当前位置:文档之家› 离心泵主要零部件的强度计算

离心泵主要零部件的强度计算

离心泵主要零部件的强度计算
离心泵主要零部件的强度计算

第九章离心泵主要零部件的强度计算

第一节引言

在工作过程中,离心泵零件承受各种外力的作用,使零件产生变形和破坏,而零件依靠自身的尺寸和材料性能来反抗变形和破坏。一般,把零件抵抗变形的能力叫做刚度,把零件抵抗破坏的能力叫做强度。设计离心泵零件时,应使零件具有足够的强度和刚度,已提高泵运行的可靠性和寿命,这样就要尽量使零件的尺寸做得大些,材料用得好些;但另一方面,又希望零件小、重量轻、成本低,这是互相矛盾的要求,在设计计算时要正确处理这个矛盾,合理地确定离心泵零件尺寸和材料,以便满足零件的刚度和强度要求,又物尽其用,合理使用材料。

但是,由于泵的一些零件形状不规则,用一般材料力学的公式难以解决这些零件的强度和刚性的计算问题。因此,推荐一些经验公式和许用应力,作为设计计算时的参考。

对离心泵的零件,特别是对过流部件来说,耐汽蚀、冲刷、化学腐蚀和电腐蚀问题也是非常重要的,有些零件的刚度和强度都满足要求,就是因为汽蚀、冲刷、化学腐蚀和电腐蚀问题没有处理好而降低了产品的寿命。

对于输送高温液体的泵来说,还必须考虑材料的热应力问题。

第二节叶轮强度计算

叶轮强度计算可以分为计算叶轮盖板强度、叶片强度和轮毂强度三部分,现分别介绍如下:

一、叶轮盖板强度计算:

离心泵不断向高速化方向发展,泵转速提高后,叶轮因离心力而产生的应力也随之提高,当转速超过一定数值后,就会导致叶轮破坏,在计算时,可以把叶轮盖板简化为一个旋转圆盘(即将叶片对叶轮盖板的影响忽略不计)。计算分析表明,对旋转圆盘来说,圆周方向的应力是主要的,叶轮的圆周速度与圆周方向的应力σ(MPa)近似地有以下的关系:

62

210-?=u ρσ (9-1)

式中 ρ—材料密度(kg/m 3);(铸铁ρ=7300 kg/m 3;铸钢ρ=7800 kg/m 3;铜ρ=7800 kg/m 3)

u 2—叶轮圆周速度(m/s );

公式(9-1)中的应力σ应小于叶轮材料的许用应力〔σ〕,叶轮材料的许用应力建议按表9-1选取。

表9-1 叶轮材料的许用应力

经验表明,铸铁叶轮的圆周速度u 2 最高可达60 m/s 左右。因此,单级扬程可达到200

米左右;铬钢叶轮的圆周速度u

最高可用至110 m/s左右。因此,单级扬程可达到650米

2

左右。

如果叶轮的圆周速度没有超过上述范围,则叶轮盖板厚度由结构与工艺上的要求决定,悬臂式泵和多级泵的叶轮盖板厚度一般可按表9-2选取,双吸泵的叶轮盖板厚度较表中推荐数值大1/3 到一倍。

表9-2 叶轮盖板厚度

二、叶片厚度计算:

为扩大叶轮流道有效过流面积,希望叶片越薄越好;但如果叶片选择得太薄,在铸造工艺上有一定的困难,而且从强度方面考虑,叶片也需要有一定的厚度。目前,铸铁叶轮的最小叶片厚度为3~4毫米,铸钢叶片最小厚度为5~6毫米。叶片也不能选择的太厚,叶片太厚要降低效率,恶化泵的汽蚀性能。大泵的叶片厚度要适当加厚一些,这样对延长叶轮寿命有好处。

表9-3 叶片厚度的经验系数

叶片厚度S(毫米)可按下列经验公式计算:

12

+=Z

H KD S i

(9-2)

式中 K —经验系数,与材料和比转数有关,对铸铁和铸钢叶轮,系数K 推荐按表9-3选取;

D 2—叶轮直径(米); H i —单级扬程(米); Z —叶片数。

三、轮毂强度计算

对一般离心泵,叶轮和轴是动配合。大型锅炉给水泵和热油泵等产品,叶轮和轴是静配合。为了使轮毂和轴的配合不松动,在运转时由离心力产生的变形应小于轴和叶轮配合的最小过盈量。在叶轮轮毂处由离心力所引起的应力可近似按公式(9-1)计算,由此应力所引起的变形为:

C D E

D σ

=

? (9-3)

式中 E —弹性模量(MPa );(铸铁E=1.2×105;铸钢E=2×105;铜E=1.1×105

) D C —叶轮轮毂平均直径(mm );

△D —由离心力引起的叶轮轮毂直径的变形(mm )。 △D 应小于叶轮和轴配合的最小过盈量△min ,即 △D <△min

例题:叶轮外径D 2=360mm 、转速n =1480r/min 、比转数n s =96、单级扬程H i =40m 、叶片数Z=7、叶轮材料为HT200。试计算叶轮盖板和叶片厚度。如果轴径为75mm ,叶轮与轴的配合为H7/r6,轮毂平均直径D C =82.5mm ,试求泵在工作时叶轮和轴是否松动?

解:1. 计算圆周方向应力,代入公式(9-1),得

MPa u 68.51060148036.0730010

6

2

6

2

2

=???? ?

????=?=--πρσ

由表9-1知,σ<〔σ〕,故在n =1480 r/min 时,叶轮盖板是安全的,此时叶轮盖板厚度由结构和工艺要求确定。由表9-2知,可选叶轮盖板厚度为6mm 。

2.计算叶片厚度:由表9-3,取经验系数K =5,代入公式(9-2),得

mm Z H KD S i 3.517

40

36.0512

=+?=+= 取叶片厚度S=6mm 。

3. 代入公式(9-3),可得离心力所引起的叶轮轮毂直径变形量△D :

0039.05.82102.168

.55

=??=

=

?C D E

D σ

mm

由公差配合表可知,φ75 H7/r6的最小过盈量△min =0.013mm,即

△D <△min

所以,叶轮和轴不会松动。

第三节 泵体强度计算

常用的离心泵泵体有涡室和中段(包括前、后段)两种,现分别介绍近似的计算方法。 一、涡室壁厚的计算

涡室是离心泵中较大的零件,并承受高压液体作用。所以,涡室除了应有足够的强度和良好的工艺性外,为了保证运转的可靠性,还必须有足够的刚度。在生产实验中,有个别涡室虽然强度够了,但由于刚度不够,在加工、试验、存放和运行过程中产生了变形,影响了离心泵的装配和运行。

目前,一般低压和中压泵的涡室均以铸铁制造,实践表明,如果泵体壁厚超过40毫米,在铸造时容易产生疏松现象。所以,对吐出压力超过5MPa 的泵,很少采用普通铸铁泵体,一般均采用高强度铸铁(如球磨铸铁)、铸钢或合金钢制造。

由于涡室形状很不规则,很难准确地计算涡室中的应力,现推荐下列建立在统计基础上的方法:

〔σ〕H

H

Q

S S cq

(9-4)

图9-1 离心泵涡室

式中 S —涡室壁厚(mm ),如图9-1所示:

〔σ〕—许用应力(MPa )。在应用公式(9-4)时,铸铁的许用应力按〔σ〕=9.807~

14.71 MPa ;铸刚的许用应力按〔σ〕=19.613~24.517MPa 计算;比转数小时取较大的许用应力;

S cq —涡室的当量壁厚,可按下式计算:

2.70084.01545

++

=

s s

cq n n S (9-5) 对大型泵,采用公式(9-5)计算时还必须注意使泵体有足够的刚度,对输送腐蚀性液体的泵,还应添加必要的腐蚀余量。 二、分段式多级泵中段计算

可以把分段式多级泵中段认为是受压圆筒,如图9-2。对外经D 2和内径D i 的比值i

ou

D D >1.1的中段,可认为是厚壁圆筒,对脆性材料的厚壁圆筒可按下式计算厚壁S(mm)

2

1i D P P

S ???? ??--+=〔σ〕〔σ〕 (9-6)

图9-2 分段式多级泵的泵体

对塑性材料(如钢)可按下式计算壁厚S(mm):

212i

D P S ???

? ??--=〔σ〕〔σ〕 (9-7) 式中 P —泵体承受的工作压力(MPa );

D i —中段内径(mm);

〔σ〕—许用应力(MPa ),按表9-4选取。

对外经D 和内径D i 的比值<i

ou

D D 1.1的中段,可认为是薄壁圆筒,薄壁圆筒可按下式计算壁厚S(mm);

〔σ〕

2i

PD S =

(9-8)

表9-4 泵体的许用应力

对于输送腐蚀性液体的泵,应选用耐腐蚀材料,并添加适当的腐蚀余量C 。对弱腐蚀性液体,一般C=2mm ;对中等腐蚀性液体,一般C=4mm ;对强腐蚀性液体,一般C=6mm ;对于输送高温液体的泵,除考虑热应力外,还应考虑材料的蠕变性质。

除了计算中段的强度外,还应注意刚度,在生产实验中曾有个别泵体因刚度不够,在加工过程中发生变形,影响装配和运行。

例题①:,有一台单吸单级悬臂式离心泵,Q=90米3/时、H=66米、n=2950转/分、叶轮外径D2=232毫米、以HT200铸铁制造泵体,求泵体厚度?

解:首先计算泵的比转数:

5.7366

3600

90

295065.365.34

34

3=??=

=

H

Q n n s

计算涡室的当量厚度S cq ,代入公式(9-5)得:

84.282.75.730084.05

.731545

2.70084.01545=+?+=++=

s s cq n n S 取HT200的许用应力〔σ〕=11MPa,代入式(9-4),得涡室厚度:

mm H H Q S S cq

6.911

66

6636009084.28=??==〔σ〕

取涡室壁厚为10mm 。

例题②:有一台分段式多级泵,单级扬程为40米,最多级数为9级,中段外径D ou =560毫米,内径D i =516毫米,泵体材料为HT200,试校核强度。

解:对9级的分段式多级泵来说,中段最多只承受8级压力(见图9-2),故中段所承受压力P=ρgH=1000×9.807×320×10-6=3.138MPa 。

首先计算外径D ou 和内径D i 的比值:

085.1516

560

==i ou D D 由此可知应按薄壁圆筒计算,代入公式(9-8)得:

MPa S

PDi 8.362

5165602516

138.32=-?

?==

σ

由表9-4可知,中段是比较安全的。

第四节 泵体密封面连接螺栓计算

多级泵穿杠(前、后段螺栓)和水平中开式上下泵体的螺栓是离心泵的主要零件之一,泵体完全靠螺栓的拉紧力来保证其密封性,如图9-2和图9-3所示。这类螺栓在离心泵工作时,除了承受泵腔内液体静压力作用在泵体上的拉力P w 外,还有使泵体密封面压紧,保证密封面密封性的拉力P m ,所以每个螺栓上总的载荷P 为:

m w P P P += (9-9)

平衡液体静压力的拉力P w (牛顿)可按下式计算:

n

P D P i

w 1

4

2'=

π

(9-10) 为了保证泵体接合面密封性的拉力 P (牛顿)可按下式计算:

n

bmp D P i

m 1

2'=π (9-11) 上两式中 D ′—泵体密封面垫片平均直径(mm ),如图9-3; p i —泵腔内液体最大静压力(MPa ); n —螺钉数;

m 一密封面系数,与密封面所用的垫片材料性质和结构有关。根据实践经验:

对工作温度为200℃以下的泵,在泵体密封面间加纸垫,可取m =2;当工作温度超过200℃时,密封面不加垫片,靠泵体金属面直接密封,此时m =6~6.5;

b —泵体密封面垫片有效计算宽度(mm );当垫片实际宽度b 0<6mm 时,取

b=b 0;.当b 0>6mm 时,取2100b b ?=。

因此,连接螺栓的最小直径d (mm )为:

[]

σπ4

3.1P d =

(9-12)

式中〔σ〕—螺栓的许用应力。 对碳素钢:

d=6~16毫米时,可取〔σ〕=(0.2~0.25)σs ; d=16~30毫米时,可取〔σ〕=(0.25~0.4)σs ; d=30~60毫米时,可取〔σ〕=(0.4~0.6)σs ; 对合金钢:

〔σ〕=(0.31~0.4)σs 。

σs 为材料的屈服强度。

对于压力较高的泵,由于结构上的原因,常常限制螺栓的数量不能太多。为了保证泵体密封面的密封性,每个螺栓都要承受很大的拉力,因此,连接螺栓的应力一般都很高,必须用高强度的材料。对这样的连接螺栓,在拧紧时必须十分小心。螺栓的预紧程度应恰当和均匀。如果拧得过紧,可能使螺栓内应力接近或超出材料的屈服极限,使螺栓产生塑性变形而逐渐伸长,反而失去了拉紧的作用。

对于输送高温液体的泵,还必须考虑由于泵体与连接螺栓间的温差而产生的应力。

图9-3 泵体密封面连接螺栓

图9-4 中段密封面尺寸

例题:有一台分段式多级泵,工作压力p i =3.6MPa ,在常温下工作,中段密封面尺寸如图9-4所示,根据结构安排情况,取连接螺栓为8个,材料为45号钢,试计算密封面连接螺栓直径。

解:根据工作情况,密封面可加纸垫。每个螺栓的负荷P w 可由公式(9-10)求得:

9834381

6.325155404142

2=????

? ??+='=ππ

n P D P i w 牛顿

每个螺栓的负荷P m 。可按公式(9-11)计算,取系数m=2,得:

166678

1

6.3222515

540102515540212=???-?

??

? ??+?='=ππn bmp D P i

m 牛顿

每个螺栓的总负荷P 为:

1150101666798343=+=+=m w P P P 牛顿

连接螺栓材料为45号钢,σs =360MPa ,取材料的许用应力〔σ〕=0.535σs =192.6MPa ≈193MPa ,连接螺栓的最小直径可由公式(9-12)求得:

[]

mm P

d 45.316

.1924

115010

3.14

3.1=??=

=

πσπ

此处计算出的d 是连接螺栓最小直径,由GB/T196-1981知,M36的螺纹底径为φ31.67厘米,因此,取连接螺栓的螺纹为M36,如图9-5所示。

图9-5分段式多级泵的密封面连接螺栓 i 一级数

第五节 泵轴的校核

根据给定的泵的设计参数:流量Q(m 3/h)、扬程H(m)和转速n(r/min),计算比转数,进而根据泵的结构形式,查有关标准(也可用经验公式通过计算)确定泵效率η,然后按下式计算泵的轴功率:

()kW QH

P 1.2~1.13600807.9??=

η

(9-13)

按扭矩法初步确定泵轴最小轴径(mm ):

C n

P

d ?≥3

(9-14) 式中 d —轴的外径(mm );

C —与轴的材料及相应的扭应力Tp τ值有关的系数;(见表9-5) P —泵的轴功率(kW ); n —泵轴转速(r/min);

注:①当弯矩相对转矩很小或只受转矩时,C 取较小值(τTp 取较大值),否则反之。

②当轴截面有一个键槽时,需将轴径加大3%;同一截面有两个键槽时,需将轴径

加大7%。

表9-5 几种常用轴材料的Tp τ及C 值

叶轮、轴套等零件是套装在轴上,并同在泵体内高速旋转,轴的强度和刚度对泵的寿命和可靠性有很大的影响,所以,对轴的强度和刚度的校核是十分必要的。 一、轴的强度校核

当泵的结构和轴的长度未确定时,无法确定支承反力和轴所受的弯矩,应按公式(9-13)、(9-14)计算轴功率、最小轴径d,并在此基础上确定了安装叶轮处的轴径。在泵水力设计和结构设计初步完成后,应该校核泵轴的强度和刚度。

泵轴的自重和套装在轴上的叶轮、轴套等零件的重量,转子的径向力、由叶轮平衡后的剩余不平衡所引起的离心力和采用皮带传动时的皮带拉力等使轴弯曲,因此,泵轴是在弯曲与扭转联合作用下工作的,通常应以弯曲和扭转联合作用来校核轴的强度。

根据材料力学中的第三强度理论,弯、扭联合作作用的轴径d (mm )可按下列公式计算:

3

1.0b

〔σ〕dx

M d (9-15)

式中 [σ]b —材料许用弯曲应力(MPa ); M dx —当量弯矩(N ·mm )。

对泵轴来说,弯矩是一个对称循环变化负荷,泵轴的许用弯曲应力可按表9-6选用。

表9-6 泵轴的许用弯曲应力

泵轴的当量弯矩M dx (N ·mm )可按下式计算:

22M M M dx α+'=

(9-16)

式中 M ′—计算断面的弯矩(N ·mm ); M —计算断面的扭矩(N ·mm );

α—考虑到弯曲应力和扭转应力情况差异的校正系数,对离心泵的轴一般

可取α=0.57~0.61。

在使泵轴产生弯曲变形的作用力中,轴、轴套和叶轮等零件的自重可以称出或计算出,对导叶式多级泵来说,可以不必考虑转子的径向力,涡壳式泵在设计工况下工作时,径向力很小,可以忽略不计,必要时可以用泵在工作范围的上限和下限工作时的径向力来进行校核;用皮带传动的径向力可由皮带拉力算出;由叶轮平衡后的剩余不平衡所引起的离心

力C (N )比较小,在一般情况下可忽略去不计,对较重要的可按以下公式计算:

e mn C 25101.1-?= (9-17)

式中 C 一每个叶轮由平衡后的剩余不平衡所引起的离心力(N), m —叶轮质量(kg ); n —泵转速(r /min );

e —叶轮重心与转动轴心的偏心距(mm ),一般叶轮平衡精度为G6.3;对应该平

衡精度,偏心距计算公式为:mm n

n e 16

.602603.63

.6=?=

=

πω

。 计算时,可根据轴的弯矩图和扭矩图,选择危险断面,按公式(9-15)进行校核。 在离心泵轴上,一般均有固定叶轮、轴套和其他零件用的键槽,键槽对泵轴的强度和刚度的影响,已在安全系数(即许用应力)中考虑,不必另行计算。

对一般泵轴来说,采用弯扭联合作用来校核已经足够了,但对比较重要的泵轴,还需进一步知道轴在交变应力状态下的安全程度,常采用安全系数校核法。关于安全系数校核法在一般“机械零件”或“机械设计手册”中均有介绍,此处不再重复。 二 、轴的刚度校核

对泵轴来说,刚度校核就是计算轴的最大挠度,轴的最大挠度加转子装配后的径向跳动应小于叶轮密封环的最小间隙,否则将影响泵工作的可靠性和寿命。一般认为叶轮密封环最小间隙等于名义间隙的2/3~1/2。

泵转子静挠度可以用图解法,也可以用解析法求得,解析法可参考表9-7进行计算: 在计算静挠度时,可以用叠加法,例如对有几个叶轮的多级泵来说,在各个叶轮单独作用时对某一断面所产生的挠度分别为:y 1、y 2、y 3、……y n ,则该断面的总挠度y 为:

n y y y y y y +++++=Λ4321 (9-18)

应该指出,泵的实际挠度往往小于计算值。因为级间套、平衡盘、隔板衬套和填料函等都起一部分支承作用,多级泵转子拧紧后,叶轮、轴套等套装在轴上的零件也能相对地提高轴的刚度。所以,有时虽然计算的多级泵转子的静挠度大于最小密封间隙,但泵仍能正常工作。

实践经验表明,卧式泵轴的刚度,只要满足下列条件就不会有问题: 多级泵轴的细长比:d/l ≥0.035~0.04 单级悬臂泵悬臂比:t/l ≤1.0~1.5 两级悬臂泵悬臂笔:t/l ≤1.8~2.2 式中 l —两支承中心间的距离; d —装叶轮处的轴径; t —泵轴悬臂部分长度。

表9-7 泵轴的弯曲应力和静挠度

载荷形式 弯曲应力σb 和σbmax 静挠度y 和y max

()x l l W x

W b b -??-

=2σ

b

b W l

W 8max ?-

=σ(在中心)

()()[]

x l x l l

J E x l Wx y -+??-=

2

24

J

E l W y ??=3max

3845

b

b W x

W 2?-

=σ b

b W l

W 4max ?-

=σ(在中心)

()

22

4348x l EJ

x W y -?=

EJ

l W y 483max

?=

载荷形式 弯曲应力σb 和σbmax 静挠度y 和y max

a 段

l

W x b W b b ???-

=2σ b 段

l

W a W b b ???-

=2v σ l

W b a W b b ???-

=max σ (在载荷作用点)

a 段

()

222

6b x l l

J E x b W y --????=

b 段

()

222

6a l l

J E a W y --????=

v v

载荷W 下的挠度

l

J E a W y ????=

322b 若a <b

l

J E a W y ????=

3m ax

3v

式中 b

a b

3231+=v

c 段: ()u c W W b

b -=σ

l 段: ()x l l

W c W b b -??=σ

d 段: 0=b σ

b

b W

c W ?=max σ 在A 点 0=b σ 在B 点 c 段:()cl u cu J

E u W y 2362+-??=

l 段:()()x l x l l

J E x c W y --????-=26

d 段:J

E l c W y ????=6v

自由端:J

E l c W y ????=6d

载荷W 处的挠度:

()l c J

E c W y +??=32

J

E c l W y ???-

=55.152max

在l x 42265.0= 处

注:E 一材料弹性模量,对一般钢E=2.1×105MPa ;

J 一轴断面极惯性矩,44

64

mm d J π=

W b —抗弯截面系数,33

32

mm d W b π=

W —集中负荷(N ); w —均布负荷(N ); σb —弯曲应力(MPa )。

例题:如图9-6所示的9级多级泵,泵轴传递的扭矩为M=3090000N ·mm ,装叶轮处轴

离心泵主要参数

离心泵主要參數: 一、流量Q(m3/h或m3/s) 离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的液体体积。 泵的流量取决于泵的结构尺寸(主要为叶轮的直径与叶片的宽度)和转速等。操作时,泵实际所能输送的液体量还与管路阻力及所需压力有关。 二、扬程H(m) 离心泵的扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 泵的扬程大小取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等、转速。目前对泵的压头尚不能从理论上作出精确的计算,一般用实验方法测定。 泵的扬程可同实验测定,即在泵进口处装一真空表,出口处装一压力表,若不计两表截面上的动能差(即Δu2/2g=0),不计两表截面间的能量损失(即∑f1-2=0),则泵的扬程可用下式计算 注意以下两点: (1)式中p2为泵出口处压力表的读数(Pa);p1为泵进口处真空表的读数(负表压值,Pa)。 (2) 注意区分离心泵的扬程(压头)和升扬高度两个不同的概念。 扬程是指单位重量流体经泵后获得的能量。在一管路系统中两截面间(包括泵)列出柏努利方程式并整理可得 式中H为扬程,而升扬高度仅指Δz一项。 例2-1现测定一台离心泵的扬程。工质为20℃清水,测得流量为60m /h时,泵进口真空表读数为-0.02Mpa,出口压力表读数为0.47Mpa(表压),已知两表间垂直距离为0.45m若泵的吸入管与压出管管径相同,试计算该泵的扬程。 解由式

查20℃, h =0.45m p =0.47Mpa=4.7*10 Pa p =-0.02Mpa=-2*10 Pa H=0.45+ =50.5m 三、效率 泵在输送液体过程中,轴功率大于排送到管道中的液体从叶轮处获得的功率,因为容积损失、水力损失物机械损失都要消耗掉一部分功率,而离心泵的效率即反映泵对外加能量的利用程度。 泵的效率值与泵的类型、大小、结构、制造精度和输送液体的性质有关。大型泵效率值高些,小型泵效率值低些。 四、轴功率N(W或kW) 泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η计算,即 (kW)

水泵轴功率计算公式

水泵轴功率计算公式 这是离心泵的:流量×扬程×9.81×介质比重÷3600÷泵效率流量单位:立方/小时,扬程单位:米 P=2.73HQ/η,其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的ρ=1000Kg/m3,g=9.8 比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/Kg =Kg/m3*m3/h*m*9.8牛顿/Kg =9.8牛顿*m/3600秒 =牛顿*m/367秒 =瓦/367 1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/Η, 其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=Ρ GQH/1000Η(KW),其中的Ρ=1000KG/M3,G=9.8 比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/KG =KG/M3*M3/H*M*9.8牛顿/KG =9.8牛顿*M/3600秒 =牛顿*M/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为NE,电机功率为P,K为系数(效率倒数) 电机功率P=NE*K (K在NE不同时有不同取值,见下表) NE≤22 K=1.25 22

离心泵的选型原则、依据

离心泵的选型原则、依据 1.选型的依据 各种型号的泵都有一定的适用范围和使用条件。首先应当根据被输送液体的性质和生产条件的要求确定泵的种类,然后再进一步确定泵的具体型号。离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: 有计量要求时,选用计量泵 扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵。 扬程很低,流量很大时,可选用轴流泵和混流泵。 介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵) 介质含气量75%,流量较小且粘度小于37。4mm2/s时,可选用旋涡泵。 对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 2.离心泵的选择方法和步骤 离心泵的选择就按下列顺序进行。 (1)确定被输送液体的物理和化学性质 液体的物理和化学性质包括温度、粘度、密度、饱和蒸气压、腐蚀性和毒性等,是否含有固体粒子或气泡。由此才能决定泵的种类和型号,确定泵零部件的材料、密封件的类型、防止泵腐蚀和汽蚀的措施等。 (2)确定泵的流量 根据生产条件的要求,计算出单位时间需要输送的液体量,增加一定裕量后(一般取5%—10%),作为离心泵的流量。 (3)计算泵的扬程 根据泵的流量和管路及装置的情况,计算管路的液体阻力损失,求出泵所需要的扬程,也增加一定的裕量(5%—10%),作为选泵的的依据。 额定流量一般直接采用最大流量,如缺少,则采取正常流量的1.1-1.15倍。额定扬程取装置所需扬程的1.05-1.1倍。对粘度大于20mm或含固体颗粒的介质,需换算成输送清水时的额定流量和扬程。按额定流量和扬程查处初步选择的泵型号,可能有几种。按性能曲线校核泵的额定工作定是否落在泵的高效工作区内;校核泵的装置汽蚀余量NPSHA-必须汽蚀余量NPSHR是否符合要求。 (4)粘性液体的修正若被输送液体的运动粘度小于20cSt(1cSt=1mm2/s),因泵的流量和扬程变化不大,可不必修正。根据泵的流量和扬程以及液体的物理化学性质,在某种类型泵的系列图(谱图)上初选一种型号的离心泵。 若液体运动粘度大于是20cSt,则进行修正。其具体方法是:用所需的流量、扬程和液体粘度按图3-12求得扬程修正系数KH、流量修正系数KQ以后,分别除以所需的扬程和流量,即得修正以后的扬程和流量。依据作为选泵的数据才能保证输送粘性液体的要求。 (5)求泵的工作点 在离心泵的系列图上初选某种型号的离心泵的特性曲线上绘出该泵联接管路

离心泵的选型

离心泵在味精生产中的应用 马雄斌 (广州奥桑味精食品有限公司,广州510280) 摘要:本文主要介绍了味精生产中常用泵在使用中应注意的问题,特别是离心泵的选用和安装使用应注意的问题。 关键词:谷氨酸溶液,泵使用的常见误区,离心泵的选用。 1.前言 在味精生产中,液体输送是最常见的工艺生产过程,所以各种化工用泵和食品卫生级泵广泛应用于味精生产中。我们公司味精年产能力为40000吨,所使用的各类泵就有近300台。 由于液体的性质不同,如粘度、腐蚀性、干物质含量、固体悬浮物含量等不尽相同,而且诸如温度、压力、流量等输送条件也有较大的差别,因此不同工艺条件液体中所使用的泵也不尽相同。 生产中最常用的泵是离心泵,占85%以上。其它还有齿轮泵、螺杆泵、隔膜泵、磁力泵等,其中离心泵最常用。由于液体性质的不同,有输送清水的铸铁离心泵,有输送热水的热水循环泵,有输送物料的不锈钢离心泵,有输送腐蚀性介质的衬塑离心泵,有输送硝酸的磁力泵,有输送消泡油和糖浆的齿轮泵,有输送含固体悬浮液的螺杆泵等等。 2.泵使用和选型中常出现的问题 在离心泵使用中常见的误区有: (1)关小进口阀门; (2)启动前泵内没有充满液体,泵内及吸入管路容易积存空气,造成泵体震动大; (3)启动时出口阀全开,易造成超电流烧电机。停泵后才关闭阀门,易造成管路内液体倒流,使叶轮反转而损坏。 (4)双端面机械密封忘记开密封水,容易损坏机械密封。 在选型时,机械密封的选用也是至关重要。在我们公司一期技改工程实施过程中,超滤谷氨酸液输送泵的机械密封选用的是国产机械密封,机械密封采用石墨环/不锈钢,由于出口压力较大为5Bar,而料液中含有小固体颗粒,机械密封不到一个月就损坏需更换,不但影响生产,而且维修费用也大幅增加。后来我们选用了美国Durro公司的不锈钢离心泵,机械密封选用碳化钨或碳化硅,使用情况良好,一般一年才需更换一次机械密封,确保了生产的正常运行。 在真空循环系统如蒸发器循环泵的机械密封选型中,应选用双端面机械密封,于保证密封的可靠性,防止气体串入泵内产生类似于气蚀现象的震动。 在谷氨酸尾液浓缩蒸发器运行中,曾出现一效循环泵震动大电机电流偏大,联轴器胶圈容易剪断现象。操作工曾用关小进口阀门来处理,但造成泵体震动大。我们分析原因后,最后确定如下解决方法: (1)泵进、出口加装防震橡胶膨胀节,进口阀门全开。 (2)泵出口加装阀门,调节阀门开度大小,确保电机电流不超过额定值。

泵的效率及其计算公式

泵的效率及其计算公式 指泵的有效功率和轴功率之比。n二Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。 有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=p g QH (W 或Pe二丫QH/1000 (KW P :泵输送液体的密度(kg/m3) Y :泵输送液体的重度丫二p g (N/ m3) g:重力加速度(m/s) 质量流量Qm=p Q ( t/h 或kg/s ) 水泵轴功率计算公式 这是离心泵的:流量x扬程X9.81 x介质比重+3600+泵效率流量单位:立方/小时,扬程单位:米 P=2.73HQ/ n,其中H为扬程,单位m,Q为流量,单位为m3/h, n为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=p gQH/1000n (kw), 其中的 p =1000Kg/m3,g=9.8 比重的单位为Kg/m3, 流量的单位为m3/h, 扬程的单位为m,1Kg=9.8 牛顿则P=比重*流量*扬程*9.8牛顿/Kg =Kg/m3*m3/h*m*9.8 牛顿/Kg =9.8 牛顿*m/3600 秒

=牛顿*m/367 秒

= 瓦/367 上面推导是单位的由来,上式是水功率的计算, 轴功率再除以效率就得到了. 渣浆泵轴功率计算公式 流量Q M3/H 扬程H 米H2O 效率n % 渣浆密度A KG/M3 轴功率N KW N=H*Q*A*g/(n*3600) 电机功率还要考虑传动效率和安全系数。一般直联取 1 ,皮带取0.96 ,安全系数1.2 泵的效率及其计算公式 指泵的有效功率和轴功率之比。n二Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P 表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe= p g QH (W) 或Pe= 丫QH/1000 (KW) p:泵输送液体的密度(kg/m3 ) Y:泵输送液体的重度丫二pg(N/m3) g :重力加速度( m/s ) 质量流量Qm p= Q (t/h 或kg/s)

泵的选型原则、依据和具体操作方式

泵的选型原则、依据和具体操作方式 设计院在设计装置设备时,要确定泵的用途和性能并选择崩型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、了解泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 3、机械方面可靠性高、噪声低、振动小。 4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: a、有计量要求时,选用计量泵 b、扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. c、扬程很低,流量很大时,可选用轴流泵和混流泵。 d、介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、.螺杆泵) e、介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 f、对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、知道泵选型的基本依据 泵选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等 1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。如设计院工艺设计中能算出泵正常、最小、最大三种流量。选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。 2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。 3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。 4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧最低液面,排出侧最高液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。 5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS(绝对)、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、泵的位置是固定的还是可移的。 三、选泵的具体操作

离心泵选型建议

离心泵及选型过程介绍 一、离心泵的介绍: 离心泵是指靠叶轮旋转时产生的离心力来输送液体的泵。被输送液体和叶轮一同高速旋转,获得了足够的运动势能(扬程、压力),从而实现流通输送的目的。 按照不同区分方法,可将离心泵类型分为:单级泵、多级泵;低压泵、中压泵、高压泵;单侧进水式泵、双侧进水式泵;卧式泵、立式泵;蜗壳泵、导叶泵;自灌式离心泵、吸入式离心泵;磁力泵、屏蔽泵;油泵、水泵、凝结水泵、排灰泵、循环水泵等。 离心泵选型时,需明确我们需要的是哪一类型的泵。 从设备结构上区分,可将离心泵的基本构造分为:叶轮、泵体、泵轴、轴承、密封、电机、联轴器、基座以及附属的冷却、润滑、密封等装置。 在选型过程中,对每一部件机构、装置的要求也需具体化。 二、离心泵叶轮加工过程介绍 离心泵的性能参数(流量、扬程等)由叶轮的直径大小、过流部分的体积(叶轮的厚度)等决定。用户对流量、扬程的需求是随机的。叶轮一般由铸造加工而成,其过流部分的厚度一般只有几个常用规格,厂家通过切削叶轮的直径大小,来满足不同流量、扬程的需求。 三、离心泵性能曲线图 离心泵的主要性能参数:流量Q、扬程H、轴功率N和效率η。在一定转速下,离心泵的扬程H、轴功率N和效率η均随实际流量Q的大小而变化,泵的生产部门将表明Q-H、Q-N 及Q-η关系的曲线,标绘在一张图上,称为离心泵的特性曲线,是反映泵各性能参数之间的关系曲线。 离心泵的实际特性曲线需经过实际的工况(通过调节泵出口阀门,测试不同流量和压力、功率的对应关系)测试而成。选型前期可作为选型的参考,使用中也可以作为考核厂家产品性能是否稳定的一个依据。 各个厂家叶轮的铸造工艺不同,其流量、扬程和效率也不尽相同,各有特色。 由图可见,一般情况下当扬程升高时流量下降;可以根据扬程查到流量,也

水泵轴功率计算公式完整版

水泵轴功率计算公式 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水泵轴功率计算公式 这是离心泵的:流量×扬程××介质比重÷3600÷泵效率流量单位:立方/小时,扬程单位:米 P=η,其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的ρ=1000Kg/m3,g= 比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=牛顿 则P=比重*流量*扬程*牛顿/Kg =Kg/m3*m3/h*m*牛顿/Kg =牛顿*m/3600秒 =牛顿*m/367秒 =瓦/367 1)离心泵 流量×扬程××介质比重÷3600÷泵效率? 流量单位:立方/小时, 扬程单位:米 P=Η, 其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ΡGQH/1000Η(KW),其中的Ρ=1000KG/M3,G= 比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=牛顿 则P=比重*流量*扬程*牛顿/KG =KG/M3*M3/H*M*牛顿/KG =牛顿*M/3600秒

=牛顿*M/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为NE,电机功率为P,K为系数(效率倒数) 电机功率P=NE*K( K在NE不同时有不同取值,见下表) NE≤22?K= 22

IR离心泵型号价格及说明

IR离心泵型号价格及说明 一、IS、IR型卧式单级单吸清水离心泵结构说明: 单级离心泵 IS、IR型卧式单级单吸清水离心泵为后开式,拆开泵盖和叶轮时不需拆卸吸水和排出管路。悬架内装有两个滚珠轴承,用机器油或润滑脂润滑。泵通过弹性联轴器由电动机直接驱动。涡室、脚、进水法兰和出水法兰铸成一个整体。 二、IS、IR型卧式单级单吸清水离心泵装配与拆卸: 泵在装配前应首先检壹零件有无影响装配的缺陷,并擦洗干净,方可进行装配。 1、予先可将各处的连接螺栓,丝堵等分别拧紧在相应的零件上。 2、予先可将0形密封圈、纸垫、毛毡等分别放置在相应的零件上。 3、予先可将密封环和填料、填料环、填料压盖等依次装到泵盖内。 4、将滚动轴承装到轴上,然后装到悬架内,再合上压盖,压紧滚动轴承,并在轴上套上连接螺栓。 5、将轴套装在轴上,再将泵盖装在悬架上,然后再将叶轮、止动垫围.叶轮螺母等装上并拧紧。最后将上述组件装到泵体内,并拧紧泵体、泵盖上的连接螺栓。 在上述装配过程中,立式管道离心泵一些小件如平键、档油盘、档水?轴套内0形密封围等容易遣漏或装钳顺序,应特别注意。 泵拆卸顺序基本上可按装配顺序的反向进行。

安装 泵安装的好坏对泵的运行和寿命有重要影响,所以安装和校正必须仔细进行。泵的外形及安装尺寸。 1、安装和校正: 1) 清除底座上的油腻和污垢,把底座放在地基上。 2) 用水平仪检查底座的水平度,允许用楔铁找平。 3) 用水泥浇灌底座和地脚螺栓孔眼。 4) 水泥干固后应检查底座和地脚螺栓孔眼是否松动,合适后拧紧地脚螺栓,重新检查水平度。 5) 清理底座的支持平面,水泵脚及电机脚的平面,并把水录和电机安装到底座上去。 6) 联轴器之间应保持一定的间隙,检查水泵轴和电机轴中心线是否一致,可用薄垫片调整使其同心。

实用离心泵功率计算

o如何计算离心泵轴功率及电机功率 o发布时间:2012/4/28 浏览次数:8853次 o工程设计人员,在确定离心泵流量扬程之后,需要确定水泵的另外一个重要参数:水泵电机功率。很多时候只要按照样本,根据流量,扬程参数就可以确定水泵的电机型号及电机功率. 我们可以根据能量守恒原理,推导出水泵电机的技术公式。 水泵做的有效功W=Mgh(把一定重量的介质送到一定的高度h,h即为扬程) ——M为水的质量m=ρV(ρ是介质的密度,V介质的体积) V=Qt(Q表示水泵的流量,t表示水泵工作时间) 所以水泵做的有效功W=ρQtgH 水泵的有效功率P=W/t=ρQgH 水泵的轴功率(实际输出功率)为P1=ρQgH/η ——η表示水泵的效率 实际电机功率P2=γP1 ——γ表示电机的安全余量(γ的取值范围1.1—1.3,一般选1.2) 如果我们打的介质就是水那么电机功率计算公式为P2=(1.2QgH)/(3600*η) 其中流量Q的单位是:m3/h 扬程H的单位是:m 需要注意的是:根据公式计算出来的P2,不一定正好是电机功率,如33.56kw,那我们选电机就选37kw,如果是30.56kw,那我们就选30kw的电机。 通过以上我们公式推导我们可以知道以下几个情况 1,不论什么厂家,在流量,扬程确定的情况下,实际有效功都是固定的 2,水泵耗电多少不看水泵电机功率,要看水泵的轴功率。同样是配30kw的电机,一家的轴功率是20.56kw,一家是25.18kw,明显是20.56kw要节能。而轴功率的大小关键是水泵的效率。 如何查离心泵的效率? 扬子江泵业离心泵的样本上都会有性能曲线,按照流量扬程在性能曲线图上找到对应的工作点,再看这个

如何计算离心泵扬程

扬程是汲水设备进水口与出水口之间的垂直高度,汲水设备的铭牌上都标有扬程值。如何计算,离心泵品牌网是这样介绍的,下面我们就参下面的数据。 head ,H为单位质量液体流经泵后获得的有效能量。是离心泵的重要工作能参数,又称压头。可表示为流体的压力能头、动能头和位能头的增加,即: H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1 式中: H——扬程,m; p1,p2——泵进出口处液体的压力,Pa; c1,c2——流体在泵进出口处的流速,m/s; z1,z2——进出口高度,m; P——液体密度,kg/m3; g——重力加速度,约 9.81 m/s2。 例;某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。 解:(1) 输送20℃清水时泵的安装高度 已知:Hs=5.7m Hf0-1=1.5m u12/2g≈0 当地大气压为9.81×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=5.7-0-1.5=4.2 m。 (2) 输送80℃水时泵的安装高度 输送80℃水时,不能直接采用泵样本中的Hs值计算安装高度,需按下式对Hs时行换算,即 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) 已知Ha=9.81×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为47.4kPa。

Hv=47.4×103 Pa=4.83 mH2O Hs1=5.7+10-10.33-4.83+0.24=0.78m 将Hs1值代入式中求得安装高度 Hg=Hs1-Hf0-1=0.78-1.5=-0.72m Hg为负值,表示泵应安装在水池液面以下,至少比液面低0.72m。

水泵轴功率和电机配置功率之间的关系

泵轴功率和电机配置功率之间的关系 额定功率即铭牌功率,也是电动机的轴输出功率,也是负荷计算所采纳的数据。Pe=1.732*0.38*Ie*额定功率因数*电动机效率。因此,电动机额定电流Ie=Pe/(1.732*0.38*额定功率因数*电动机效率)电动机的输入功率P1=Pe/电动机效率。P1跟我们关系不大,一般不再换算此值。例如:一台YBF711-4小型电机的铭牌数据:额定功率250W,额定电压380V,额定电流0.85A,功率因数0.68,无效率数据。 如果不算效率,额定电流=0.25/(1.732*0.38*0.68)=0.56A,跟0.85A 不符。如果算效率:额定电流=0.85=0.25/(1.732*0.38*0.68*效率)。由此可以反算效率为:0.25/(1.732*0.38*0.68*0.85)=0.66。 水泵所需功率与电动机额定功率的关系。假设水泵的扬程为H(m),流量为Q(L/s),那么很容易推算其实际需要的有效功率P3为:P3=H*Q*g(g=9.8,常数)(W);因为水泵本身也存在效率,因此需要提供给水泵的实际功率P2=P3/水泵效率。P2算出来往往跟电机的额定功率不会正好相等,因此就选择一个大于(但接近)P2的一个电机功率Pe。比如P3=10KW,水泵效率为0.7,电机功率为0.9,那么P2=P3/0.7=14.3kw,可选择Pe=15KW或18.5KW的配套电机;电机的实际输入功率P1=15/0.9=16.7kw(或18.5/0.9=20.1KW)。 泵轴功率是设计点上原动机传给泵的功率,在实际工作时其工况点会变化,另电机输出功率因功率因数关系会有变化。因此,原动机传给泵的功率应有一定余量,经验作法是电机配备功率大于泵轴功率。轴功率余量见下表,并根据国家标准Y系列电机功率规格选配。 轴功率余量 根据API610标准电动机的额定功率,至少应等于下面给出的额定条件下泵功率的百分数。

离心泵轴功率计算公式

中文词条名:水泵轴功率计算公式 英文词条名: 1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/Η, 其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ΡGQH/1000Η(KW),其中的Ρ=1000KG/M3,G=9.8 比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/KG =KG/M3*M3/H*M*9.8牛顿/KG =9.8牛顿*M/3600秒 =牛顿*M/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为NE,电机功率为P,K为系数(效率倒数) 电机功率P=NE*K (K在NE不同时有不同取值,见下表) NE≤22 K=1.25 22

流量Q M3/H 扬程H 米H2O 效率N % 渣浆密度A KG/M3 轴功率N KW N=H*Q*A*G/(N*3600) 电机功率还要考虑传动效率和安全系数。一般直联取1,皮带取0.96,安全系数1.2 (3)泵的效率及其计算公式 指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH (W) 或PE=ΓQH/1000(KW) Ρ:泵输送液体的密度(KG/M3) Γ:泵输送液体的重度Γ=ΡG(N/ M3) G:重力加速度(M/S) 质量流量QM=ΡQ (T/H 或 KG/S) (4)水泵的效率介绍 什么叫泵的效率?公式如何? 答:指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH W 或PE=ΓQH/1000(KW)

离心泵型号大全一览表

离心泵型号一、各类离心泵型号概述 离心泵型号种类繁多根据各个工况要求可以分为很多类型的离心泵产品,最常用的离心泵产品属于清水离心泵系列,清水离心泵可以分为单级离心泵和多级离心泵两种离心泵型号,按照结构上区分可分为立式离心泵和卧式离心泵两类,该两款离心泵型号产品主要用于生活供水、工业用水只要是类似与清水的液体都可以输送。单级离心泵主要特点流量由小到大范围比较广泛,多级离心泵特点是扬程较高填补了单级离心泵扬程满足不了使用工况的要求。 输送的液体如果有腐蚀性例如碱性液体各类离心泵型号就得采用不锈钢离心泵系列,如果输送的液体是属于酸性介质得选用产品。 输送的液体里面含有颗粒杂质就的选用排污泵类产品,各种排污泵严格意义上来讲其实也是属于离心泵类产品,因为只要是采用叶轮来把液体送出的泵都是属于离心泵类产品。 二、下面为大家分享最常用几种离心泵型号大全供查阅: 1.ISG立式单级离心泵型号、ISW卧式单级离心泵型号大全 型号流量 扬 程 m 效 率 % 转速 r/min 电 机 功 率 kw 汽 蚀 余 量 m 重 量 kg m3/h l/s ISG15-8026 290017

8 734 34 ISG20-11016 15 25 34 35 290025 ISG20-16033 32 30 19 25 23 290029 ISG25-11016 15 34 42 41 290026 ISG25-12520 1828 36 35 290028 ISG25-125A 17 16 35 35 35 290027

ISG25-16033 32 30 24 32 33 290039 ISG25-160A 29 28 26 31 31 31 290034 ISG32-100I 48 54 53 290032 ISG32-12522 20 18 40 44 42 290028 ISG32-125A 16 43 43 43 290028 ISG32-160 33 32 34 40 290028

离心泵功率计算

o如何计算离心泵轴功率及电机功率 o工程设计人员,在确定离心泵流量扬程之后,需要确定水泵的另外一个重要参数:水泵电机功率。很多时候只要按照样本,根据流量,扬程参数就可以确定水泵的电机型号及电机功率. 我们可以根据能量守恒原理,推导出水泵电机的技术公式。 水泵做的有效功W=Mgh(把一定重量的介质送到一定的高度h,h即为扬程) ——M为水的质量m=ρV(ρ是介质的密度,V介质的体积) V=Qt(Q表示水泵的流量,t表示水泵工作时间) 所以水泵做的有效功W=ρQtgH 水泵的有效功率P=W/t=ρQgH 水泵的轴功率(实际输出功率)为P1=ρQgH/η ——η表示水泵的效率 实际电机功率P2=γP1 ——γ表示电机的安全余量(γ的取值范围1.1—1.3,一般选1.2) 如果我们打的介质就是水那么电机功率计算公式为P2=(1.2QgH)/(3600*η) 其中流量Q的单位是:m3/h 扬程H的单位是:m 需要注意的是:根据公式计算出来的P2,不一定正好是电机功率,如33.56kw,那我们选电机就选37kw,如果是30.56kw,那我们就选30kw的电机。 通过以上我们公式推导我们可以知道以下几个情况 1,不论什么厂家,在流量,扬程确定的情况下,实际有效功都是固定的 2,水泵耗电多少不看水泵电机功率,要看水泵的轴功率。同样是配30kw的电机,一家的轴功率是20.56kw,一家是25.18kw,明显是20.56kw要节能。而轴功率的大小关键是水泵的效率。 如何查离心泵的效率? 扬子江泵业离心泵的样本上都会有性能曲线,按照流量扬程在性能曲线图上找到对应的工作点,再看这个工作点在哪个等效率线上,这个等效率线所标注的效率就是水泵的效率。如果这个点在两个效率线之间,那就取这两个效率的中间值。

消防泵杨程及功率计算

消防泵杨程及功率计算 一、扬程(压头)的计算公式为:H=102ηN/Qρ其中 η=Ne/NNe:有效功率,单位W;N :轴功率,W;η:泵的效率 ρ :输送的液体密度,kg/m3;Q:泵在输送条件下的流量, m3/s; 二、总静压(水位到最高用水点的垂直高度)+沿程阻力(管路沿程损失)+局部阻力(弯头、阀门的损失)+动压(出水口压力)=扬程 三、求解例题:水泵杨程计算!很基础的,可是我不会,请帮帮忙某取水泵站从水源取水,将水输送净水池,一直水泵流量Q=1800立方/小时。吸、压水管道匀为钢管,吸水管长 Ls= 15、5M ,DNa=500mm (DN) 。压水管长为:Lz=450M ,DNd=400mm。局部水头损失按沿程损失的15%计算,水源水位 76、83m。蓄水池最高水位 89、45m,水泵轴线高程 78、83m,设水泵效率在Q=1800立方/小时时为75%。试求:(1)水泵工作时的总扬程。(2)水泵的轴功率。(1)水泵流量Q=1800立方米/小时=0、5立方米/秒吸水管DNa=500mm (DN) 的比阻 Sa=0、06839压水管DNd=400mm (DN) 的比阻 Sd=0、2232总扬程 H=

89、45- 76、83+115%(SaLsQ^2+SdLzQ^2)= 12、62+115%(0、06839* 15、5*0、5^2+0、2232*450*0、5^2)= 29、18米(2)水泵的轴功率 N=(1000*9、8*0、5* 29、18)/75%= 、7 W=1 90、6 KW注意:消防泵的最大流量应为设计值的150%,扬程不小于选定工作点扬程的65%,关闭水泵时的扬程不大于选定工作点扬程的140%,稳压泵流量为 11、2倍。 同时规定在消防泵出水管上应设测量用流量计,流量计应能测试水泵选定流量的175%,消防泵在出水管上应设直径大于89mm 的压力表。

各种离心泵型号大全全详细介绍

排污泵系列型号管道离心泵型号意义 Q:潜水 W:排污 G:管道 Y:液下 N:泥浆 Z:自吸 L:立式AS:撕裂 JY:搅匀 P:不锈钢 B:防爆 QW(WQ)无堵塞潜水式排污泵 例:80WQ(QW)P40-15-4 80 WQ(QW) P 40 - 15 - 4 │││││└─-泵的电机(KW) ││││└───-泵的扬程(m) │││└─────--泵的流量(m3/h) ││└───────-不锈钢材质 │└─────────-潜水排污泵 └───────────--泵的口径即代表泵排出公称直径(mm) JYWQ、JPWQ自动搅匀排污泵 例:80JY(P)WQ50-10-1600-3 80 JY (P) WQ 50 - 10 - 1600 - 3 │││││││└─泵的电机(KW) ││││││└─-──泵的搅匀范围(mm) │││││└────-──泵的扬程(m) ││││└─────────泵的流量(m3/h) │││└────────── W:排污 Q:潜水 P:不锈钢 ││└─────────-─-─P:不锈钢材质 │└─────────-────-JY:搅匀ISG系列立式管道离心泵 例:ISG50-160(I)A ISG 50 - 160 (I) A(B) ││││└─叶轮经第一次切割 │││└─-──流量分类、(I)为大流量、 ││└─────叶轮名义外径(mm) │└────────泵的口径(mm) │┌ ISG型立式离心泵 └────────┼ IRG型立式热水泵 ├ IHG型立式不锈钢化工泵 └ YG型立式防爆油泵 ISGD系列低转速立式管道离心泵 例:ISGD80-160(I)A ISGD 80 - 160 (I) A(B) ││││└─叶轮经第一次切割 │││└─-──流量分类、(I)为大流量、 ││└─────叶轮名义外径(mm) │└────────泵的口径(mm) │┌ ISGD型低转速立式离心泵 └────────┼ IRGD型低转速立式热水泵 ├ IHGD型低转速立式不锈钢化工泵 └ YGD型低转速立式防爆油泵

离心泵计算题

离心泵计算题

02190 如图示,用一单级悬臂式B型离心泵,将水由槽A送到槽B。 试问: (1)为了调节流量,拟装一调节阀,应装在何处?说明理由。 (2)调节阀开大时试说明装在泵进口和出口处的真空表及压力表将如何变化? 02188 下列两图为离心泵的两种安装方式,用以输送热水,在热水的温度下饱和蒸汽压为P2 =0.4Kgf/cm2,大气压可取为10mH2O,两种安装方式中,管路特性视为相同,请回答:两种安装方式是否有一种能将水送到高位槽?为什么? 02187 看图回答下列问题(用图上所标符号表示) ①泵的扬程H怎样表示? ②泵的安装高度Hg 怎

后输水量为多少m3/h; (5)高位槽处出口管距离心泵吸入管水平段的高度Z为多大? 02176 如图所示3B57离心泵将20℃的水由敞口水池送到一压力为2.5at的塔内,管径为φ108×4mm管路全长100m (包括局部阻力的当量长度)。已知:水的流量为56.5m3 /h,水的粘度为1厘泊,密度为1000kg/m3 ,管路摩擦系数可取为0.024,试计算并回答: ⑴水在管内流动时的流动形态; ⑵管路所需要的压头和功率; ⑶在泵的性能曲线图上标明其工作点,写出泵实际工 作时的压头;并求出由于流量调节而额外损失在阀门上的压头。

02175 由水库将水打入一水池,水池水面比水库水面高50m,两水面上的压力均为常压,要求的流量为90m3 /h,输送管内径为156mm,在阀门全开时,管长和各种局部阻力的当量长度的总和为1000m,对所使用的泵在Q=65~135m3 /h范围内属于高效区,在高效区中,泵的性能曲线可以近似地用直线H=124.5-0.392Q表示,此处H为泵的扬程m,Q为泵的流量m3 /h,泵的转速为2900r.p.m.,管子摩擦系数可取为λ=0.025,水的密度ρ=1000kg/m3 。 ⑴核算一下此泵能否满足要求。 ⑵如在Q=90m3 /h时泵的效率可取为68%,求泵的轴功率,如用阀门进行调节,由于阀门关小而损失的功率增加为多少? 02174 如图的输水系统。已知管内径为d=50mm,在阀门全开时输送系统的Σ (l+l e )=50m,摩擦系数可取λ=0.03,泵的性能曲线,在流量为6m3 /h至15m3 /h范围内可用下式描述:H=18.92-0.82Q0. 8 ,此处H为泵的扬程m,Q为泵的流量m3 /h,问: ⑴如要求流量为10m3 /h,单位质量的水所需外加功

水泵轴功率计算

泵在一定流量和扬程下,原动机单位时间内给予泵轴的功称为轴功率。 轴功率是多用在泵上的一个专业术语,即轴将动力(电机功率)传给功部件(叶轮)的功率。功率值小于电机额定功率。 实质上轴功率跟联轴器有很大的关系,电机通过联轴器连接泵头叶轮,当电机转动时,带动联轴器,联轴器双和泵头内的叶轮连接,进而带动叶轮旋转。因为有联轴器这个部件,那么电机功率就不能完全转化为叶轮转动的实际效率,所以轴功率小于电机功率(额定功率)。 轴功率的计算公式: (1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/η, 其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的ρ =1000Kg/m3,g=9.8 比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/Kg =Kg/m3*m3/h*m*9.8牛顿/Kg =9.8牛顿*m/3600秒 =牛顿*m/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为Ne,电机功率为P,K为系数(效率倒数) 电机功率P=Ne*K (K在Ne不同时有不同取值,见下表) Ne≤22 K=1.25 22

泵轴功率计算

水泵轴功率计算公式 1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/η, 其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的ρ=1000Kg/m3,g=9.8 比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/Kg =Kg/m3*m3/h*m*9.8牛顿/Kg =9.8牛顿*m/3600秒 =牛顿*m/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为Ne,电机功率为P,K为系数(效率倒数) 电机功率P=Ne*K (K在Ne不同时有不同取值,见下表) Ne≤22 K=1.25 22

指泵的有效功率和轴功率之比。η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=ρg QH (W) 或Pe=γQH/1000 (KW) ρ:泵输送液体的密度(kg/m3) γ:泵输送液体的重度γ=ρg (N/ m3) g:重力加速度(m/s) 质量流量 Qm=ρQ (t/h 或 kg/s) (4)水泵的效率介绍 什么叫泵的效率?公式如何? 答:指泵的有效功率和轴功率之比。η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=ρg QH W 或Pe=γQH/1000 (KW) ρ:泵输送液体的密度(kg/m3) γ:泵输送液体的重度γ=ρg (N/ m3) g:重力加速度(m/s) 质量流量 Qm=ρQ t/h 或 kg/s

离心泵问题汇总

离心泵问题汇总 问:什么是离心泵? 答: 离心泵广泛地应用于石油化工,煤化工等化学工业中,输送不同性质的液体,提供化学反应所需要的压力,流量。离心泵的种类繁多,根据输送介质性质的不同可分为酸泵,碱泵,清水泵,泥浆泵等。输送介质的工作温度和工作压力不同,因此,有效延长离心泵的使用周期,减少维修量,对提高工厂的经济效益有很大的作用 问:离心泵的工作原理? 答: 当离心泵用来泵送液体中含大尺寸至小尺寸物料的泥浆流时,降低离心泵叶轮的磨损和提高离心泵效率的方法,其特征是,它包括:a将液体切向喷入涡流室形成涡流,并且从该室沿切向排除一部分该液体;b将该泥浆轴向喷入该室,该涡流将大尺寸的该物料与其余留下来的该泥浆和液体分开;c将该留下来的该泥浆和液体沿轴向从该室排除,并将其喷入一离心泵的进口;d利用从该离心泵出来的物料作为形成该涡流的喷射液体;因此,该大尺寸的物料移向该涡流的外圆而被排出,结果,中、小、尺寸的物料和液体被喷入该离心泵,因此,降低了该叶轮的磨损,并允许该泵高速运转,因而效率提高。 问:离心泵的参数 答:

离心泵的参数定义如下:额定流量:泵在最佳工作效率下单位时间内泵抽送液体的数量,即泵铭牌上所标注的数量,以Q表示。额定扬程:在最佳效率时,单位质量液体通过泵时所增加的能量,以H表示,单位为米。效率:液体通过泵所得到的能量与驱动机传给泵的能量的比值,以Ef或η表示。功率:驱动机给泵的能量,统称为轴功率。流体通过泵实际获得的功率。净正吸入压头:为保证泵不发生汽蚀,在泵内叶轮入口处,单位质量液体所必需具有的超过汽化压力后所富余的能量。以NPSH表示,单位为m,其中又分为NPSHr (必需的净正吸入压头,与泵有关)及NPSHa(与吸入管路有关,与泵无关 更多关于离心泵内容查询:https://www.doczj.com/doc/0711974879.html,/901579.html 问:离心泵的分类有哪些? 答: 离心泵的分类:离心泵的种类很多,分类方法常见的有以下几种方式 1、按叶轮吸入方式分:单吸式离心泵双吸式离心泵; 2、按叶轮数目分:单级离心泵多级离心泵; 3、按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵封闭式叶轮离心泵; 4、按工作压力分:低压离心泵中压离心泵高压离心泵; 5、按泵轴位置分:卧式离心泵边立式离心泵。 ISG生活给水泵,生活用泵,小区水泵,生活给排水设备,根据 IS、 IR型离心泵性能参数和立式泵的独特结构组合设计,并严格按照 ISO2858 要求进行设酒制造,采用国内优质水力模型进行设计而成,是最理想的新一代卧式泵产品。该产品一律采用硬质合金机械密封。应用范围: ISW 型泵适用于工业和城市给排水,如高层建筑增压送水,园林喷灌,消防增压,远距离输送,暖通制冷循环、浴室等增压及设备配套,使用温度不超过 85oC。ISWR 型泵广泛适用于:冶金、化工、纺织、造纸、以及宾饭馆店等锅炉热源水增压、输送、及城市采暖系统,SGWR型使用温度不超过 120oC。管道离心泵的安装关键技术:离心泵安装高度即吸程选用一、离心泵的关键安装技术管道离心泵的安装技术关键在于确定离心泵安装高度即吸程。这个高度是指水源水面到离心泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。它并没有考虑吸水管道配套以后的水流状况。而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。水泵安装高度不能超过计算值,否则,离心泵将会抽不上水来。另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的

相关主题
文本预览
相关文档 最新文档