm x ax e =+-在(],0-∞上单调递增, 又因为()00m =,所以当0x ≤时,()0m x ≤, 从而当0x ≤时,()0h x '≤,所以()22121x h x ax x e=+-+在(],0-∞上单调递减又因为()00h =,从而当0x ≤时,()0h x ≥,即221210xax x e +-+≥ 于是当0x ≤时,()10f x +≥ (7)分②当2a <-时,令()0m x '=,得22xa e +=,∴12102x n a ⎛⎫=-< ⎪⎝⎭, 故当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()2220x x a m x e e a ⎛⎫=+< ⎪⎝⎭',∴()211x m x ax e =+-在121,02n a ⎛⎤⎛⎫- ⎪ ⎥⎝⎭⎝⎦上单调递减, 又∵()00m =,∴当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()0m x ≥,从而当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()0h x '≥∴()22121x h x ax x e =+-+在121,02n a ⎛⎤⎛⎫- ⎪ ⎥⎝⎭⎝⎦上单调递增,又∵()00h =, 从而当121,02x n a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时, ()0h x <,即221210xax x e +-+< 于是当121,02x n a ⎛⎤⎛⎫∈-⎪ ⎥⎝⎭⎝⎦时, ()10f x +<, 综合得a 的取值范围为[)2,-+∞. ………………………………。
最新江苏省如东高级中学新高三高考热身练数学一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在相应位置上. 1. sin 1740 的值等于 .2. 对于命题p :R x ∈∃,使得x 2+ x +1 < 0.则p ⌝为:___ ______.3. 函数y =()2log 2y x a =+有相同的定义域,则a = .4.5. 一组数据的方差为2,将这组数据中每个扩大为原数的2倍,则所得新的一组数据的方差是 .6. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 .7.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 .8.已知1sin()64πα-=,则sin(2)6πα+= .9.已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积为V= ;10.三角形ABC 中AP 为BC 3=,2-=⋅BC AP ,则= . 11.定义在),0(+∞上的函数)(x f 的导函数0)('<x f 恒成立,且1)4(=f ,若()1f x y +≤,则y x y x 2222+++的最小值是12.在1,2,3,4,5五条线路的车停靠的同一个车站上,张老师等候1,3,4路车的到来,按汽车经过该站的平均次数来说,2,3,4,5路车的次数是相等的,而1路车的次数是汽车各路车次数的总和,则首先到站的汽车是张老师所等候的汽车的概率为 .13.已知2sin cos 20a a θθ+-=,2sin cos 20()b b a b θθ+-=≠,对任意,a b R ∈,经过两点22(,),(,)a a b b 的 直线与一定圆相切,则圆方程为 .14.对于数列{}n a ,定义数列{}n a ∆满足: 1n n n a a a +=∆-,(n *∈N ),定义数列2{}n a ∆满足: 21n n n a a a +∆=∆-∆,(n *∈N ),若数列2{}n a ∆中各项均为1,且2120080a a ==,则1a =__________.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15 .已知复平面内平行四边形A B C D ,A 点对应的复数为+,向量BA对应的复数为12i +,向量BC对应的复数为3i -,求:(Ⅰ)点,C D 对应的复数;(Ⅱ)平行四边形A B C D 的面积.16.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC ,BC 1∩B 1C =E ,F 是AC 的中点.(Ⅰ)求证:EF ∥平面AB 1C 1;(Ⅱ)设∠B 1AC 1=θ,且cos θ=23,试在棱AA 1上找一点M ,使得BM ⊥平面AB 1C .17.如图,在矩形ABCD中,1AB BC ==,以A 为圆心1为半径的圆与AB 交于E (圆C 1B 1A 1CFEBA弧DE为圆在矩形内的部分)(Ⅰ)在圆弧DE上确定P点的位置,使过P的切线l平分矩形ABCD的面积;(Ⅱ)若动圆M与满足题(Ⅰ)的切线l及边DC都相切,试确定M的位置,使圆M 为矩形内部面积最大的圆.18.有一五边形ABCDE的地块(如图所示),其中CD,DE为围墙.其余各边界是不能动的一些体育设施.现准备在此五边形内建一栋科技楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地.(Ⅰ)请设计科技楼的长和宽,使科技楼的底面面积最大?(Ⅱ)若这一块地皮价值为400万,现用来建每层为256平方米的楼房,楼房的总建筑面积(即各层的面积之和)的每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整栋楼房每平方米的建筑费用增加25元.已知建筑5层楼房时,每平方米的建筑费用为500元.为了使该楼每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),问应把楼建成几层?19.根据如图所示的程序框图,将输出a ,b 的值依次分别记为a 1,a 2,…,a n ,…,a 2008;b 1,b 2,…,b n ,…,b 2008.(Ⅰ)求数列 { a n } 的通项公式;(Ⅱ)写出b 1,b 2,b 3,b 4,由此猜想{ b n }的通项公式,并证明你的证明; (Ⅲ)在 a k 与 a k +1 中插入b k +1个3得到一个新数列 { c n } ,设数列 { c n }的前n 项和为S n ,问是否存在这样的正整数m ,使数列{ c n }的前m 项的和2008m S =,如果存在,求出m 的值,如果不存在,请说明理由.20. 设函数321() (a<b<c)3f x ax bx cx =++,其图像在点(1,(1)),(,())A f B m f m 处的切线的斜率分别为0,a -.(1)求证:01b a≤<(2)若函数()f x 的递增区间为[],s t ,求s t -的取值范围;(3)若当x k ≥时(k 是与,,a b c 无关的常数),恒有()0f x a '+<,试求k 的最小值附加题部分1.(矩阵与变换,满分10分)已知矩阵11A⎡=⎢-⎣ab⎤⎥⎦,A的一个特征值2λ=,其对应的特征向是是121α⎡⎤=⎢⎥⎣⎦.(1)求矩阵A;(2)若向量74β⎡⎤=⎢⎥⎣⎦,计算5Aβ的值.2.(极坐标与参数方程,满分10分) 已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos 10sin x y θθ=⎧⎨=⎩.(1)化直线l 的方程为直角坐标方程; (2)化圆的方程为普通方程;(3)求直线l 被圆截得的弦长.3.(本小题满分10分)某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A 、B 、C 、D 与它们 的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对一个得3分,连错得1-分,一名观众随意连线,他的得分记作ξ.(Ⅰ)求该观众得分ξ为非负的概率; (Ⅱ)求ξ的分布列及数学期望.4. (本小题满分10分)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.建立如图空间直角坐标系. (Ⅰ)求二面角B AC M --的大小的余弦值; (Ⅱ)求三棱锥MAC P -的体积..答案一、填空题1.2-2.R x ∈∀,均有x 2+ x +1≥0 3.2a =- 4.5354321b b b b b b =∙∙∙∙5.8 6.3 7.22 8.789.16+1011.16 12.3413.11,42⎛⎫⎪⎝⎭14.20070 二、解答题15.解:(1)∵ 向量BA对应的复数为12i +,向量BC 对应的复数为3i -,∴ 向量A C对应的复数为(12i +)-(3i -)=23i -.又 OC OA AC =+,∴点C 对应的复数为(2i +)+(23i -)=42i -.又 BD BA BC =+ =(12i +)+(3i -)=4i +,2(12)1O B O A BA i i i =-=+-+=-,∴ 1(4)5O D O B B D i i =+=-++=,∴点D 对应的复数为5.(2) ∵cos ,cos BA BC BA BC BA BC B B BA BC=∴===, ∴sin B =,∴sin 7S BA BC B ===.∴平行四边形A B C D 的面积为7.16.解:(Ⅰ)在△AB 1C 中,E ,F 分别是B 1C 和AC 的中点,则EF ∥AB 1,而EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1,∴EF ∥平面AB 1C 1.(Ⅱ)设三棱柱的侧棱AA 1=b ,AB =AC =a , 由∠BAC=90°,可得BC = 2 a ,有题意可得AB 1=AC 1在△AB 1C 1中,2222cos 3ba bθ===+,∴222b a =,即b = 2 a .当M 为AA 1的中点时,在矩形AA 1B 1B 中,易证得BM ⊥AB 1,∵在直三棱柱ABC -A 1B 1C 1中,AC ⊥AB ,∴AC ⊥平面AA 1B 1B ,BM ⊂平面AA 1B 1B , ∴BM ⊥AC ,又AC ∩AB 1=A ,∴BM ⊥平面AB 1C .17.解(Ⅰ)以A 点为坐标原点,AB 所在直线为x 轴,建立直角坐标系.设P (x 0,y 0),B 0),D (0,1),圆弧DE 的方程x 2+y 2=1(0,0x y ≥≥) 切线l 的方程:x 0x +y 0y =1(可以推导). 设l 与AB 、CD 交于F 、G 可求F (1,0x ),G (01,1y x -), l 平分矩形ABCD 面积,∴00001120y FB G N y x x -=⇒=⇒+-=……①又22001x y +=……② 解①、②得:0011,)2222x y P ==∴. (Ⅱ)由题(Ⅰ)可知:切线l 20y +-=, 当满足题意的圆M 面积最大时必与边BC 相切,设圆M 与直线l 、BC 、DC 分别切于R 、Q 、T ,则MR =MT =MQ =r (r 为圆M 的半径).∴M ,1)r r-1(),3r r r =⇒==舍.MC 1B 1A 1CFEBA∴M 点坐标为33.18.解:(Ⅰ)由图建立如图所示的坐标系,可知AB 所在的直线方程为x 20+y20=1,即 x +y =20,设G (x ,y ),由y =20-x 可知G (x ,20-x ).S = (34-(20-x ))(23-5-x )=-x 2+4x +18·14=-(x -2)2+256.由此可知,当x =2时,S 有最大值256平方米.答:长宽均为16时面积最大.(Ⅱ)设应把楼房建成x 层,则楼房的总面积为256x 平方米,每平方米的购地费为4000000÷(256x )元,每平方米的建筑费用为500+500(x -5)·5%元.于是建房每平方米的综合费用为y =500+500(x -5)·5%+4000000256x =375+25x +4000000256x ≥375+225·4000000256=375+2·5·200016 =375+1250=1625(元).当25x =4000000256x ,即x 2=4000000256·25 ,x =200016·5=25时,y 有最小值1125.故为了使该楼每平方米的平均综合费用最低,学校应把楼房建成25层. 19.解:(Ⅰ)a 1=1,a n +1 =a n +1,∴{ a n }是公差为1的等差数列.∴a n =n . (Ⅱ)b 1=0,b 2=2,b 3=8,b 4=26,猜想131n n b -=-.证明如下:b n +1 =3b n +2,b n +1+1=3(b n +1),∴{ b n +1}是公比为3的等比数列.∴1111(1)33n n n b b --+=+=.则131n n b -=-. (Ⅲ)数列{}n c 中,k a 项(含k a )前的所有项的和是121(12)(333)k k -+++++++ ()13322kk k +-=+,估算知,当7k =时,其和是73328112020082-+=<,当8k =时,其和是83336331520082-+=>,又因为200811208882963-==⨯,是3的倍数,故存在这样的m ,使得2008m S =,此时257(1333)296667m =++++++= .20. (1)2()2f x ax bx c '=++ ,由题意及导数的几何意义得(1)20f a b c '=++=①2()2f m am bm c a '=++=-② 又a b c <<,可得424a a b c c <++<,即404a c <<,故0,0a c <>。