当前位置:文档之家› 电力系统短路计算课程设计

电力系统短路计算课程设计

电力系统短路计算课程设计
电力系统短路计算课程设计

南昌工程学院

课程设计 (论文)

机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算

学生姓名

班级

学号

指导教师

完成日期2013 年11 月30 日

成绩:

评语:

指导教师:

年月日

南昌工程学院

课程设计(论文)任务书

机械与电气工程学院 10电气工程及其自动化专业班学生:

日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日

指导教师:

助理指导教师(并指出所负责的部分):

教研室:电气工程教研室主任:

附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量:

S B=100MVA 基准电压:U B=U av

二、计算各元件电抗标幺值:

=0.0581,

(1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X''

d 系统电抗标幺值X''

=0.0581,两条110kV进线为LGJ-150型

d

线路长度一条为16.582km,另一条为14.520km.。

(2)主变铭牌参数如下:

1﹟主变:型号 SFSZ8-31500/110

接线 Y N/Y N/d11

变比 110±4×2.5%∕38.5±2×2.5%∕10.5

短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33

短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4

空载电流(%) I0(%)=0.46

空载损耗(kW) P0=40.6

2﹟主变:型号 SFSZ10-40000/110

接线 Y N/Y N/d11

变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08

短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30

空载电流(%) I0(%)=0.11

空载损耗(kW) P0=26.71

(3)转移电势E∑=1

目录

第一章电力系统故障分析的基本知识 (1)

1.1短路概述 (1)

1.2标幺值 (3)

第二章电力系统三相短路电流的计算 (5)

2.1计算的条件和近似 (5)

2.2简单系统''I计算 (5)

2.3计算短路电流时的简化条件 (6)

第三章简单不对称短路的分析与计算 (7)

3.1对称分量法 (7)

3.2电力系统各序网络的制定 (8)

3.3对称分量法在不对称短路计算中的运用 (8)

3.4简单不对称短路的分析与计算 (9)

3.5正序等效定则 (12)

第四章算例 (14)

4.1 各元件电抗标幺值计算 (15)

4.2 K1点短路电流计算 (16)

4.3 K2点短路电流计算 (19)

4.4 K3点短路电流计算 (22)

4.5短路计算结果统计表 (25)

4.6计算结果总结 (25)

参考文献 (27)

第一章 电力系统故障分析的基本知识

1.1 短路概述

1.1.1短路的定义及类别

在电力系统的运行过程中,时常会发生故障,其中大多数是短路故障。

短路故障是电力系统除正常运行情况以外的相与相之间或相与地之间的连接。在三相供电系统中,破坏供电系统正常运行的故障最为常见而且危害性最大的就是各种短路。对中性点不接地系统有相与相之间的短路,对中性点接地系统有相与相之间的短路和相与地之间的短路。其短路的基本种类有:三相短路、两相短路、单相短路、两相接地短路、单相接地短路等,如图1-1所示。发生短路故障时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。在这一暂态过程中,短路电流的变化很复杂。在短路后约半个周波(0.01秒)时将出现短路电流的最大瞬时值,称为短路冲击电流。它会产生很大的电动力,其大小可用来校验电工设备在发生短路时机械应力的动稳定性。

(a) (b)

(c) (d)

1.1.2 产生短路的原因

产生短路的主要原因是电气设备载流部分的相间绝缘或相地绝缘被破坏,产生短路的原因既有客观的,也有主观的,主要如下:

(1)元件损坏,例如设备绝缘材料老化,设计、制造、安装、维护不良等造成的设备缺陷发展成为短路。

(2)气象条件影响,例如雷击过后造成的闪烁放电,由于风灾引起架空线断线和导线覆冰引起电线杆倒塌等。

图1-1 短路的种类

(a )三相短路;(b )两相短路;(c )两相短路接地;(e )单相接地短路

(3)人为过失,例如工作人员带负荷拉闸,检修线路或设备时未拆除接地线合闸供电,运行人员的误操作等。

(4)其他原因,例如挖沟损伤电缆,鸟兽风筝跨接在载流裸导体上等。

1.1.3 短路的危害

短路对电力系统的正常运行和电气设备有很大的危害。电力系统中出现短路故障时,系统功率分布的忽然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。短路的主要危害如下:

(1)电流的热效应:由于短路电流比正常工作电流大几十倍至几百倍,这将使电气设备过热,绝缘损坏,甚至把电气设备烧毁。

(2)电流的电动力效应:巨大的短路电流通过电气设备将产生很大的电动力,可能引起电气设备的机械变形、扭曲甚至损坏。

(3)电流的电磁效应:交流电通过导线时,在线路的周围空间产生交变电磁场,交变电磁场将在邻近的导体中产生感应电动势。当系统正常运行或对称短路时,三相电流是对称的,在线路的周围空间各点产生的交变电磁场彼此抵消,在邻近的导体中不会产生感应电动势;当系统发生不对称短路时,短路电流产生不平衡的交变磁场,对线路附近的通讯线路信号产生干扰。

(4)电流产生电压降:巨大的短路电流通过线路时,在线路上产生很大的电压降,使用户的电压降低,影响负荷的正常工作(电机转速降低或停转,白炽灯变暗或熄灭)。

供电系统发生短路时将产生上述后果,故在供电系统的设计和运行中,应设法消除可能引起短路的一切因素。为了尽可能减轻短路所引起的后果和防止故障的扩大,一方面,要计算短路电流以便正确选择和校验各电气设备,保证在发生短路时各电气设备不致损坏。另一方面,一旦供电系统发生短路故障,应能迅速、准确地把故障线路从电网中切除,以减小短路所造成的危害和损失。

1.1.4短路计算的目的和意义

计算短路电流是为了使供电系统安全、可靠运行,减小短路所带来的损失和影响。所计算短路电流用于解决下列技术问题:

(1)选择校验电气设备:校验电气设备的热稳定性和动稳定性,确保电气设备在运行中不受短路电流的冲击而损坏。

(2)选择和整定继电保护装置:为了确保继电保护装置灵敏、可靠、有选择性地切除电网故障,在选择、整定继电保护装置时,需计算出保护范围末端可能产生的最小两相短路电流,用于校验继电保护装置动作灵敏度是否满足要求。

(3)选择限流装置:当短路电流过大造成电气设备选择困难或不经济时,可在供电线路串接限流装置来限制短路电流。是否采用限流装置,必须通过短路电流的计算来决定,同时确定限流装置的参数。

(4)选择供电系统的接线和运行方式:不同的接线和运行方式,短路电流的大小不同。在判断接线及运行方式是否合理时,必须计算出在某种接线和运行方式下的短路电流才能确定。

在电力系统和电气设备的设计和运行中,短路计算是解决一系列技术问题所不可缺少的基本计算,比如在选择发电厂和电力系统的主接线时为了比较不同方案接线图,进行电力系统暂态稳定计算,研究短路对用户的影响。另外,合理配置各种继电保护和自动装置并正确整定其参数等都必须进行短路计算。

1.2标幺值

1.2.1标么值的概念:

与有名值同单位)基准值)

实际有名值(任意单位标么值(=

(1-1)

标么值是一个没有量纲的数值,对于同一个有名值,基准值选得不同,其标么值也就不同。因此,说明一个量的标么值时,必须同时说明它的基准值;否则,标么值的意义不明确。采用标么制易于比较电力系统中各元件的特性和参数,易于判断电气设备的特征和参数的优劣还可以使计算量大大简化。 1.2.2基准值的选取

标幺值的选取有一定的随意性,但各量的基准值之间应服从:

功率方程:UI S 3= (1-2)

欧姆定律:U (1-3) 通常选定电压和功率的基准值,则电流和阻抗的基准值分别为

B B

B U S I 3=

(1-4)

B

B 2

B B X S U Z == (1-5)

三相对称系统中,不管是Y 接线还是?接线,任何一点的线电压(或线电流)的标么值与该点的相电压(或相电流)的标么值相等,且三相总功率的标么值与每相的功率标么值相等。故采用标么制时,对称三相电路完全可以用单相电路计算。 1.2.3不同基准值的标么值之间的换算

电力系统中各种电气设备如发电机、变压器、电抗器的阻抗参数均是以其本身额定值为基准值的标幺值或百分值给出的,而在进行电力系统计算时,必须取统一的基准值,因此要求将原来的以本身额定值为基准值的阻抗标幺值换算到统一的基准值。换算原则是换算前后的物理量的有名值保持不变。首先要将以原有基准值计算出的标么值还原成有名值,然后再计算新基准值下的标么值。

设统一选定的基准电功率和基准电压分别为B B U S 和,对于发电机、变压器,若已知其额定标幺电抗为*N X ,电抗有名值为X ,则换算到统一基准下的标幺电抗为:

2

2

2B B N N N B

B U S

S U X U S X X ?==** (1-6) 而对用于限制短路电流的电抗器,若已知它的额定标幺电抗为*R X ,电抗有名值为R X ,则换算到统一基准值下的标幺电抗为:

223B

B

N N R B B R

U S I U X U S X X ?==** (1-7)

第二章 电力系统三相短路电流的计算

无限大电源供电的系统三相短路电流的变化情形,认为短路后电源电压和频率均保持不变,忽略了电源内部的暂态变化过程,但是当短路点距电源较近时,必须计及电源内部的暂态变化过程,这个衰减变化过程主要分为三个阶段即:次暂态阶段、暂态阶段和稳态阶段,每一阶段发电机都呈现不同的电抗和不同的衰减时间常数,此过程的分析较复杂。而对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实用计算时,没有必要作复杂的分析。实际上,电力系统短路电流的工程计算在大多数情况下,只要求计算短路电流基频交流分量的初始值,也称为次暂态电流I ''。工程上还用一种运算曲线,是按不同类型发电机,给出暂态过程中不同时刻短路电流交流分量有效值对发电机与短路点间电抗的关系曲线,它可用来近似计算短路后任意时刻的交流电流。

2.1计算的条件和近似

各台发电机均用次暂态电抗'

'd x 作为其等值电抗,即假设直轴和交轴等值电抗均为

''d x ,发电机的等值电势则为次暂态电势。''E 虽然不具有''q E 和''d E 那种在突然短路前后不变

的特性,但从计算角度考虑近似认为''E 不突变是可取的。电源的次暂态电动势均取为额定电压,其标幺值为1。计算时还可以忽略线路对地电容和变压器的励磁回路,因为短路时电网电压较低,这些对“地”支路的电流比正常运行时更小,而短路电流很大。另外,在计算高压电网时还可以忽略电阻,在标幺值运算中采用近似方法,即不考虑变压器的实际变比,而认为变压器的变比均为平均额定电压之比。

2.2简单系统''I 计算

图2-1(a )所示为两台发电机向负荷供电的简单系统。母线1、2、3上均接有综合性负荷,现分析母线3发生三相短路时,短路电流交流分量的初始值。图2-1(b )是系统的等值电路。在采用了1''=E 和忽略负荷的近似后,计算用等值电路如图2-1(c )所示。短

路点的电流可以表示为式(2-1),其中1''11l d x x x +=,2''22l d x x x +=。

2

1''1

1x x I f +=

(2-1) 如果短路为非金属性短路,设经过f Z 发生短路,则短路点电流的形式为: f

f Z jx I +=

∑1

'' (2-2)

''

2

''

2

d

2l

(a)系统图(b)等值电路(c)简化等值电路

图2-1简单系统等值电路

2.3计算短路电流时的简化条件

因为电力系统的实际情况比较复杂。在实际的计算中常采用近似计算的方法,将计算条件简化。按简化条件计算的短路电流值偏大,其误差为10%~15%。其计算条件简化如下:(1)不考虑铁磁饱和现象,认为电抗是常数;

(2)变压器的励磁电流忽略不计;

(3)除高压远距离输电线路外,一般不考虑电网电容电流;

(4)计算短路电流时忽略负荷电流;

(5)当短路系统中的电阻值小于电抗值的1/3时,电阻值忽略;

(6)在低压电网中发生短路时,认为变压器的一次侧电压不变。

第三章简单不对称短路的分析与计算

3.1 对称分量法

对称分量法是分析不对称故障的常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。

在三相电路中,对于任意一组不对称的三相相量(电流或电压),可以分解为三组三相对称的相量,当选择a 相作为基准相时,三相相量与其对称分量之间的关系(如电流)为

(3-1) 式中,运算子240

2120

j j e

e

==αα,,且有1,013

2==++ααα;?

??021a a a F F F 、、

分别为a 相的正序、负序和零序分量。三相量的三组对称分量如图3-1所示。

1a F ?

1a F ? 0a F ?

0b F ? 0c F ?

1c F ?

1b F ?

2b F ?

2c F ?

(a)正序分量 (b)负序分量 (c)零序分量

图3-1 三相量的对称分量

三相的正序分量大小相等,c b a ,,三相相位顺时针互差 120;三相的负序分量大小相等,c b a ,,三相相位逆时针互差 120;三相的零序分量大小相等,相位相同,三相的零序分量同时达到最大值。于是三相不对称量可做如下分解

(3-2)

这样根据式(3-2)可以把三组三相对称向量合成三个不对称向量,而根据式(3-1)可以把三个不对称向量分解成三组对称量。

3.2 电力系统各序网络的制定

利用对称分量法分析电力系统的各种不对称故障,首先应该绘出与系统各序阻抗相对

????????????????????????=?????

??

?????????????c b a a a a F F F F F F 111113122021αααα??

???

?

??????????????????=??????????????????

??02122

11111a a a c b a F F F F F F αααα

应的序网络,利用序网络依次求得待求电量的各序分量之后,再进行合成,求得最终结果。序网络分为正序,负序,零序网络。

正序网络:流过正序电流的全部元件的阻抗均用正序阻抗表示。正序网络首先在短路点加入短路点电压的正序分量,正序分量电流流经的原件,用相应的正序阻抗表示,电源中性点与负荷中性点等电位,直接用导线相连,设为等电位。

负序网络:与正序网络相似,在短路点加上短路点电压的负序分量,发电机没有负序电动势,中性点阻抗不计入负序网络。因为发电机的负序电势为零,所以负序网络中电源支路负序阻抗的终点不接电势,而与零电位相连,并作为负序网络的起点,短路点就是该网络的终点。

零序网络:在零序网络中,不包含电源电势。只在短路点存在有由故障条件所决定的不对称电势源中的零序分量。各元件的阻抗均应以零序参数表示。零序电流实际上是一个流经三相电路的单相电流,经过地或与地连接的其它导体(例如地线、电缆包皮等),再返回三相电路中。只有当和短路点直接相连的网络中至少具有一个接地中性点时,才可以形成一个零序回路。如果与短路点直接相连的网络中有好几个接地的中性点,那么有几个零序电流的并联支路。

在绘制等值网络时,只能把有零序电流通过的元件包括进去,而不通过零序电流的元件应舍去。作出系统的三线图,在短路处将三相连在一起,接上一个零序电势源,并从这一点开始逐一的查明零序电流可能通行的回路。零序电流只能在本电压等级流通,在同一电压等级的网络中,必须要有两个接地点才能构成零序电流的通路。

3.3 对称分量法在不对称短路计算中的应用

电力系统的正常运行一般是对称的,它的三相电路的参数相同,各相的电流,电压对称,这就是说只有正序分量存在。当电力系统的某一点发生不对称故障时,三相电路的对称条件受到破坏,三相对称电路就成为不对称的了。此时,可用对称分量法,将实际的故障系统变成三个互相独立的序分量系统,而每个序分量系统本身又是三相对称的,从而就可以用进行电路计算了。

如图3-2所示的简单系统发生单相接地短路故障。应用对称分量法,可绘出三序网图(三序等值电路图),如图3-3所示为最简化的三序网图。

图3-2 简单系统单相接地故障图

∑1x ∑2x ∑0x

1a 2a 0a

(a )正序 (b )负序 (c )零序

图3-3简化三序网图

根据以上序网图,列出电压方程如下

1111a a a I jx E U ?-=∑∑ (3-3) 222a a I jx U ?-=∑ (3-4) 000a a I jx U ?-=∑ (3-5)

由此可见,应用对称分量法进行不对称故障计算时,其关键问题是先求出各序网络的等效电抗(即要求出系统中各主要原件发电机,变压器,线路等的各序电抗值),然后根据短路的类型,边界条件,把正,负,零序网连接成串,并联的形式,从而可求出电流,电压的各序分量,再应用对称分量法即可求出各相电流和电压。

3.4简单不对称短路的分析与计算

电力系统发生不对称故障时,短路点的电压,电流出现不对称,利用对称分量法将不对称的电流电压分解为三组对称的序分量,由于每一序系统中三相对称,则在选好一相为基准后,每一序只需要计算一相即可,用对称分量法计算电力系统的不对称故障。其大概步骤如下:

(1)计算电力系统各个原件的序阻抗; (2)制定电力系统的各序网络; (3)由各序网络和故障列出对应方程;

(4)从联立方程组解出故障点电流和电压的各序分量,将相对应的各序分量相加,以求得故障点的各相电流和电压;

(5)计算各序电流和各序电压在网络中的分布,进而求得各指定支路的各相电流和指定节点的各相电压。 3.4.1单相接地短路

如图3-4短路点的边界条件为(假定A 相单相接地短路)

0=?

fa U ,0==?

?fc fb I I (3-6)

用序分量表示的短路点边界条件为 00

21=++?

?

?

fa fa fa U U U

(3-7)

fa fa fa fa I I I I ?

?

??===3

10

21 (3-8) 复合序网如图3-5

图3-4 a 相接地短路示意图

图3-5单相接地短路复合序网

3.4.2两相短路

设系统f 处发生两相(c b ,相)短路,如图3-6所示。短路点的边界条件为

?

?

?

?

?

=-==fc fb fc fb fa U U I I I ,,0 (3-11)

用序分量表示的短路点边界条件为

?

?

?

?

?

=-==21210,,0fa fa fa fa fa U U I I I (3-12)

复合序网如图3-7

(1f

?

a b 可得)

(021)

0(1∑∑∑?

?

++=

x x x j U I fa fa (3-9)

因此短路点的故障相电流为

)

(3021)0(∑∑∑?

?

++=

x x x j U I fa fa (3-10)

c )

(2f a

c

?

图3-6 b,c 两相短路示意图 图3-7 b,c 两相短路复合序网 由复合序网可得

)

(21)0(21∑∑?

?

?+

=

--=x x j U I I fa fa fa (3-13)

3.4.3 两相短路接地

设系统f 处发生两相(c b ,相)短路接地,如图3-8所示。短路点的边界条件为

0,0===?

??fc fb fa U U I (3-14)

用序分量表示的短路点边界条件为

021fa fa fa U U U ?

??== (3-15)

0021=++?

??fa fa fa I I I (3-16)

图3-8 b,c 两相短路接地示意图 复合序网如图3-9

b

fb

U ?

fc

U ?

+

+

- -

(1,1f c b ?

由复合序网可得:

?

I 1fa =)

(02021)0(U x x x x x j fa ∑

∑∑∑∑

++?

(3-17) ?

?

x

图3-9 b,c 两相短路接地复合序网

解出故障点电流的各序分量后,可由式(3-3)、(3-4)、(3-5)解得电压的各序分量,将相对应的各序分量相加,即可求得故障点的各相电流和电压。不对称短路的计算过程一般都是先根据序网络求得序阻抗,再根据不同短路类型的边界条件画出复合序网,由复合序网可求得故障点电流的各序分量,进而求得电压各序分量,最后由对称分量法的合成可得故障点的各相电流和电压。

3.5正序等效定则

所谓正序等效定则,是指在简单不对称短路的情况下,短路点电流的正序分量与短路

点各相中接入点附加电抗)(n x ?而发生三相短路时的电流相等。所有短路类型短路电流的正

序分量可以统一写成:

)

(U )

(1)

0()

()1(n fa n fa x x j I ?∑?

?+=

(3-20) )

(n x ?

表示附加电抗,上角标(n )代表短路类型。 短路电流的绝对值与正序分量的绝对值成正比,即

1)()(M fa n n f I I = (3-21)

式中)

(M

n 为比例系数,其值由短路类型而定见表3-1。

∑0jx ∑

2jx ?

2fa I

表3-1 各类短路类型)

(n x ?及)

(M

n 取值

第四章 算例

如图5-1,短路点的设置如下:计算时桥开关和母连开关都处于闭合状态。各元件参数见附录,分组分别计算K1、K2、K3点单相接地短路、两相短路、两相短路接地及三相

短路下的短路电流:周期分量有效值的有名值、短路冲击电流的有名值、短路容量;并对上述情况下的短路电流进行分析比较。

图4-1 短路电流计算算例图

4.1各元件电抗标幺值计算

4.1.1取基准容量:

S B=100MVA 基准电压:U B=U av

4.1.2计算各元件电抗标幺值:

(1)对三绕组变压器T1:U K1%=1

2

[U K(1-2)%+U K(3-1)%-U K(2-3)%]

=1

2

(10.47+18-6.33)=11.07

电力系统短路计算课程设计

南昌工程学院 课程设计 (论文) 机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算 学生姓名 班级 学号 指导教师 完成日期2013 年11 月30 日

成绩: 评语: 指导教师: 年月日

南昌工程学院 课程设计(论文)任务书

机械与电气工程学院 10电气工程及其自动化专业班学生: 日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日 指导教师: 助理指导教师(并指出所负责的部分): 教研室:电气工程教研室主任: 附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量: S B=100MVA 基准电压:U B=U av 二、计算各元件电抗标幺值: =0.0581, (1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X'' d 系统电抗标幺值X'' =0.0581,两条110kV进线为LGJ-150型 d 线路长度一条为16.582km,另一条为14.520km.。 (2)主变铭牌参数如下: 1﹟主变:型号 SFSZ8-31500/110 接线 Y N/Y N/d11 变比 110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33 短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4 空载电流(%) I0(%)=0.46 空载损耗(kW) P0=40.6 2﹟主变:型号 SFSZ10-40000/110 接线 Y N/Y N/d11 变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08 短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30 空载电流(%) I0(%)=0.11 空载损耗(kW) P0=26.71 (3)转移电势E∑=1

电力系统分析之短路电流计算讲课稿

电力系统分析之短路电流计算 电力系统是由生产、输送、分配、及使用电能的发电机、变压器、电力线路和用户组成一个整体,它除了有一次设备外还应有用于保护一次设备安全可靠运行的二次设备。对电力系统进行分析应包括正常运行时的运行参数和出现故障时的故障参数进行分析计算。短路 是电力系统出现最多的故障,短路电流的计算方法有很多,而其中以“应用运算曲线”计算短路电流最方便实用。应用该方法的步骤如下: 1、 计算系统中各元件电抗标幺值; 1)、基准值,基准容量(如取基准容量Sj=100MV A ),基准电压Uj 一般为各级电压的平均电压。 2)系统中各元件电抗标幺值计算公式如下: 发电机 ? Cos P S X X e j d d /100%' '"* ? = 式中" *d X 为发电机次暂态电抗百分值 变压器 e j d b S S U X ?=100%* 式中U d %为变压器短路电压的百分值 线路 20*e j j U S L X X ? = 式中X 0为每仅是电抗的平均值(架空线为0.4欧/公里) 电抗器 2*3100%j j e e k k U S I U X X ??= 式中X k %为电抗器的短路电抗百分值 系统阻抗标幺值 Zh j x S S X = * S Zh 断路器的遮断容量 2、 根据系统图作出等值电路图, 将各元件编号并将相应元件电抗标幺值标于元件编号 下方; 3、 对网络化简,以得到各电源对短路点的转移电抗,其基本公式有: 串联 X 1 X 2X 3 X 3 =X 1+X 2 并联 X 1 X 2 X 3 2 12 1213//X X X X X X X +?= =

课程设计(论文)-基于MATLAB的电力系统单相短路故障分析与仿真.doc

课程设计 ( 论文 )- 基于 MATLAB的电力系统单相短路故障分析与 仿真

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析课程设计说明书题目:单相接地短路 专业:电气工程及其自动化 班级:电气 1307 姓名:陈欢

目录 课程设计(论文)任务书 ----------------------- (1)引言 ------------------------------------------------------------------- ( 3)第一章.电力系统短路故障分析------------------------------- ( 4)第二章.电力系统单相短路计算-------------------- ( 5)2.1 简单不对称故障的分析计算---------------------- ( 5) 2.1.1. 对称分量法 ------------------- (5) 2.2 单相接地短路------------------------------ ( 6) 2.2.1. 正序等效定则 ---------------------------- (6) 2.2.2. 复合序网 --------------------------------- (6) 2.2. 3. 单相接地短路分析 --------------------------- (7)第三章.电力系统单相短路时域分析 ---------------- ( 10)3.1 仿真模型的设计与实现------------------------ (10) 3.1.1. 实例分析 -------------------------------- (10) 3.1.2. 仿真参数 ----------------------------- -- -- -- (11)3.2 仿真结果分析------------------------------- (13) 结束语 ----------------------------------------- ( 18)参考文献 --------------------------------------- ( 18)

电力系统分析课程设计 三相短路故障分析计算

课程设计报告 题目电力系统课程设计 《三相短路故障分析计算》 课程名称电力系统课程设计 院部名称龙蟠学院 专业电气工程及其自动化 班级M08电气工程及其自动化学生姓名 学号0821113 课程设计地点C304 课程设计学时一周 指导教师朱一纶 金陵科技学院教务处制

目录 摘要 (ii) 一、基础资料 (3) 1.电力系统简单结构图................................................ ....... . ..... .. ... . .... . .. . (3) 2.电力系统参数 (3) 3参数数据 (4) 二、元件参数标幺值的计算及电力系统短路时的等值电路 (4) 1.发电机电抗标幺值..................................................... ....... . ..... .. ... (4) 2.负载电抗标幺值 (4) 3变压器电抗标幺值 (4) 4.线路电抗标幺值............................................. ........ ....... . ..... .. ... ... .. (4) 5.电动机电抗标幺值........................................ ........ ....... . ..... .. ... ... .. (4) 三、化简等值电路 (4) 四、求出短路点的次暂态电流 (4) 五、求出短路点冲击电流和短路功率 (4) 六、设计心得............................................................. . . . . .. (20) 七、参考文献............................................................. (21) 电力系统课程设计《三相短路故障分析计算》

课程设计电力系统短路故障电流计算

邵阳学院 《电力系统暂态分析》课程设计题目:电力系统短路故障电流计算 姓名刘彪 年级 04级 专业电气工程及其自动化 学号 0441025035 院系信息与电气工程系 指导老师黄肇王晓芳 信息与电气工程系电气工程及其自动化教研室制

目录 第一部分电力系统短路故障电流计算任务 (1) 一.题目 二.设计目的与要求 三.主要内容 四.基本原理 五、计算实例 六、短路电流计算的步骤 七、对称短路计算原理框图 第二部分手工计算所得结果 (8) 一、元件参数计算及等值电路 二、三相对称短路电流和容量的计算 第三部分本题目的计算机解法 (13) 一、计算机程序编写 二、计算机设计序所得结果 第四部分课程设计总结 (20)

第一部分电力系统短路故障电流计算任务 一.题目 电力系统短路故障电流的计算机计算 二.设计目的与要求 电力系统发生短路故障造成的危害性是最大的。作为电力系统三大计算之一,分析短路故障的参数更为重要。通过课程设计, 使学生巩固电力系统三相短路计算的基本原理与方法,掌握短路电流的数值求解方法,开发系统短路故障电流的计算程序。同时,通过软件开发,也有助于计算机操作能力和软件开发能力的提高。 要求手工计算和计算机仿真出给定系统短路后的短路电流(含支路电流)和节点电压。开发语言:FORTRAN 或C 语言或MATLAB软件。 三.主要内容 1. 形成算例系统节点导纳矩阵,准备原始数据,并手工计算短路电流。 2. 复习系统三相短路的基本原理,建立数学模型。 3. 确定合适的数值计算方法(矩阵直接求逆,节点优化编号,LR 分解)。 4. 上机编程调试,分析。 5. 仿真算例系统的短路电流﹑支路电流和节点电压,并与手工计算比较。 6. 上机演示答辩,书写该课程设计说明书。 四.基本原理 1、数学模型的建立 电力网络的数学模型是指将网络的有关参数和变量及其相互关系归纳起来所组成的﹑可反映网络性能的数学方程式。(节点电压方程﹑回路电流方程) 2、本次设计,拟采用运用节点导纳矩阵的节点电压方程。 IB=YBUB 3、三相对称短路计算原理及不对称短路计算原理 2、计算方法的确定 本次设计采用“线性方程组求解的直接法与LR 分解法”。 五、计算实例

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

电力系统三相短路电流的计算

能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:将________________________ 学号:1310240006__________________

目录 摘要 (1) 课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算 (6) 第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统分析是电气工程、电力工程的专业核心课程,通过学习电力系统分析,学生可以了解电力系统的构成,电力系统的计算分析及方法、电力系统常见的故障及其处理方法、电力系统稳定性的判断,为从事电力系统打下必要的基础。 电力系统短路电流的计算是重中之重,电力系统三相短路电流计算主要是短路电流周期(基频)分理的计算,在给定电源电势时,实际上就是稳态交流电路的求解。采用近似计算法,对系统元件模型和标幺参数计算作简化处理,将电路转化为不含变压器的等值电路,这样,就把不同电压等级系统简化为直流系统来求解。 在电力系统中,短路是最常见而且对电力系统运行产生最严重故障的后果之一。

工厂供电课程设计示例(完整资料).doc

【最新整理,下载后即可编辑】 工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 厂 房编号厂房 名称 负 荷 类 别 设备 容量 (KW) 需要 系数 Kd 功率 因数 cosφ P30 (KW) Q30 (Kvar) S30 (KVA) I30 (A) 1 铸造 车间 动 力 300 0.3 0.7 照 6 0.8 1.0

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统分析课程设计-电力系统短路故障的计算机算法程序设计

电力系统分析课程设计-电力系统短路故障的计算机算法程序设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析课程设计 电力系统短路故障的计算机算法程序设计 姓名____刘佳琪___ 学号_2014409436__ 班级__20144094___ 指导教师___鲁明芳____

目录 1 目的与原理 (1) 1.2 关于电力系统短路故障的计算机算法程序设计目的 (1) 1.2 设计原理 (1) 1.2.1计算机计算原理 (1) 1.2.2电力系统短路计算计算机算法 (2) 2 计算机编程环境及编程语言的选择 (2) 2.1 优势特点 (2) 2.1.1编程环境 (3) 2.1.2简单易用 (3) 2.1.3强处理能力 (3) 2.1.4图形处理 (3) 2.1.5模块集和工具箱 (4) 2.1.6程序接口 (4) 2.1.7应用软件开发 (4) 3 对称故障的计算机算法 (5) 3.1 用阻抗矩阵计算三相短路电流 (7) 3.2 用节点导纳矩阵计算三相短路电流 (9) 4 附录程序清单 (14) 4.1 形成节点导纳矩阵 (14) 4.2 形成节点阻抗矩阵 (15) 4.2 对称故障的计算 (17)

1 目的与原理 1.1 关于电力系统短路故障的计算机算法程序设计目的 电力系统正常运行的破坏多半是由于短路故障引起的,发生短路时,系统从一种状态剧变成另一种状态,并伴随复杂的暂态现象。所谓短路故障,是指一切不正常的相与相之间或相与地发生通路的情况。 本文根据电力系统三相对称短路的特点,建立了合理的三相短路的数学模型,在此基础上,形成电力系统短路电流实用计算方法;节点阻抗矩阵的支路追加法。编制了对任意一个电力系统在任意点发生短路故障时三相短路电流及其分布的通用计算程序,该办法适用于各种复杂结构的电力系统。从一个侧面展示了计算机应用于电力系统的广阔前景。 根据所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序使同学对电力系统分析有进一步理解,同时加强计算机实际应用能力的训练。 电力系统的短路故障是严重的,而又是发生几率最多的故障,一般说来,最严重的短路是三相短路。当发生短路时,其短路电流可达数万安以至十几万安,它们所产生的热效应和电动力效应将使电气设备遭受严重破环。为此,当发生短路时,继电保护装置必须迅速切除故障线路,以避免故障部分继续遭受危害,并使非故障部分从不正常运行情况下解脱出来,这要求电气设备必须有足够的机械强度和热稳定度,开关电气设备必须具备足够的开断能力,即必须经得起可能最大短路的侵扰而不致损坏。因此,电力系统短路电流计算是电力系统运行分析,设计计算的重要环节,许多电业设计单位和个人倾注极大精力从事这一工作的研究。由于电力系统结构复杂,随着生产发展,技术进步系统日趋扩大和复杂化,短路电流计算工作量也随之增大,采用计算机辅助计算势在并行。 1.2 设计原理 1.2.1 计算机计算原理 应用计算机进行电力系统计算,首先要掌握电力系统相应计算的数学模型;其次是运用合理的计算方法;第三则是选择合适的计算机语言编制计算程序。 建立电力系统计算的相关数学模型,就是建立用于描述电力系统相应计算的有关参数间的相互关系的数学方程式。该数学模型的建立往往要突出问题的主要方,即考虑影

《电力系统分析》试题

《电力系统分析》试题 一、选择题 1.采用分裂导线的目的是(A) A.减小电抗 B.增大电抗 C.减小电纳 D.增大电阻 2.下列故障形式中对称的短路故障为( C ) A.单相接地短路 B.两相短路 C.三相短路 D.两相接地短路 3.简单系统静态稳定判据为(A) A.>0 B.<0 C.=0 D.都不对 4.应用等面积定则分析简单电力系统暂态稳定性,系统稳定的条件是( C )A.整步功率系数大于零 B.整步功率系数小于零 C.最大减速面积大于加速面积 D.最大减速面积小于加速面积 5.频率的一次调整是(A) A.由发电机组的调速系统完成的 B.由发电机组的调频系统完成的 C.由负荷的频率特性完成的 D.由无功补偿设备完成的 6.系统备用容量中,哪种可能不需要( A) A.负荷备用 B.国民经济备用 C.事故备用 D.检修备用

7.电力系统中一级负荷、二级负荷和三级负荷的划分依据是用户对供电的(A)A.可靠性要求 B.经济性要求 C.灵活性要求 D.优质性要求 9.中性点不接地系统发生单相接地短路时,非故障相电压升高至(A) A.线电压 B.1.5倍相电压 C.1.5倍线电压 D.倍相电压 10.P-σ曲线被称为( D ) A.耗量特性曲线 B.负荷曲线 C.正弦电压曲线 D.功角曲线 11.顺调压是指( B ) A.高峰负荷时,电压调高,低谷负荷时,电压调低 B.高峰负荷时,允许电压偏低,低谷负荷时,允许电压偏高 C.高峰负荷,低谷负荷,电压均调高 D.高峰负荷,低谷负荷,电压均调低 12.潮流方程是( D ) A.线性方程组 B.微分方程组 C.线性方程 D.非线性方程组 13.分析简单电力系统的暂态稳定主要应用( B ) A.等耗量微增率原则 B.等面积定则 C.小干扰法 D.对称分量法 14.电力线路等值参数中消耗有功功率的是(A) A.电阻 B.电感 C.电纳 D.电容

电力系统三相短路的实用计算

第七章电力系统三相短路的实用计算 容要点 电力系统故障计算。可分为实用计算的“手算”和计算机算法。大型电力系统的故障计算,一般均是采用计算机算法进行计算。在现场实用中,以及大学本、专科学生的教学中,常采用实用的计算方法—‘手算’(通过“手算“的教学,可以加深学生对物理概念的理解)。 例题1: 如图7一1所示的输电系统,当k点发生三相短路,作标么值表示的等值电 路并计算三相短路电流。各元件参数已标于图中。 图7一1系统接线图 解:取基准容量Sn=100MVA,基准电压Un=Uav(即各电压级的基准电压用平均额定电压表示)。则各元件的参数计算如下,等值电路如图7一2所示

图7-2 等值电路 例题7-2: 已知某发电机短路前在额定条件下运行,额定电流 3.45 N KA I=,N COS?=

0.8、d X ''=0.125。试求突然在机端发生三相短路时的起始超瞬态电流''I 和冲击电流有名值。(取 1.8=i m p K ) 解:因为,发电机短路前是额定运行状态,取101. 10U =∠? 习题: 1、电力系统短路故障计算时,等值电路的参数是采用近似计算,做了哪些简化? 2、电力系统短路故障的分类、危害、以及短路计算的目的是什么? 3、无限大容量电源的含义是什么?由这样电源供电的系统,三相短路时,短路电流包含几种分量?有什么特点? 4、何谓起始超瞬态电流(I")?计算步骤如何?在近似计算中,又做了哪些简

化假设? 5、冲击电流指的是什么?它出现的条件和时刻如何?冲击系数imp k 的大小与什么有关? 6、在计算1"和imp i 时,什么样的情况应该将异步电动机(综合负菏)作为电源看待?如何计算? 7、什么是短路功率(短路容量)?如何计算?什么叫短路电流最大有效值?如何计算? 8、网络变换和化简主要有哪些方法?转移电抗和电流分布系数指的是什么?他们之间有何关系? 9.运算由线是在什么条件下制作的?如何制作? 10.应用运算曲线法计算短路电流周期分量的主要步骤如何? 11、供电系统如图所示,各元件参数如下:线路L, 50km, X1=0.4km Ω ;变压器T, N S =10MVA, %k u =10.5. T K = 110/11。假定供电点(s)电压为106.5kV 保持恒定不变,当空载运行时变压器低压母线发生三相短路时,试计算:短路电流周期分量起始值、冲击电流、短路电流最大有效值及短路容量的有名值。 12、某电力系统的等值电路如图所示。已知元

电力系统短路电流仿真分析课程设计

电力系统分析综合训练三 任务书 本次综合训练目的在于巩固和运用前面所学到的电力系统短路电流计算方法,理解系统中短路电流分布规律,掌握仿真软件的使用方法,培养分析问题和解决问题的能力。 系统单线图如下:图中线路参数是单位长度参数。 G T1 L1 T2 T3 a b c d e f g "120cos 0.810.50.650.13 N N N d d P MW U kV X X ?=====0015010.5/242894.5137%13.13% 1.43 k k MVA kV P kW P kW U I ?=?===006 01850.17/0.415/2.7410/LGJ r km x km b S km --=Ω=Ω=?00120220/121932.598.5%14% 1.26 k k MVA kV P kW P kW U I ?=?===0060700.45/0.385/3.1510/LGJ r km x km b S km --=Ω=Ω=?0031.5110/1119031%10.5%0.7 k k MVA kV P kW P kW U I ?=?===00601200.27/0.414/2.7910/LGJ r km x km b S km --=Ω=Ω=? 线路长度数据见班级列表,其余数据如上图所示。 设计要求: 利用PowerWorld 建立单线图程序,完成设置短路点,计算短路电流。 设计说明书内容: 1、 任务书 2、 绘制单线图。 3、 仿真计算母线a~g 发生三相短路时和线路中间发生三相短路时,短路点处短路电流,以及短路点至发电机间各母线电压。 4、 手工计算母线c 发生三相短路时,短路点处短路电流,并与计算机计算结果比较。如果不同,试分析原因。 5、 仿真计算母线a~g 和线路中间发生各种不对称短路时,短路点处短路电流,以及短路点至发电机间各母线电压。

大气污染控制工程课程设计实例

大气污染控制工程课程设计实例 一、课程设计题目 某燃煤采暖锅炉烟气除尘系统设计 二、课程设计的目的 通过课程设计使学生进一步消化和巩固本能课程所学容,并使所学的知识系统化,培养学生运用所学理论知识进行净化系统设计的初步能力。通过设计,使学生了解工程设计的容、法及步骤,培养学生确定大气污染控制系统的设计案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4-13型,共4台 设计耗煤量:600kg/h(台) 排烟温度:160℃ 烟气密度:1.34kg/Nm3 空气过剩系数: =1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:97.86kPa 冬季室外空气温度:-1℃ 空气含水按0.01293kg/ Nm3 烟气其他性质按空气计算 煤的工业分析值: Y C=68%,Y H=4%,Y S=1% ,Y O=5%, Y W=6%,Y A=15%,Y V=13% N=1%,Y 按锅炉大气污染物排放标准(GB13271-2001)中二类区标准执行: 烟尘浓度排放标准:200mg/ Nm3 二氧化硫排放标准:900mg/ Nm3 净化系统布置场地为锅炉房北侧15m以。 四、设计计算

1.燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算 (1)理论空气量 () Y Y Y Y a O S H C Q 7.07.056.5867.176.4-++=' /kg)(m N 3 式中:Y C 、Y H 、Y S 、Y O 分别为煤中各元素所含的质量百分数。 ) /(97.6)05.07.001.07.004.056.568.0867.1(76.4'3kg m Q N a =?-?+?+??= (2)理论烟气量(设空气含湿量12.93g/m 3N ) Y a a Y Y Y Y s N Q Q W H S C Q 8.079.0016.024.12.11)375.0(867.1+'+'++++=' (m 3N /kg ) 式中:a Q '—理论空气量(m 3N /kg ) Y W —煤中水分所占质量百分数; Y N —N 元素在煤中所占质量百分数 /kg) (m 42.701.08.097.679.097.6016.006.024.104.02.11)01.0375.068.0(867.1'N 3=?+?+?+?+?+?+?=s Q (3)实际烟气量 a s s Q Q Q '-+'=)1(016.1α (m 3N /kg ) 式中:α —空气过量系数。 s Q '—理论烟气量(m 3N /kg ) a Q '—理论空气量(m 3N /kg ) 烟气流量Q 应以m 3N /h 计,因此。?=s Q Q 设计耗煤量 /h) (m 615060025.10/kg)(m 25.1097.6)14.1(016.142.7N 3N 3=?=?==?-?+=设计耗煤量s s Q Q Q (4) 烟气含尘浓度:

ZY-电力系统课程设计.doc

山东交通学院 电力系统分析课程设计报告 题目电力系统分析课程设计 系(部) 信息科技与电气工程学院 专业 班级 指导教师 学生姓名 学号 12月 2 日至12月13日共2 周 指导教师(签字) 系主任(签字) 2013年12月13 日

摘要 本文先对电力系统的短路故障做了简要介绍,分析了线路运行的基本原理及其运行特点,并对短路故障的过程进行了理论分析。在深入分析三相短路故障的稳态和暂态电气量的基础上,总结论述了当今三相短路的的各种流行方案,分别阐述了其基本原理和存在的局限性。并运用派克变换及d.q.o坐标系统的发电机基本方程和拉氏运算等对其中的三相短路故障电流等做了详细的论述。并且利用Matlab中的simulink仿真软件包,建立了短路系统的统一模型,通过设置统一的线路参数、仿真参数。给出了仿真结果及线路各主要参数的波形图。最后根据仿真结果,分析目前自动选线法存在的主要问题及以后的发展方向。 关键词:短路故障;派克变换;拉氏运算;Matlab

ABSTRACT This paper first on the three-phase short circuit of electric power system is briefly introduced, analyzed the basic principle of operation of three-phase circuit and its operation characteristic, and the three-phase short circuit fault process undertook theoretical analysis. In depth analysis of three-phase short circuit fault of steady state and transient electrical quantities based on the summary, the three-phase short circuit of various popular programs, respectively, expounds its basic principles and limitations. And the use of Peck transform and d.q.o coordinate system of the generator basic equation and Laplace operator on the three-phase short-circuit current in detail. And the use of Matlab in the Simulink simulation software package, to establish a unified model of three-phase short-circuit system, by setting the unified circuit parameters, the simulation parameters. The simulation results are presented and the main parameters of the waveform of line. Finally, according to the simulation results, analysis of the current automatic line selection method the main existing problems and the future direction of development. Keywords:Short-circuit failure ;Peck transform;The Laplace operator;M atlab

电力系统分析考试题讲解学习

电力系统分析考试题

电力系统分析考试题 一、判断题 1、分析电力系统机电暂态过程时,通常认为电磁暂态过程已经结束,即不再考虑发电机内部的电磁暂态过程。(√) 2、短路冲击电流出现在短路发生后约半个周期。(√) 3、不管发电机的各个绕组是由超导体还是非超导体构成,短路电流中的非周期分量都将逐渐衰减到零。(×) 4、当发电机定子绕组之间的互感系数为常数时,发电机为隐极机。 (√) 5、电力系统发生不对称短路时,不仅短路点三相参数不对称,电力系统其他部分三相参数也将成为三相不对称的。(×) 6、不管架空输电线路是否假设避雷线,其负序电抗都是一样的。 (√) 7、电力系统发生不对称接地短路时,故障处三相电压不对称分解出的零序电压是电力系统中出现零序电流的原因。(√)8、小干扰法既可用于电力系统静态稳定性的分析,也可用于电力系统暂态稳定性的分析。(×) 9、线路串联电容器可以提高电力系统并列运行的静态稳定性。 (√) 10、从严格的意义上讲,电力系统总是处于暂态过程之中。(√) 11、无限大电源的频率保持不变,而电压却随着负荷的变化而变化,负荷越大,电源的端电压越低。(×)

12、不管同步发电机的类型如何,定子绕组与转子绕组之间互感系数都是变化的。(√) 13、对称分量法只能用于线性电力系统不对称故障的分析计算。(叠加)(√) 14、派克变换前后,发电机气隙中的磁场保持不变。(√) 15、具有架空地线的输电线路,架空地线的导电性能越强,输电线路的零序阻抗越大。(×) 16、不对称短路时,发电机机端的零序电压最高。 (×) 17、同步发电机转子的惯性时间常数JT反映了转子惯性的大小。(√) 18、短路计算时的计算电抗是以发电机的额定容量为基准的电抗标幺值。(√) 19、切除部分负荷是在电力系统静态稳定性有被破坏的危机情况下,采取的临时措施。(√) 20、变压器中性点经小电阻接地可以提高接地短路情况下电力系统并列运行的暂态 稳定性(√) 21、对称分量法不能用于非线性电力网的不对称短路分析。(√) 22、不管电力系统中性点采用什么样的运行方式,其零序等值电路都是一样的。(×) 23、在三序电抗相等的情况下,三相短路与单相接地短路时故障相的短路电流相同,因此它们对于电力系统并列运行暂态稳定性的影响也相同。(×) 24、输电线路采用单相重合闸与采用三相重合闸相比较,单相重合闸更有利于提高单相接地短路情况下电力系统并列运行的暂态稳定性。(√)

相关主题
文本预览
相关文档 最新文档