Unit_7 soil mechanics
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语Specialty English3 水利工程Hydraulic Engineering4 土木工程Civil Engineering5 地下工程Underground Engineering6 岩土工程Geotechnical Engineering7 道路工程Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程Tunnel Engineering10 工程力学Engineering Mechanics11 交通工程Traffic Engineering12 港口工程Port Engineering13 安全性safety17木结构timber structure18 砌体结构masonry structure19 混凝土结构concrete structure20 钢结构steelstructure21 钢-混凝土复合结构steel and concrete composite structure22 素混凝土plain concrete23 钢筋混凝土reinforced concrete24 钢筋rebar25 预应力混凝土pre-stressed concrete26 静定结构statically determinate structure27 超静定结构statically indeterminate structure28 桁架结构truss structure29 空间网架结构spatial grid structure30 近海工程offshore engineering31 静力学statics32运动学kinematics33 动力学dynamics34 简支梁simply supported beam35 固定支座fixed bearing36弹性力学elasticity37 塑性力学plasticity38 弹塑性力学elaso-plasticity39 断裂力学fracture Mechanics40 土力学soil mechanics41 水力学hydraulics42 流体力学fluid mechanics43 固体力学solid mechanics44 集中力concentrated force45 压力pressure46 静水压力hydrostatic pressure47 均布压力uniform pressure48 体力body force49 重力gravity50 线荷载line load51 弯矩bending moment52 torque 扭矩53 应力stress54 应变stain55 正应力normal stress56 剪应力shearing stress57 主应力principal stress58 变形deformation59 内力internal force60 偏移量挠度deflection61 settlement 沉降62 屈曲失稳buckle63 轴力axial force64 允许应力allowable stress65 疲劳分析fatigue analysis66 梁beam67 壳shell68 板plate69 桥bridge70 桩pile71 主动土压力active earth pressure72 被动土压力passive earth pressure73 承载力load-bearing capacity74 水位water Height75 位移displacement76 结构力学structural mechanics77 材料力学material mechanics78 经纬仪altometer79 水准仪level80 学科discipline81 子学科sub-discipline82 期刊journal ,periodical83文献literature84 ISSN International Standard Serial Number 国际标准刊号85 ISBN International Standard Book Number 国际标准书号86 卷volume87 期number 88 专着monograph89 会议论文集Proceeding90 学位论文thesis, dissertation91 专利patent92 档案档案室archive93 国际学术会议conference94 导师advisor95 学位论文答辩defense of thesis96 博士研究生doctorate student97 研究生postgraduate98 EI Engineering Index 工程索引99 SCI Science Citation Index 科学引文索引100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引101 题目title102 摘要abstract103 全文full-text104 参考文献reference105 联络单位、所属单位affiliation106 主题词Subject107 关键字keyword108 ASCE American Society of Civil Engineers 美国土木工程师协会109 FHWA Federal Highway Administration 联邦公路总署110 ISO International Standard Organization111 解析方法analytical method112 数值方法numerical method113 计算computation114 说明书instruction115 规范Specification, Code第二部分:岩土工程专业词汇1.geotechnical?engineering岩土工程?2.foundation?engineering基础工程3.soil,?earth土4.soil?mechanics土力学cyclic?loading周期荷载unloading卸载reloading再加载viscoelasticfoundation粘弹性地基?viscous?damping粘滞阻尼shearmodulus剪切模量?5.soil?dynamics土动力学6.stress?path应力路径?7.numerical geotechanics 数值岩土力学二. 土的分类 1.residual soil残积土 groundwater level地下水位 2.groundwater 地下水 groundwater table地下水位 3.clay minerals粘土矿物 4.secondary minerals次生矿物 ndslides滑坡 6.bore hole columnar section钻孔柱状图 7.engineering geologic investigation工程地质勘察 8.boulder 漂石 9.cobble卵石 10.gravel砂石 11.gravelly sand砾砂 12.coarse sand粗砂 13.medium sand中砂 14.fine sand细砂 15.silty sand粉土 16.clayey soil粘性土 17.clay粘土 18.silty clay粉质粘土 19.silt粉土 20.sandy silt砂质粉土 21.clayey silt粘质粉土 22.saturated soil饱和土 23.unsaturated soil非饱和土 24.fill (soil)填土 25.overconsolidated soil超固结土 26.normally consolidated soil正常固结土 27.underconsolidated soil欠固结土 28.zonal soil区域性土 29.soft clay软粘土 30.expansive (swelling) soil膨胀土 31.peat泥炭 32.loess黄土 33.frozen soil冻土 24.degree of saturation饱和度 25.dry unit weight干重度26.moist unit weight湿重度45.ISSMGE=International Society for Soil Mechanics and Geote chnical Engineering 国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy’s law 达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度 12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of driven pile打入桩(负)摩阻力3.effective stress有效应力4.total stress总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计 10.recompaction再压缩11.bearing capacity承载力 12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载 15.a semi-infinite elastic solid半无限弹性体 16.homogeneous均质 17.isotropic各向同性 18.strip footing条基 19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载 22.live load活载 23.short –term transient load短期瞬时荷载24.long-term transient load长期荷载 25.reduced load折算荷载 26.settlement沉降 27.deformation变形 28.casing套管 29.dike=dyke堤(防) 30.clay fraction粘粒粒组 31.physical properties物理性质 32.subgrade路基 33.well-graded soil级配良好土 34.poorly-graded soil级配不良土 35.normal stresses正应力 36.shear stresses剪应力 37.principal plane主平面38.major (intermediate, minor) principal stress最大(中、最小)主应力 39.Mohr-Coulomb failure condition摩尔-库仑破坏条件 40.FEM=finite element method有限元法41.limit equilibrium method极限平衡法42.pore water pressure孔隙水压力43.preconsolidation pressure先期固结压力44.modulus of compressibility压缩模量45.coefficent of compressibility压缩系数pression index压缩指数 47.swelling index回弹指数 48.geostatic stress自重应力 49.additional stress附加应力 50.total stress总应力 51.final settlement最终沉降 52.slip line滑动线六. 基坑开挖与降水 1 excavation开挖(挖方) 2 dewatering (基坑)降水 3 failure of foundation基坑失稳4 bracing of foundation pit基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall挡土墙7 pore-pressure distribution孔压分布8 dewatering method降低地下水位法9 well point system井点系统(轻型) 10 deep well point深井点 11 vacuum well point 真空井点 12 braced cuts支撑围护 13 braced excavation支撑开挖 14 braced sheeting支撑挡板七. 深基础--deep foundation 1.pile foundation桩基础1)cast –in-place灌注桩 diving casting cast-in-place pile沉管灌注桩 bored pile钻孔桩 special-shaped cast-in-place pile机控异型灌注桩 piles set into rock嵌岩灌注桩 rammed bulb pile夯扩桩2)belled pier foundation钻孔墩基础 drilled-pier foundation钻孔扩底墩 under-reamed bored pier3)precast concrete pile预制混凝土桩4)steel pile钢桩 steel pipe pile钢管桩 steel sheet pile钢板桩5)prestressed concrete pile预应力混凝土桩 prestressed concrete pipe pile预应力混凝土管桩 2.caisson foundation沉井(箱) 3.diaphragm wall地下连续墙截水墙 4.friction pile摩擦桩 5.end-bearing pile端承桩 6.shaft竖井;桩身 7.wave equation analysis波动方程分析 8.pile caps承台(桩帽) 9.bearing capacity of single pile单桩承载力 teral pile load test单桩横向载荷试验 11.ultimate lateral resistance of single pile单桩横向极限承载力 12.static load test of pile单桩竖向静荷载试验 13.vertical allowable load capacity单桩竖向容许承载力 14.low pile cap低桩承台 15.high-rise pile cap高桩承台 16.vertical ultimate uplift resistance of single pile单桩抗拔极限承载力 17.silent piling静力压桩 18.uplift pile抗拔桩 19.anti-slide pile抗滑桩20.pile groups群桩 21.efficiency factor of pile groups群桩效率系数(η)22.efficiency of pile groups群桩效应 23.dynamic pile testing桩基动测技术24.final set最后贯入度 25.dynamic load test of pile桩动荷载试验26.pile integrity test桩的完整性试验 27.pile head=butt桩头 28.pile tip=pile point=pile toe桩端(头) 29.pile spacing桩距30.pile plan桩位布置图 31.arrangement of piles =pile layout桩的布置32.group action群桩作用 33.end bearing=tip resistance桩端阻 34.skin(side) friction=shaft resistance桩侧阻35.pile cushion桩垫 36.pile driving(by vibration) (振动)打桩 37.pile pulling test拔桩试验 38.pile shoe桩靴 39.pile noise 打桩噪音 40.pile rig打桩机九. 固结consolidation1.Terzzaghi’s consolidation theory太沙基固结理论2.Barraon’s consolidation theory巴隆固结理论3.Biot’s consolidation theory比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation多维固结8.one-dimensional consolidation一维固结9.primary consolidation主固结10.secondary consolidation次固结11.degree of consolidation固结度 12.consolidation test固结试验 13.consolidation curve固结曲线 14.time factor Tv时间因子15.coefficient of consolidation固结系数16.preconsolidation pressure前期固结压力17.principle of effective stress有效应力原理18.consolidation under K0 condition K0固结十. 抗剪强度shear strength 1.undrained shear strength不排水抗剪强度2.residual strength残余强度3.long-term strength长期强度4.peak strength峰值强度5.shear strain rate剪切应变速率6.dilatation剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength抗剪强度总应力法 9.Mohr-Coulomb theory莫尔-库仑理论 10.angle of internal friction内摩擦角 11.cohesion粘聚力 12.failure criterion破坏准则 13.vane strength十字板抗剪强度14.unconfined compression无侧限抗压强度15.effective stress failure envelop有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一. 本构模型--constitutive model1.elastic model弹性模型2.nonlinear elastic model非线性弹性模型3.elastoplastic model弹塑性模型4.viscoelastic model粘弹性模型5.boundary surface model边界面模型6.Duncan-Chang model邓肯-张模型7.rigid plastic model刚塑性模型8.cap model盖帽模型9.work softening加工软化 10.work hardening加工硬化 11.Cambridge model剑桥模型 12.ideal elastoplastic model理想弹塑性模型 13.Mohr-Coulomb yield criterion莫尔-库仑屈服准则14.yield surface屈服面15.elastic half-space foundation model弹性半空间地基模型 16.elastic modulus弹性模量 17.Winkler foundation model文克尔地基模型十二. 地基承载力--bearing capacity of foundation soil1.punching shear failure冲剪破坏2.general shear failure整体剪切破化3.local shear failure局部剪切破坏4.state of limit equilibrium极限平衡状态5.critical edge pressure临塑荷载6.stability of foundation soil地基稳定性7.ultimate bearing capacity of foundation soil地基极限承载力 8.allowable bearing capacity of foundation soil地基容许承载力十三. 土压力--earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb’s earth pressure theory库仑土压力理论5.Rankine’s earth pressure theory朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose休止角2.Bishop method毕肖普法3.safety factor of slope边坡稳定安全系数4.Fellenius method of slices费纽伦斯条分法5.Swedish circle method瑞典圆弧滑动法6.slices method条分法十五. 挡土墙--retaining wall1.stability of retaining wall挡土墙稳定性2.foundation wall基础墙3.counter retaining wall扶壁式挡土墙4.cantilever retaining wall悬臂式挡土墙5.cantilever sheet pile wall悬臂式板桩墙6.gravity retaining wall重力式挡土墙7.anchored plate retaining wall锚定板挡土墙8.anchored sheet pile wall锚定板板桩墙十六. 板桩结构物--sheet pile structure 1.steel sheet pile钢板桩 2.reinforced concrete sheet pile钢筋混凝土板桩 3.steel piles 钢桩 4.wooden sheet pile木板桩 5.timber piles木桩十七. 浅基础--shallow foundation 1.box foundation箱型基础 2.mat(raft) foundation片筏基础 3.strip foundation条形基础 4.spread footing扩展基础 pensated foundation补偿性基础 6.bearing stratum持力层 7.rigid foundation刚性基础 8.flexible foundation柔性基础9.embedded depth of foundation基础埋置深度 foundation pressure基底附加应力11.structure-foundation-soil interaction analysis上部结构-基础-地基共同作用分析十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils动强度2.wave velocity method波速法3.material damping材料阻尼4.geometric damping几何阻尼5.damping ratio阻尼比6.initial liquefaction初始液化7.natural period of soil site地基固有周期8.dynamic shear modulus of soils动剪切模量 9.dynamic ma二十. 地基基础抗震 1.earthquake engineering地震工程 2.soil dynamics土动力学 3.duration of earthquake地震持续时间 4.earthquake response spectrum地震反应谱 5.earthquake intensity地震烈度 6.earthquake magnitude震级 7.seismic predominant period地震卓越周期 8.maximum acceleration of earthquake地震最大加速度二十一. 室内土工实验 1.high pressure consolidation test高压固结试验 2.consolidation under K0 condition K0固结试验 3.falling head permeability变水头试验4.constant head permeability常水头渗透试验5.unconsolidated-undrained triaxial test不固结不排水试验(UU)6.consolidated undrained triaxial test固结不排水试验(CU)7.consolidated drained triaxial test固结排水试验(CD)paction test击实试验9.consolidated quick direct shear test固结快剪试验10.quick direct shear test快剪试验11.consolidated drained direct shear test慢剪试验12.sieve analysis筛分析 13.geotechnical model test土工模型试验 14.centrifugalmodel test离心模型试验15.direct shear apparatus直剪仪 16.direct shear test直剪试验 17.direct simple shear test直接单剪试验18.dynamic triaxial test三轴试验 19.dynamic simple shear动单剪 20.free(resonance)vibration column test自(共)振柱试验二十二. 原位测试1.standard penetration test (SPT)标准贯入试验 2.surface wave test (SWT)表面波试验 3.dynamic penetration test(DPT)动力触探试验 4.static cone penetration (SPT) 静力触探试验 5.plate loading test静力荷载试验 teral load test of pile 单桩横向载荷试验 7.static load test of pile 单桩竖向荷载试验 8.cross-hole test 跨孔试验 9.screw plate test螺旋板载荷试验 10.pressuremeter test旁压试验 11.light sounding轻便触探试验 12.deep settlement measurement深层沉降观测 13.vane shear test十字板剪切试验 14.field permeability test 现场渗透试验 15.in-situ pore water pressure measurement 原位孔隙水压量测 16.in-situ soil test原位试验。
Soil MechanicsSoil mechanics is concerned with the use of the laws of mechanics and hydraulics in engineering problems related to soils.Soil is a natural aggregate of mineral grains,with or without organic constituents,formed by the chemical and mechanical weathering of rock.It consists of three phases:solid mineral matter,water,and air or other gas.Soils are extremely variable in composition,and it was this heterogeneity that long discouraged scientific studies of these deposits.Gradually,the investigation of failures of retaining walls,foundations,embankments,pavements,and other structures resulted in a body of knowledge concerning the nature of soils and their behavior sufficient to give rise to soil mechanics as a branch of engineering science.History.Little progress was made in dealing with soil problems on a scientific basis until the latter half of the 18th century,when the French physicist Charles-Augustin de Coulomb published his theory of earth pressure(1773).In 1857 the Scottish engineer Willliam Rankine developed a theory of equilibrium of earth masses and applied it to some elementary problems of foundation engineering.These two classical theories still form the basis of current methods of estimating earth pressure,even though they were based on the misconception that all soils lack cohesion,as does dry sand.Twentieth-century advances have been in the direction of taking cohesion into account understanding the basic physical properties of soils in general and of the plasticity of clay in particular;and systematically studying the shearing characteristics of soils—that is,their performance under conditions of sliding.Both Coulomb’s and Rankine’s theories assumed that the surface of rupture of soil subjectedto a shearing force is a plane.While this is a reasonable approximation for sand,cohesive soils tend to slip along a curved surface.In the early 20th century,Swedish engineers proposed a circular arc as the surface of slip.During the last half century considerable progress has been made in the scientific study of soils and in the application of theory and experimental data to engineering design.A significant advance was made by the German engineer Karl Terzaghi,who in 1925 published a mathematical investigation of the rate of consolidation of clays under applied pressures.His analysis,which was confirmed experimentally, explained the time lag of settlements of fully waterlogged clay deposits.Terzaghi coined the term soil mechanics in 1925 when he published the book Erdbaumechanik(“Earth-Building Mechanics”).Research on subgrade materials,the natural foundation under pavements,was begun about 1920 by the U.S.Bureau of Public Roads.Several simple tests were correlated with the propertiesof natural soils in relation to pavement design.In England,the Road Research Board was set up in 1933.In 1936 the first international conference on soils was held at Harvard University.Today,the civil engineer relies heavily on the numerical results of tests to reinforce experience and correlate new problems with established solutions.Obtaining truly representative sample of soils for such tests,however,is extremely difficult;hence there is a trend toward testing on the site instead of in the laboratory,and many important properties are now evaluatedin this way.Engineering properties of soils.The properties of soils that determine their suitability for engineering use include internal friction,cohesion,compressibility,elasticity,permeability,and capillary.Internal friction is the resistance to sliding offered by the soil mass.Sand and gravel have higher internal friction than clays;in the latter an increase in moisture lowers the internal friction.The tendency of a soil to slide under the weight of a structure may be translated into shear;that is,a movement of a mass of soil in a plane,either horizontal,vertical,or other.Sucha shearing movement involves a danger of building failure.Also resisting the danger of shear is the property of cohesion,which is the mutual attractionof soil particles due to molecular forces and the existence of moisture between them.Cohesive forces are markedly affected by the amount of moisture present.Cohesion is generally very highin clays but almost nonexistent in sands or slits.Cohesion values range from zero for dry sand to 2,000 pounds per square foot for very stiff clays.Compressibility is an important soil characteristic because of the possibility of compacting the soil by rolling,tamping,vibration,or other means,thus increasing its density and load-bearing strength.An elastic soil tends to resume its original condition after compaction.Elastic(expansible)soils are unsuitable as sub-grades for flexible pavements since they compact and expand as a vehicle passes over them,causing failure of the pavement.Permeability is the property of a soil that permits the flow of water through it.Freezing-thawing cycles in winter and wetting-drying cycles in summer alter the packing density of soil grains.Permeability can be reduced by compaction.Capillarity causes water to rise through the soil above the normal horizontal plane of free water.In most soils numerous channels for capillary action exist;in clays,moisture may be raised as much as 30 feet by capillarity.Density can be determined by weight and volume measurements or by special measuring devices.Stability of soils is measured by an instrument called a stabilometer,which specifically measures the horizontal pressure transmitted by a vertical load.Consolidation is the compaction or pressing together of soil that occurs under a specific load condition; this property is also tested.Site Investigation.Soil surveys are conducted to gather data on the nature and extent of the soil expected to be encountered on a project.The amount of effort spent on site investigation depends on the size and importance of the project; it may range from visual inspection to elaborate subsurface exploration by boring and laboratory testing.Collection of representative samples is essential for proper identification and classification of soils.The number of samples taken depends on previously available data, variation in soil types,and the size of the project.Generally,in the natural profile at a location,there is more variation in soil characteristics with depth than with horizontal distance.It is not good practice to collect composite samples for any given horizon (layer),since this does not truly represent any one location and could prove misleading.Even slight variations in soil characteristics in a horizon should be duly noted.Classification of the soilin terms of grain size and the liquid and plastic limits are particularly important steps.An understanding of the eventual use of the data obtained during site investigation is important.Advance information on site conditions is helpful in planning any survey program.Information on topography,geological features(outcrops,road and stream cuts,lake beds,weathered remnants,etc.),paleontological maps,aerial photographs,well logs,and excavations can prove invaluable. Geophysical exploration methods yield useful corroboratory data.Measurement of the electrical resistivity of soils provides an insight intoseveral soil characteristics.Seismic techniques often are used to determine the characteristics of various subsurface strata by measuring the velocity of propagation of explosively generated shock waves through the strata.The propagation velocity varies widely for different types of soils.Shock waves also are utilized to determine the depth of bedrock by measuring the time required for the shock wave to travel to the bedrock and return to the surface as a reflected wave.Dependable subsurface information can only be obtained by excavation.A probe rod pushed into the ground indicates the penetration resistance.Water jets or augers are used to bring subsurface materials to the surface for examination.Colour change is one of the significant elements such an examination can reveal.Various drilling methods are employed to obtain chips from depth.Trenches or pits provide more complete information for shallow depths.Pneumatic or diamond drilling may be required if hard rock is encountered.At least a few of the boreholes should exceed the depth of significant stress that is established for the structure.Avoidance of structural disturbance of the samples is not critical for some tests but is very important for in-place density or shearing strength measurements.Complete and accurate records,such as borehole logs,must be prepared and maintained,and the samples themselves must be retained for future inspection.。
岩土工程专业英语词汇岩土工程专业英语词汇一. 综合类综合类 1.geotechnical engineering 岩土工程岩土工程 2.foundation engineering 基础工程基础工程3.soil, earth 土4.soil mechanics 土力学土力学 cyclic loading 周期荷载周期荷载 unloading 卸载卸载 reloading 再加载再加载 viscoelastic foundation 粘弹性地基粘弹性地基 viscous damping 粘滞阻尼粘滞阻尼 shear modulus 剪切模量剪切模量5.soil dynamics 土动力学土动力学6.stress path 应力路径应力路径二. 土的分类土的分类1.residual soil 残积土残积土 groundwater level 地下水位地下水位2.groundwater 地下水地下水groundwater table 地下水位地下水位 3.clay minerals 粘土矿物粘土矿物 4.secondary minerals 次生矿物次生矿物ndslides 滑坡滑坡 7.engineering geologic investigation 工程地质勘察工程地质勘察 8.boulder 漂石漂石9.cobble 卵石卵石 10.gravel 砂石砂石 11.gravelly sand 砾砂砾砂 12.coarse sand 粗砂粗砂 13.medium sand 中砂中砂14.fine sand 细砂细砂 15.silty sand 粉土粉土 16.clayey soil 粘性土粘性土 17.clay 粘土粘土 18.silty clay 粉质粘土粉质粘土19.silt 粉土粉土 20.sandy silt 砂质粉土砂质粉土 22.saturated soil 饱和土饱和土 23.unsaturated soil 非饱和土非饱和土 24.fill (soil)填土填土 29.soft clay 软粘土软粘土 30.expansive (swelling) soil 膨胀土31.peat 泥炭泥炭32.loess 黄土黄土 33.frozen soil 冻土冻土三. 土的基本物理力学性质土的基本物理力学性质24.degree of saturation 饱和度饱和度 25.dry unit weight 干重度干重度 26.moist unit weight 湿重度湿重度27.saturated unit weight 饱和重度饱和重度 28.effective unit weight 有效重度有效重度 29.density 密度密度pactness 密实度密实度 31.maximum dry density 最大干密度最大干密度32.optimum water content 最优含水量最优含水量 33.three phase diagram 三相图三相图34.tri-phase soil 三相土三相土 35.soil fraction 粒组粒组 36.sieve analysis 筛分筛分37.hydrometer analysis 比重计分析比重计分析 38.uniformity coefficient 不均匀系数不均匀系数39.coefficient of gradation 级配系数级配系数 40.fine-grained soil(silty and clayey)细粒土细粒土41.coarse- grained soil(gravelly and sandy)粗粒土粗粒土 42.Unified soil classification system 土的统一分类系统土的统一分类系统43.ASCE=American Society of Civil Engineer 美国土木工程师学会美国土木工程师学会44.AASHTO= American Association State Highway Officials 美国州公路官员协会美国州公路官员协会45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会国际土力学与岩土工程学会 四. 渗透性和渗流渗透性和渗流1.Darcy ’s law 达西定律达西定律2.piping 管涌管涌3.flowing soil 流土流土4.sand boiling 砂沸砂沸5.flow net 流网流网6.seepage 渗透(流)渗透(流)7.leakage 渗流渗流8.seepage pressure 渗透压力渗透压力9.permeability 渗透性渗透性 10.seepage force 渗透力渗透力 11.hydraulic gradient 水力梯度水力梯度12.coefficient of permeability 渗透系数渗透系数五. 地基应力和变形地基应力和变形1.soft soil 软土软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力打入桩(负)摩阻力3.effective stress 有效应力有效应力4.total stress 总应力总应力5.field vane shear strength 十字板抗剪强度十字板抗剪强度6.low activity 低活性低活性7.sensitivity 灵敏度灵敏度8.triaxial test 三轴试验三轴试验9.foundation design 基础设计基础设计10.recompaction 再压缩再压缩 11.bearing capacity 承载力承载力 12.soil mass 土体土体13.contact stress (pressure)接触应力(压力)接触应力(压力) 14.concentrated load 集中荷载集中荷载 15.a semi-infinite elastic solid 半无限弹性体半无限弹性体 16.homogeneous 均质均质 17.isotropi 17.isotropic c 各向同性各向同性18.strip footing 条基条基 19.square spread footing 方形独立基础方形独立基础20.underlying soil (stratum ,strata)下卧层(土)下卧层(土) 21.dead load =sustained load 恒载恒载 持续荷载持续荷载22.live load 活载活载 23.short –term transient load 短期瞬时荷载短期瞬时荷载24.long-term transient load 长期荷载长期荷载 26.settlement 沉降沉降 27.deformation 变形变形 28.casing 套管套管 29.dike=dyke 堤(防)堤(防) 30.clay fraction 粘粒粒组粘粒粒组32.subgrade 路基路基 33.well-graded soil 级配良好土级配良好土 34.poorly-graded soil 级配不良土级配不良土35.normal stresses 正应力正应力 36.shear stresses 剪应力剪应力 37.principal plane 主平面主平面38.major (intermediate, minor) principal stress 最大(中、最小)主应力最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件库仑破坏条件42.pore water pressure 孔隙水压力孔隙水压力 43.preconsolidation pressure 先期固结压力先期固结压力44.modulus of compressibility 压缩模量压缩模量 45.coefficent of compressibility 压缩系数压缩系数pression index 压缩指数压缩指数 47.swelling index 回弹指数回弹指数48.geostatic stress 自重应力自重应力 49.additional stress 附加应力附加应力 50.total stress 总应力总应力51.final settlement 最终沉降最终沉降 52.slip line 滑动线滑动线六. 基坑开挖与降水基坑开挖与降水1 excavation 开挖(挖方)开挖(挖方)2 dewatering (基坑)降水(基坑)降水3 failure of foundation 基坑失稳基坑失稳4 bracing of foundation pit 基坑围护基坑围护5 bottom heave=basal heave (基坑)底隆起(基坑)底隆起6 retaining wall 挡土墙挡土墙7 pore-pressure distribution 孔压分布孔压分布8 dewatering method 降低地下水位法降低地下水位法 9 well point system 井点系统(轻型)井点系统(轻型) 10 deep well point 深井点深井点 11 vacuum well point 真空井点真空井点 12 braced cuts 支撑围护支撑围护 13 braced excavation 支撑开挖支撑开挖 14 braced sheeting 支撑挡板支撑挡板七. 深基础--deep foundation1.pile foundation 桩基础桩基础 1)cast –in-place 灌注桩灌注桩 diving casting cast-in-place pile 沉管灌注桩沉管灌注桩 bored pile 钻孔桩钻孔桩 piles set into rock 嵌岩灌注桩嵌岩灌注桩 rammed bulb pile 夯扩桩夯扩桩2)belled pier foundation 钻孔墩基础钻孔墩基础 drilled-pier foundation 钻孔扩底墩钻孔扩底墩3)precast concrete pile 预制混凝土桩预制混凝土桩4)steel pile 钢桩钢桩 steel pipe pile 钢管桩钢管桩 steel sheet pile 钢板桩钢板桩5)prestressed concrete pile 预应力混凝土桩预应力混凝土桩 prestressed concrete pipe pile 预应力混凝土管桩预应力混凝土管桩2.caisson foundation 沉井(箱)沉井(箱)3.diaphram wall 地下连续墙地下连续墙 截水墙截水墙4.friction pile 摩擦桩摩擦桩5.end-bearing pile 端承桩端承桩6.shaft 竖井;桩身竖井;桩身 8.pile caps 承台(桩帽)承台(桩帽)9.bearing capacity of single pile 单桩承载力单桩承载力 teral pile load test 单桩横向载荷试验单桩横向载荷试验 11.ultimate lateral resistance of single pile 单桩横向极限承载力单桩横向极限承载力13.vertical allowable load capacity 单桩竖向容许承载力单桩竖向容许承载力14.low pile cap 低桩承台低桩承台 15.high-rise pile cap 高桩承台高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力单桩抗拔极限承载力17.silent piling 静力压桩静力压桩 18.uplift pile 抗拔桩抗拔桩 19.anti-slide pile 抗滑桩抗滑桩20.pile groups 群桩群桩21.efficiency factor of pile groups 群桩效率系数(η) 22.efficiency of pile groups 群桩效应群桩效应 23.dynamic pile testing 桩基动测技术桩基动测技术24.final set 最后贯入度最后贯入度 27.pile head=butt 桩头桩头 28.pile tip=pile point=pile toe 桩端(头)桩端(头)29.pile spacing 桩距桩距 30.pile plan 桩位布置图桩位布置图 31.arrangement of piles =pile layout 桩的布置桩的布置32.group action 群桩作用群桩作用 33.end bearing=tip resistance 桩端阻桩端阻34.skin(side) friction=shaft resistance 桩侧阻桩侧阻 35.pile cushion 桩垫桩垫 36.pile driving(by vibration) (振动)打桩(振动)打桩 37.pile pulling test 拔桩试验拔桩试验 38.pile shoe 桩靴桩靴 八. 地基处理--ground treatment2.cushion 垫层法垫层法3.preloading 预压法预压法4.dynamic compaction 强夯法强夯法5.dynamic compaction replacement 强夯置换法强夯置换法6.vibroflotation method 振冲法振冲法7.sand-gravel pile 砂石桩砂石桩 8.gravel pile(stone column)碎石桩碎石桩9.cement-flyash-gravel pile(CFG)水泥粉煤灰碎石桩水泥粉煤灰碎石桩 10.cement mixing method 水泥土搅拌桩水泥土搅拌桩 11.cement column 水泥桩水泥桩 12.lime pile (lime column)石灰桩石灰桩 13.jet grouting 高压喷射注浆法高压喷射注浆法14.rammed-cement-soil pile 夯实水泥土桩法夯实水泥土桩法 15.lime-soil compaction pile 灰土挤密桩灰土挤密桩 lime-soil compacted column 灰土挤密桩灰土挤密桩 lime soil pile 灰土挤密桩灰土挤密桩16.chemical stabilization 化学加固法化学加固法 17.surface compaction 表层压实法表层压实法18.surcharge preloading 超载预压法超载预压法 19.vacuum preloading 真空预压法真空预压法21.geofabric ,geotextile 土工织物土工织物 posite foundation 复合地基复合地基23.reinforcement method 加筋法加筋法 24.dewatering method 降低地下水固结法降低地下水固结法26.expansive ground treatment 膨胀土地基处理膨胀土地基处理27.ground treatment in mountain area 山区地基处理山区地基处理28.collapsible loess treatment 湿陷性黄土地基处理湿陷性黄土地基处理 29.artificial foundation 人工地基人工地基30.natural foundation 天然地基天然地基 31.pillow 褥垫褥垫 32.soft clay ground 软土地基软土地基 33.sand drain 砂井砂井 34.root pile 树根桩树根桩 35.plastic drain 塑料排水带塑料排水带九. 固结consolidation1.Terzzaghi ’s consolidation theory 太沙基固结理论太沙基固结理论2.Barraon ’s consolidation theory 巴隆固结理论巴隆固结理论3.Biot ’s consolidation theory 比奥固结理论比奥固结理论4.over consolidation ration (OCR)超固结比超固结比5.overconsolidation soil 超固结土超固结土6.excess pore water pressure 超孔压力超孔压力7.multi-dimensional consolidation 多维固结多维固结 8.one-dimensional consolidation 一维固结一维固结9.primary consolidation 主固结主固结 10.secondary consolidation 次固结次固结11.degree of consolidation 固结度固结度 15.coefficient of consolidation 固结系数固结系数16.preconsolidation pressure 前期固结压力前期固结压力 17.principle of effective stress 有效应力原理有效应力原理18.consolidation under K0 condition K0固结固结十. 抗剪强度shear strength1.undrained shear strength 不排水抗剪强2.residual strength 残余强度残余强度3.long-term strength 长期强度长期强度4.peak strength 峰值强度峰值强度5.shear strain rate 剪切应变速率剪切应变速率6.dilatation 剪胀剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法剪胀抗剪强度有效应力法8.total stress approach of shear strength 抗剪强度总应力法抗剪强度总应力法 9.Mohr-Coulomb theory 莫尔-库仑理论莫尔-库仑理论 10.angle of internal friction 内摩擦角内摩擦角11.cohesion 粘聚力粘聚力 12.failure criterion 破坏准则破坏准则13.vane strength 十字板抗剪强度十字板抗剪强度 14.unconfined compression 无侧限抗压强度无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线有效应力破坏包线16.effective stress strength parameter 有效应力强度参数有效应力强度参数十一. 本构模型--constitutive model1.elastic model 弹性模型弹性模型2.nonlinear elastic model 非线性弹性模型非线性弹性模型3.elastoplastic model 弹塑性模型弹塑性模型4.viscoelastic model 粘弹性模型粘弹性模型5.boundary surface model 边界面模型边界面模型6.Duncan-Chang model 邓肯-张模型邓肯-张模型7.rigid plastic model 刚塑性模型刚塑性模型 8.cap model 盖帽模型盖帽模型 9.work softening 加工软化加工软化10.work hardening 加工硬化加工硬化 11.Cambridge model 剑桥模型剑桥模型 12.ideal elastoplastic model 理想弹塑性模型理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则莫尔-库仑屈服准则 14.yield surface 屈服面屈服面15.elastic half-space foundation model 弹性半空间地基模型弹性半空间地基模型16.elastic modulus 弹性模量弹性模量 17.Winkler foundation model 文克尔地基模型文克尔地基模型 十二. 地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏冲剪破坏2.general shear failure 整体剪切破化整体剪切破化3.local shear failure 局部剪切破坏局部剪切破坏4.state of limit equilibrium 极限平衡状态极限平衡状态5.critical edge pressure 临塑荷载临塑荷载6.stability of foundation soil 地基稳定性地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力地基容许承载力十三. 土压力--earth pressure1.active earth pressure 主动土压力主动土压力2.passive earth pressure 被动土压力被动土压力3.earth pressure at rest 静止土压力静止土压力4.Coulomb ’s earth pressure theory 库仑土压力理论库仑土压力理论5.Rankine ’s earth pressure theory 朗金土压力理论朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose 休止角休止角 3.safety factor of slope 边坡稳定安全系数边坡稳定安全系数5.Swedish circle method 瑞典圆弧滑动法瑞典圆弧滑动法6.slices method 条分法条分法十五. 挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性挡土墙稳定性2.foundation wall 基础墙基础墙3.counter retaining wall 扶壁式挡土墙扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙悬臂式板桩墙6.gravity retaining wall 重力式挡土墙重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙锚定板挡土墙 8.anchored sheet pile wall 锚定板板桩墙锚定板板桩墙 十六. 板桩结构物--sheet pile structure1.steel sheet pile 钢板桩钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩钢筋混凝土板桩3.steel piles 钢桩钢桩4.wooden sheet pile 木板桩木板桩5.timber piles 木桩木桩十七. 浅基础--shallow foundation1.box foundation 箱型基础箱型基础2.mat(raft) foundation 片筏基础片筏基础3.strip foundation 条形基础条形基础4.spread footing 扩展基础扩展基础pensated foundation 补偿性基础补偿性基础6.bearing stratum 持力层持力层7.rigid foundation 刚性基础刚性基础 8.flexible foundation 柔性基础柔性基础9.embedded depth of foundation 基础埋置深度基础埋置深度 foundation pressure 基底附加应力基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析上部结构-基础-地基共同作用分析 十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度动强度2.wave velocity method 波速法波速法3.material damping 材料阻尼材料阻尼4.geometric damping 几何阻尼几何阻尼5.damping ratio 阻尼比阻尼比6.initial liquefaction 初始液化初始液化7.natural period of soil site 地基固有周期地基固有周期8.dynamic shear modulus of soils 动剪切模量动剪切模量 9.dynamic magnification factor 动力放大因素动力放大因素10.liquefaction strength 抗液化强度抗液化强度 11.dimensionless frequency 无量纲频率无量纲频率12.evaluation of liquefaction 液化势评价液化势评价 13.stress wave in soils 土中应力波土中应力波14.dynamic settlement 振陷(动沉降)振陷(动沉降)十九. 动力机器基础动力机器基础1.equivalent lumped parameter method 等效集总参数法等效集总参数法2.dynamic subgrade reaction method 动基床反力法动基床反力法3.vibration isolation 隔振隔振4.foundation vibration 基础振动基础振动5.elastic half-space theory of foundation vibration 基础振动弹性半空间理论基础振动弹性半空间理论6.allowable amplitude of foundation 基础振动容许振幅基础振动容许振幅7.natural frequency of foundation 基础自振频率基础自振频率二十. 地基基础抗震地基基础抗震1.earthquake engineering 地震工程地震工程2.soil dynamics 土动力学土动力学3.duration of earthquake 地震持续时间地震持续时间4.earthquake response spectrum 地震反应谱地震反应谱5.earthquake intensity 地震烈度地震烈度6.earthquake magnitude 震级震级7.seismic predominant period 地震卓越周期地震卓越周期8.maximum acceleration of earthquake 地震最大加速度地震最大加速度二十一. 室内土工实验室内土工实验1.high pressure consolidation test 高压固结试验高压固结试验2.consolidation under K0 condition K0固结试验固结试验3.falling head permeability 变水头试验变水头试验4.constant head permeability 常水头渗透试验常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD) paction test 击实试验击实试验9.consolidated quick direct shear test 固结快剪试验固结快剪试验 10.quick direct shear test 快剪试验快剪试验11.consolidated drained direct shear test 慢剪试验慢剪试验 12.sieve analysis 筛分析筛分析 13.geotechnical model test 土工模型试验土工模型试验 14.centrifugal model test 离心模型试验离心模型试验15.direct shear apparatus 直剪仪直剪仪 16.direct shear test 直剪试验直剪试验17.direct simple shear test 直接单剪试验直接单剪试验 18.dynamic triaxial test 三轴试验三轴试验19.dynamic simple shear 动单剪动单剪 20.free (resonance )vibration column test 自(共)振柱试验振柱试验 二十二. 原位测试原位测试1.standard penetration test (SPT)标准贯入试验标准贯入试验2.surface wave test (SWT)表面波试验表面波试验3.dynamic penetration test(DPT)动力触探试验动力触探试验4.static cone penetration (SPT) 静力触探试验静力触探试验5.plate loading test 静力荷载试验静力荷载试验teral load test of pile 单桩横向载荷试验单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验单桩竖向荷载试验 8.cross-hole test 跨孔试验跨孔试验9.screw plate test 螺旋板载荷试验螺旋板载荷试验 10.pressuremeter test 旁压试验旁压试验11.light sounding 轻便触探试验轻便触探试验 12.deep settlement measurement 深层沉降观测深层沉降观测13.vane shear test 十字板剪切试验十字板剪切试验 14.field permeability test 现场渗透试验现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测原位孔隙水压量测 16.in-situ soil test 原位试验原位试验。
1 1. 综合类大地工程geotechnical engineering2 1. 综合类反分析法back analysis method3 1. 综合类基础工程foundation engineering4 1. 综合类临界状态土力学critical state soil mechanics5 1. 综合类数值岩土力学numerical geomechanics6 1. 综合类土"soil, earth"7 1. 综合类土动力学soil dynamics8 1. 综合类土力学soil mechanics9 1. 综合类岩土工程geotechnical engineering10 1. 综合类应力路径stress path11 1. 综合类应力路径法stress path method12 2. 工程地质及勘察变质岩metamorphic rock13 2. 工程地质及勘察标准冻深standard frost penetration14 2. 工程地质及勘察冰川沉积glacial deposit15 2. 工程地质及勘察冰积层(台)glacial deposit16 2. 工程地质及勘察残积土"eluvial soil, residual soil"17 2. 工程地质及勘察层理beding18 2. 工程地质及勘察长石feldspar19 2. 工程地质及勘察沉积岩sedimentary rock20 2. 工程地质及勘察承压水confined water21 2. 工程地质及勘察次生矿物secondary mineral22 2. 工程地质及勘察地质年代geological age23 2. 工程地质及勘察地质图geological map24 2. 工程地质及勘察地下水groundwater25 2. 工程地质及勘察断层fault26 2. 工程地质及勘察断裂构造fracture structure27 2. 工程地质及勘察工程地质勘察engineering geological exploration28 2. 工程地质及勘察海积层(台)marine deposit29 2. 工程地质及勘察海相沉积marine deposit30 2. 工程地质及勘察花岗岩granite31 2. 工程地质及勘察滑坡landslide32 2. 工程地质及勘察化石fossil33 2. 工程地质及勘察化学沉积岩chemical sedimentary rock34 2. 工程地质及勘察阶地terrace35 2. 工程地质及勘察节理joint36 2. 工程地质及勘察解理cleavage37 2. 工程地质及勘察喀斯特karst38 2. 工程地质及勘察矿物硬度hardness of minerals39 2. 工程地质及勘察砾岩conglomerate40 2. 工程地质及勘察流滑flow slide41 2. 工程地质及勘察陆相沉积continental sedimentation42 2. 工程地质及勘察泥石流"mud flow, debris flow"43 2. 工程地质及勘察年粘土矿物clay minerals44 2. 工程地质及勘察凝灰岩tuff45 2. 工程地质及勘察牛轭湖ox-bow lake46 2. 工程地质及勘察浅成岩hypabyssal rock47 2. 工程地质及勘察潜水ground water48 2. 工程地质及勘察侵入岩intrusive rock49 2. 工程地质及勘察取土器geotome50 2. 工程地质及勘察砂岩sandstone51 2. 工程地质及勘察砂嘴"spit, sand spit"52 2. 工程地质及勘察山岩压力rock pressure53 2. 工程地质及勘察深成岩plutionic rock54 2. 工程地质及勘察石灰岩limestone55 2. 工程地质及勘察石英quartz56 2. 工程地质及勘察松散堆积物rickle57 2. 工程地质及勘察围限地下水(台)confined ground water58 2. 工程地质及勘察泻湖lagoon59 2. 工程地质及勘察岩爆rock burst60 2. 工程地质及勘察岩层产状attitude of rock61 2. 工程地质及勘察岩浆岩"magmatic rock, igneous rock"62 2. 工程地质及勘察岩脉"dike, dgke"63 2. 工程地质及勘察岩石风化程度degree of rock weathering64 2. 工程地质及勘察岩石构造structure of rock65 2. 工程地质及勘察岩石结构texture of rock66 2. 工程地质及勘察岩体rock mass67 2. 工程地质及勘察页岩shale68 2. 工程地质及勘察原生矿物primary mineral69 2. 工程地质及勘察云母mica70 2. 工程地质及勘察造岩矿物rock-forming mineral71 2. 工程地质及勘察褶皱"fold, folding"72 2. 工程地质及勘察钻孔柱状图bore hole columnar section73 3. 土的分类饱和土saturated soil74 3. 土的分类超固结土overconsolidated soil75 3. 土的分类冲填土dredger fill76 3. 土的分类充重塑土77 3. 土的分类冻土"frozen soil, tjaele"78 3. 土的分类非饱和土unsaturated soil79 3. 土的分类分散性土dispersive soil80 3. 土的分类粉土"silt, mo"81 3. 土的分类粉质粘土silty clay82 3. 土的分类高岭石kaolinite83 3. 土的分类过压密土(台)overconsolidated soil84 3. 土的分类红粘土"red clay, adamic earth"85 3. 土的分类黄土"loess, huangtu(China)"86 3. 土的分类蒙脱石montmorillonite87 3. 土的分类泥炭"peat, bog muck"88 3. 土的分类年粘土clay89 3. 土的分类年粘性土"cohesive soil, clayey soil"90 3. 土的分类膨胀土"expansive soil, swelling soil"91 3. 土的分类欠固结粘土underconsolidated soil92 3. 土的分类区域性土zonal soil93 3. 土的分类人工填土"fill, artificial soil"94 3. 土的分类软粘土"soft clay, mildclay, mickle"95 3. 土的分类砂土sand96 3. 土的分类湿陷性黄土"collapsible loess, slumping loess"97 3. 土的分类素填土plain fill98 3. 土的分类塑性图plasticity chart99 3. 土的分类碎石土"stone, break stone, broken stone, channery, chat, crushed stone, deritus"100 3. 土的分类未压密土(台)underconsolidated clay101 3. 土的分类无粘性土"cohesionless soil, frictional soil, non-cohesive soil"102 3. 土的分类岩石rock103 3. 土的分类伊利土illite104 3. 土的分类有机质土organic soil105 3. 土的分类淤泥"muck, gyttja, mire, slush"106 3. 土的分类淤泥质土mucky soil107 3. 土的分类原状土undisturbed soil108 3. 土的分类杂填土miscellaneous fill109 3. 土的分类正常固结土normally consolidated soil110 3. 土的分类正常压密土(台)normally consolidated soil111 3. 土的分类自重湿陷性黄土self weight collapse loess112 4. 土的物理性质阿太堡界限Atterberg limits113 4. 土的物理性质饱和度degree of saturation114 4. 土的物理性质饱和密度saturated density115 4. 土的物理性质饱和重度saturated unit weight116 4. 土的物理性质比重specific gravity117 4. 土的物理性质稠度consistency118 4. 土的物理性质不均匀系数"coefficient of uniformity, uniformity coefficient"119 4. 土的物理性质触变thixotropy120 4. 土的物理性质单粒结构single-grained structure121 4. 土的物理性质蜂窝结构honeycomb structure122 4. 土的物理性质干重度dry unit weight123 4. 土的物理性质干密度dry density124 4. 土的物理性质塑性指数plasticity index125 4. 土的物理性质含水量"water content, moisture content"126 4. 土的物理性质活性指数127 4. 土的物理性质级配"gradation, grading "128 4. 土的物理性质结合水"bound water, combined water, held water"129 4. 土的物理性质界限含水量Atterberg limits130 4. 土的物理性质颗粒级配"particle size distribution of soils, mechanical composition of soil"131 4. 土的物理性质可塑性plasticity132 4. 土的物理性质孔隙比void ratio133 4. 土的物理性质孔隙率porosity134 4. 土的物理性质粒度"granularity, grainness, grainage"135 4. 土的物理性质粒组"fraction, size fraction"136 4. 土的物理性质毛细管水capillary water137 4. 土的物理性质密度density138 4. 土的物理性质密实度compactionness139 4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil140 4. 土的物理性质平均粒径"mean diameter, average grain diameter"141 4. 土的物理性质曲率系数coefficient of curvature142 4. 土的物理性质三相图"block diagram, skeletal diagram, three phase diagram" 143 4. 土的物理性质三相土tri-phase soil144 4. 土的物理性质湿陷起始应力initial collapse pressure145 4. 土的物理性质湿陷系数coefficient of collapsibility146 4. 土的物理性质缩限shrinkage limit147 4. 土的物理性质土的构造soil texture148 4. 土的物理性质土的结构soil structure149 4. 土的物理性质土粒相对密度specific density of solid particles150 4. 土的物理性质土中气air in soil151 4. 土的物理性质土中水water in soil152 4. 土的物理性质团粒"aggregate, cumularpharolith"153 4. 土的物理性质限定粒径constrained diameter154 4. 土的物理性质相对密度"relative density, density index"155 4. 土的物理性质相对压密度"relative compaction, compacting factor, percent compaction, coefficient of compaction"156 4. 土的物理性质絮状结构flocculent structure157 4. 土的物理性质压密系数coefficient of consolidation158 4. 土的物理性质压缩性compressibility159 4. 土的物理性质液限liquid limit160 4. 土的物理性质液性指数liquidity index161 4. 土的物理性质游离水(台)free water162 4. 土的物理性质有效粒径"effective diameter, effective grain size, effective size " 163 4. 土的物理性质有效密度effective density164 4. 土的物理性质有效重度effective unit weight165 4. 土的物理性质重力密度unit weight166 4. 土的物理性质自由水"free water, gravitational water, groundwater, phreatic water"167 4. 土的物理性质组构fabric168 4. 土的物理性质最大干密度maximum dry density169 4. 土的物理性质最优含水量optimum water content170 5. 渗透性和渗流达西定律Darcy's law171 5. 渗透性和渗流管涌piping172 5. 渗透性和渗流浸润线phreatic line173 5. 渗透性和渗流临界水力梯度critical hydraulic gradient174 5. 渗透性和渗流流函数flow function175 5. 渗透性和渗流流土flowing soil176 5. 渗透性和渗流流网flow net177 5. 渗透性和渗流砂沸sand boiling178 5. 渗透性和渗流渗流seepage179 5. 渗透性和渗流渗流量seepage discharge180 5. 渗透性和渗流渗流速度seepage velocity181 5. 渗透性和渗流渗透力seepage force182 5. 渗透性和渗流渗透破坏seepage failure183 5. 渗透性和渗流渗透系数coefficient of permeability184 5. 渗透性和渗流渗透性permeability185 5. 渗透性和渗流势函数potential function186 5. 渗透性和渗流水力梯度hydraulic gradient187 6. 地基应力和变形变形deformation188 6. 地基应力和变形变形模量modulus of deformation189 6. 地基应力和变形泊松比Poisson's ratio190 6. 地基应力和变形布西涅斯克解Boussinnesq's solution191 6. 地基应力和变形残余变形residual deformation192 6. 地基应力和变形残余孔隙水压力residual pore water pressure193 6. 地基应力和变形超静孔隙水压力excess pore water pressure194 6. 地基应力和变形沉降settlement195 6. 地基应力和变形沉降比settlement ratio196 6. 地基应力和变形次固结沉降secondary consolidation settlement197 6. 地基应力和变形次固结系数coefficient of secondary consolidation198 6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation199 6. 地基应力和变形分层总和法layerwise summation method200 6. 地基应力和变形负孔隙水压力negative pore water pressure201 6. 地基应力和变形附加应力superimposed stress202 6. 地基应力和变形割线模量secant modulus203 6. 地基应力和变形固结沉降consolidation settlement204 6. 地基应力和变形规范沉降计算法settlement calculation by specification205 6. 地基应力和变形回弹变形rebound deformation206 6. 地基应力和变形回弹模量modulus of resilience207 6. 地基应力和变形回弹系数coefficient of resilience208 6. 地基应力和变形回弹指数swelling index209 6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building210 6. 地基应力和变形剪胀dilatation211 6. 地基应力和变形角点法corner-points method212 6. 地基应力和变形孔隙气压力pore air pressure213 6. 地基应力和变形孔隙水压力pore water pressure214 6. 地基应力和变形孔隙压力系数A pore pressure parameter A215 6. 地基应力和变形孔隙压力系数B pore pressure parameter B216 6. 地基应力和变形明德林解Mindlin's solution217 6. 地基应力和变形纽马克感应图Newmark chart218 6. 地基应力和变形切线模量tangent modulus219 6. 地基应力和变形蠕变creep220 6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement221 6. 地基应力和变形瞬时沉降immediate settlement222 6. 地基应力和变形塑性变形plastic deformation223 6. 地基应力和变形谈弹性变形elastic deformation224 6. 地基应力和变形谈弹性模量elastic modulus225 6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium226 6. 地基应力和变形体积变形模量volumetric deformation modulus227 6. 地基应力和变形先期固结压力preconsolidation pressure228 6. 地基应力和变形压缩层229 6. 地基应力和变形压缩模量modulus of compressibility230 6. 地基应力和变形压缩系数coefficient of compressibility231 6. 地基应力和变形压缩性compressibility232 6. 地基应力和变形压缩指数compression index233 6. 地基应力和变形有效应力effective stress234 6. 地基应力和变形自重应力self-weight stress235 6. 地基应力和变形总应力total stress approach of shear strength236 6. 地基应力和变形最终沉降final settlement237 7. 固结巴隆固结理论Barron's consolidation theory238 7. 固结比奥固结理论Biot's consolidation theory239 7. 固结超固结比over-consolidation ratio240 7. 固结超静孔隙水压力excess pore water pressure241 7. 固结次固结secondary consolidation242 7. 固结次压缩(台)secondary consolidatin243 7. 固结单向度压密(台)one-dimensional consolidation244 7. 固结多维固结multi-dimensional consolidation245 7. 固结固结consolidation246 7. 固结固结度degree of consolidation247 7. 固结固结理论theory of consolidation248 7. 固结固结曲线consolidation curve249 7. 固结固结速率rate of consolidation250 7. 固结固结系数coefficient of consolidation251 7. 固结固结压力consolidation pressure252 7. 固结回弹曲线rebound curve253 7. 固结井径比drain spacing ratio254 7. 固结井阻well resistance255 7. 固结曼代尔-克雷尔效应Mandel-Cryer effect256 7. 固结潜变(台)creep257 7. 固结砂井sand drain258 7. 固结砂井地基平均固结度average degree of consolidation of sand-drainedground259 7. 固结时间对数拟合法logrithm of time fitting method260 7. 固结时间因子time factor261 7. 固结太沙基固结理论Terzaghi's consolidation theory262 7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation 263 7. 固结先期固结压力preconsolidation pressure264 7. 固结压密(台)consolidation265 7. 固结压密度(台)degree of consolidation266 7. 固结压缩曲线cpmpression curve267 7. 固结一维固结one dimensional consolidation268 7. 固结有效应力原理principle of effective stress269 7. 固结预压密压力(台)preconsolidation pressure270 7. 固结原始压缩曲线virgin compression curve271 7. 固结再压缩曲线recompression curve272 7. 固结主固结primary consolidation273 7. 固结主压密(台)primary consolidation274 7. 固结准固结压力pseudo-consolidation pressure275 7. 固结K0固结consolidation under K0 condition276 8. 抗剪强度安息角(台)angle of repose277 8. 抗剪强度不排水抗剪强度undrained shear strength278 8. 抗剪强度残余内摩擦角residual angle of internal friction279 8. 抗剪强度残余强度residual strength280 8. 抗剪强度长期强度long-term strength281 8. 抗剪强度单轴抗拉强度uniaxial tension test282 8. 抗剪强度动强度dynamic strength of soils283 8. 抗剪强度峰值强度peak strength284 8. 抗剪强度伏斯列夫参数Hvorslev parameter285 8. 抗剪强度剪切应变速率shear strain rate286 8. 抗剪强度抗剪强度shear strength287 8. 抗剪强度抗剪强度参数shear strength parameter288 8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 289 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength290 8. 抗剪强度库仑方程Coulomb's equation291 8. 抗剪强度摩尔包线Mohr's envelope292 8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory293 8. 抗剪强度内摩擦角angle of internal friction294 8. 抗剪强度年粘聚力cohesion295 8. 抗剪强度破裂角angle of rupture296 8. 抗剪强度破坏准则failure criterion297 8. 抗剪强度十字板抗剪强度vane strength298 8. 抗剪强度无侧限抗压强度unconfined compression strength299 8. 抗剪强度有效内摩擦角effective angle of internal friction300 8. 抗剪强度有效粘聚力effective cohesion intercept301 8. 抗剪强度有效应力破坏包线effective stress failure envelope302 8. 抗剪强度有效应力强度参数effective stress strength parameter303 8. 抗剪强度有效应力原理principle of effective stress304 8. 抗剪强度真内摩擦角true angle internal friction305 8. 抗剪强度真粘聚力true cohesion306 8. 抗剪强度总应力破坏包线total stress failure envelope307 8. 抗剪强度总应力强度参数total stress strength parameter308 9. 本构模型本构模型constitutive model309 9. 本构模型边界面模型boundary surface model310 9. 本构模型层向各向同性体模型cross anisotropic model311 9. 本构模型超弹性模型hyperelastic model312 9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion313 9. 本构模型邓肯-张模型Duncan-Chang model314 9. 本构模型动剪切强度315 9. 本构模型非线性弹性模量nonlinear elastic model316 9. 本构模型盖帽模型cap model317 9. 本构模型刚塑性模型rigid plastic model318 9. 本构模型割线模量secant modulus319 9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion320 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion321 9. 本构模型加工软化work softening322 9. 本构模型加工硬化work hardening323 9. 本构模型加工硬化定律strain harding law324 9. 本构模型剑桥模型Cambridge model325 9. 本构模型柯西弹性模型Cauchy elastic model326 9. 本构模型拉特-邓肯模型Lade-Duncan model327 9. 本构模型拉特屈服准则Lade yield criterion328 9. 本构模型理想弹塑性模型ideal elastoplastic model329 9. 本构模型临界状态弹塑性模型critical state elastoplastic model330 9. 本构模型流变学模型rheological model331 9. 本构模型流动规则flow rule332 9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion333 9. 本构模型内蕴时间塑性模型endochronic plastic model334 9. 本构模型内蕴时间塑性理论endochronic theory335 9. 本构模型年粘弹性模型viscoelastic model336 9. 本构模型切线模量tangent modulus337 9. 本构模型清华弹塑性模型Tsinghua elastoplastic model338 9. 本构模型屈服面yield surface339 9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 340 9. 本构模型双参数地基模型341 9. 本构模型双剪应力屈服模型twin shear stress yield criterion342 9. 本构模型双曲线模型hyperbolic model343 9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion344 9. 本构模型塑性形变理论345 9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix346 9. 本构模型谈弹塑性模型elastoplastic modulus347 9. 本构模型谈弹塑性增量理论incremental elastoplastic theory348 9. 本构模型谈弹性半空间地基模型elastic half-space foundation model349 9. 本构模型谈弹性变形elastic deformation350 9. 本构模型谈弹性模量elastic modulus351 9. 本构模型谈弹性模型elastic model352 9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model353 9. 本构模型文克尔地基模型Winkler foundation model354 9. 本构模型修正剑桥模型modified cambridge model355 9. 本构模型准弹性模型hypoelastic model356 10. 地基承载力冲剪破坏punching shear failure357 10. 地基承载力次层(台)substratum358 10. 地基承载力地基"subgrade, ground, foundation soil"359 10. 地基承载力地基承载力bearing capacity of foundation soil360 10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil361 10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil362 10. 地基承载力地基稳定性stability of foundation soil363 10. 地基承载力汉森地基承载力公式Hansen's ultimate bearing capacity formula 364 10. 地基承载力极限平衡状态state of limit equilibrium365 10. 地基承载力加州承载比(美国)California Bearing Ratio366 10. 地基承载力局部剪切破坏local shear failure367 10. 地基承载力临塑荷载critical edge pressure368 10. 地基承载力梅耶霍夫极限承载力公式Meyerhof's ultimate bearing capacity formula369 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory370 10. 地基承载力斯肯普顿极限承载力公式Skempton's ultimate bearing capacity formula371 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory372 10. 地基承载力魏锡克极限承载力公式Vesic's ultimate bearing capacity formula 373 10. 地基承载力整体剪切破坏general shear failure374 11. 土压力被动土压力passive earth pressure375 11. 土压力被动土压力系数coefficient of passive earth pressure376 11. 土压力极限平衡状态state of limit equilibrium377 11. 土压力静止土压力earth pressue at rest378 11. 土压力静止土压力系数coefficient of earth pressur at rest379 11. 土压力库仑土压力理论Coulomb's earth pressure theory380 11. 土压力库尔曼图解法Culmannn construction381 11. 土压力朗肯土压力理论Rankine's earth pressure theory382 11. 土压力朗肯状态Rankine state383 11. 土压力谈弹性平衡状态state of elastic equilibrium384 11. 土压力土压力earth pressure385 11. 土压力主动土压力active earth pressure386 11. 土压力主动土压力系数coefficient of active earth pressure387 12. 土坡稳定分析安息角(台)angle of repose388 12. 土坡稳定分析毕肖普法Bishop method389 12. 土坡稳定分析边坡稳定安全系数safety factor of slope390 12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method 391 12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices392 12. 土坡稳定分析库尔曼法Culmann method393 12. 土坡稳定分析摩擦圆法friction circle method394 12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method395 12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope396 12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method397 12. 土坡稳定分析斯宾赛法Spencer method398 12. 土坡稳定分析泰勒法Taylor method399 12. 土坡稳定分析条分法slice method400 12. 土坡稳定分析土坡slope401 12. 土坡稳定分析土坡稳定分析slope stability analysis402 12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 403 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 404 12. 土坡稳定分析休止角angle of repose405 12. 土坡稳定分析扬布普遍条分法Janbu general slice method406 12. 土坡稳定分析圆弧分析法circular arc analysis407 13. 土的动力性质比阻尼容量specific gravity capacity408 13. 土的动力性质波的弥散特性dispersion of waves409 13. 土的动力性质波速法wave velocity method410 13. 土的动力性质材料阻尼material damping411 13. 土的动力性质初始液化initial liquefaction412 13. 土的动力性质地基固有周期natural period of soil site413 13. 土的动力性质动剪切模量dynamic shear modulus of soils414 13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq415 13. 土的动力性质动力放大因素dynamic magnification factor416 13. 土的动力性质动力性质dynamic properties of soils417 13. 土的动力性质动强度dynamic strength of soils418 13. 土的动力性质骨架波akeleton waves in soils419 13. 土的动力性质几何阻尼geometric damping420 13. 土的动力性质抗液化强度liquefaction stress421 13. 土的动力性质孔隙流体波fluid wave in soil422 13. 土的动力性质损耗角loss angle423 13. 土的动力性质往返活动性reciprocating activity424 13. 土的动力性质无量纲频率dimensionless frequency425 13. 土的动力性质液化liquefaction426 13. 土的动力性质液化势评价evaluation of liquefaction potential427 13. 土的动力性质液化应力比stress ratio of liquefaction428 13. 土的动力性质应力波stress waves in soils429 13. 土的动力性质振陷dynamic settlement430 13. 土的动力性质阻尼damping of soil431 13. 土的动力性质阻尼比damping ratio432 14. 挡土墙挡土墙retaining wall433 14. 挡土墙挡土墙排水设施434 14. 挡土墙挡土墙稳定性stability of retaining wall435 14. 挡土墙垛式挡土墙436 14. 挡土墙扶垛式挡土墙counterfort retaining wall437 14. 挡土墙后垛墙(台)counterfort retaining wall438 14. 挡土墙基础墙foundation wall439 14. 挡土墙加筋土挡墙reinforced earth bulkhead440 14. 挡土墙锚定板挡土墙anchored plate retaining wall441 14. 挡土墙锚定式板桩墙anchored sheet pile wall442 14. 挡土墙锚杆式挡土墙anchor rod retaining wall443 14. 挡土墙悬壁式板桩墙cantilever sheet pile wall444 14. 挡土墙悬壁式挡土墙cantilever sheet pile wall445 14. 挡土墙重力式挡土墙gravity retaining wall446 15. 板桩结构物板桩sheet pile447 15. 板桩结构物板桩结构sheet pile structure448 15. 板桩结构物钢板桩steel sheet pile449 15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile450 15. 板桩结构物钢桩steel pile451 15. 板桩结构物灌注桩cast-in-place pile452 15. 板桩结构物拉杆tie rod453 15. 板桩结构物锚定式板桩墙anchored sheet pile wall454 15. 板桩结构物锚固技术anchoring455 15. 板桩结构物锚座Anchorage456 15. 板桩结构物木板桩wooden sheet pile457 15. 板桩结构物木桩timber piles458 15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall459 16. 基坑开挖与降水板桩围护sheet pile-braced cuts460 16. 基坑开挖与降水电渗法electro-osmotic drainage461 16. 基坑开挖与降水管涌piping462 16. 基坑开挖与降水基底隆起heave of base463 16. 基坑开挖与降水基坑降水dewatering464 16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit465 16. 基坑开挖与降水基坑围护bracing of foundation pit466 16. 基坑开挖与降水减压井relief well467 16. 基坑开挖与降水降低地下水位法dewatering method468 16. 基坑开挖与降水井点系统well point system469 16. 基坑开挖与降水喷射井点eductor well point470 16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 471 16. 基坑开挖与降水砂沸sand boiling472 16. 基坑开挖与降水深井点deep well point473 16. 基坑开挖与降水真空井点vacuum well point474 16. 基坑开挖与降水支撑围护braced cuts475 17. 浅基础杯形基础476 17. 浅基础补偿性基础compensated foundation477 17. 浅基础持力层bearing stratum478 17. 浅基础次层(台)substratum479 17. 浅基础单独基础individual footing480 17. 浅基础倒梁法inverted beam method481 17. 浅基础刚性角pressure distribution angle of masonary foundation482 17. 浅基础刚性基础rigid foundation483 17. 浅基础高杯口基础484 17. 浅基础基础埋置深度embeded depth of foundation485 17. 浅基础基床系数coefficient of subgrade reaction486 17. 浅基础基底附加应力net foundation pressure487 17. 浅基础交叉条形基础cross strip footing488 17. 浅基础接触压力contact pressure489 17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)490 17. 浅基础壳体基础shell foundation491 17. 浅基础扩展基础spread footing492 17. 浅基础片筏基础mat foundation493 17. 浅基础浅基础shallow foundation494 17. 浅基础墙下条形基础495 17. 浅基础热摩奇金法Zemochkin's method496 17. 浅基础柔性基础flexible foundation497 17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interaction analysis498 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation499 17. 浅基础条形基础strip footing500 17. 浅基础下卧层substratum501 17. 浅基础箱形基础box foundation502 17. 浅基础柱下条形基础503 18. 深基础贝诺托灌注桩Benoto cast-in-place pile504 18. 深基础波动方程分析Wave equation analysis505 18. 深基础场铸桩(台) cast-in-place pile506 18. 深基础沉管灌注桩diving casting cast-in-place pile507 18. 深基础沉井基础open-end caisson foundation508 18. 深基础沉箱基础box caisson foundation509 18. 深基础成孔灌注同步桩synchronous pile510 18. 深基础承台pile caps511 18. 深基础充盈系数fullness coefficient512 18. 深基础单桩承载力bearing capacity of single pile513 18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile514 18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile 515 18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile 516 18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile 517 18. 深基础低桩承台low pile cap518 18. 深基础地下连续墙diaphgram wall519 18. 深基础点承桩(台)end-bearing pile520 18. 深基础动力打桩公式dynamic pile driving formula521 18. 深基础端承桩end-bearing pile522 18. 深基础法兰基灌注桩Franki pile523 18. 深基础负摩擦力negative skin friction of pile524 18. 深基础钢筋混凝土预制桩precast reinforced concrete piles525 18. 深基础钢桩steel pile526 18. 深基础高桩承台high-rise pile cap527 18. 深基础灌注桩cast-in-place pile528 18. 深基础横向载荷桩laterally loaded vertical piles529 18. 深基础护壁泥浆slurry coat method530 18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile531 18. 深基础机挖异形灌注桩532 18. 深基础静力压桩silent piling533 18. 深基础抗拔桩uplift pile534 18. 深基础抗滑桩anti-slide pile535 18. 深基础摩擦桩friction pile536 18. 深基础木桩timber piles537 18. 深基础嵌岩灌注桩piles set into rock538 18. 深基础群桩pile groups539 18. 深基础群桩效率系数efficiency factor of pile groups540 18. 深基础群桩效应efficiency of pile groups541 18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 542 18. 深基础深基础deep foundation543 18. 深基础竖直群桩横向极限承载力544 18. 深基础无桩靴夯扩灌注桩rammed bulb ile545 18. 深基础旋转挤压灌注桩546 18. 深基础桩piles547 18. 深基础桩基动测技术dynamic pile test548 18. 深基础钻孔墩基础drilled-pier foundation549 18. 深基础钻孔扩底灌注桩under-reamed bored pile550 18. 深基础钻孔压注桩starsol enbesol pile551 18. 深基础最后贯入度final set552 19. 地基处理表层压密法surface compaction553 19. 地基处理超载预压surcharge preloading554 19. 地基处理袋装砂井sand wick555 19. 地基处理地工织物"geofabric, geotextile"556 19. 地基处理地基处理"ground treatment, foundation treatment"557 19. 地基处理电动化学灌浆electrochemical grouting558 19. 地基处理电渗法electro-osmotic drainage559 19. 地基处理顶升纠偏法560 19. 地基处理定喷directional jet grouting561 19. 地基处理冻土地基处理frozen foundation improvement562 19. 地基处理短桩处理treatment with short pile563 19. 地基处理堆载预压法preloading564 19. 地基处理粉体喷射深层搅拌法powder deep mixing method565 19. 地基处理复合地基composite foundation566 19. 地基处理干振成孔灌注桩vibratory bored pile567 19. 地基处理高压喷射注浆法jet grounting568 19. 地基处理灌浆材料injection material569 19. 地基处理灌浆法grouting570 19. 地基处理硅化法silicification571 19. 地基处理夯实桩compacting pile572 19. 地基处理化学灌浆chemical grouting573 19. 地基处理换填法cushion574 19. 地基处理灰土桩lime soil pile575 19. 地基处理基础加压纠偏法576 19. 地基处理挤密灌浆compaction grouting577 19. 地基处理挤密桩"compaction pile, compacted column"578 19. 地基处理挤淤法displacement method579 19. 地基处理加筋法reinforcement method580 19. 地基处理加筋土reinforced earth581 19. 地基处理碱液法soda solution grouting582 19. 地基处理浆液深层搅拌法grout deep mixing method583 19. 地基处理降低地下水位法dewatering method584 19. 地基处理纠偏技术585 19. 地基处理坑式托换pit underpinning586 19. 地基处理冷热处理法freezing and heating587 19. 地基处理锚固技术anchoring588 19. 地基处理锚杆静压桩托换anchor pile underpinning589 19. 地基处理排水固结法consolidation590 19. 地基处理膨胀土地基处理expansive foundation treatment591 19. 地基处理劈裂灌浆fracture grouting592 19. 地基处理浅层处理shallow treatment593 19. 地基处理强夯法dynamic compaction594 19. 地基处理人工地基artificial foundation595 19. 地基处理容许灌浆压力allowable grouting pressure596 19. 地基处理褥垫pillow597 19. 地基处理软土地基soft clay ground598 19. 地基处理砂井sand drain599 19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground600 19. 地基处理砂桩sand column601 19. 地基处理山区地基处理foundation treatment in mountain area602 19. 地基处理深层搅拌法deep mixing method603 19. 地基处理渗入性灌浆seep-in grouting604 19. 地基处理湿陷性黄土地基处理collapsible loess treatment605 19. 地基处理石灰系深层搅拌法lime deep mixing method606 19. 地基处理石灰桩"lime column, limepile"607 19. 地基处理树根桩root pile608 19. 地基处理水泥土水泥掺合比cement mixing ratio609 19. 地基处理水泥系深层搅拌法cement deep mixing method610 19. 地基处理水平旋喷horizontal jet grouting611 19. 地基处理塑料排水带plastic drain612 19. 地基处理碎石桩"gravel pile, stone pillar"613 19. 地基处理掏土纠偏法614 19. 地基处理天然地基natural foundation615 19. 地基处理土工聚合物Geopolymer616 19. 地基处理土工织物"geofabric, geotextile"617 19. 地基处理土桩earth pile618 19. 地基处理托换技术underpinning technique619 19. 地基处理外掺剂additive620 19. 地基处理旋喷jet grouting621 19. 地基处理药液灌浆chemical grouting622 19. 地基处理预浸水法presoaking623 19. 地基处理预压法preloading624 19. 地基处理真空预压vacuum preloading625 19. 地基处理振冲法vibroflotation method626 19. 地基处理振冲密实法vibro-compaction627 19. 地基处理振冲碎石桩vibro replacement stone column628 19. 地基处理振冲置换法vibro-replacement629 19. 地基处理振密、挤密法"vibro-densification, compacting"630 19. 地基处理置换率(复合地基)replacement ratio631 19. 地基处理重锤夯实法tamping632 19. 地基处理桩式托换pile underpinning633 19. 地基处理桩土应力比stress ratio634 20. 动力机器基础比阻尼容量specific gravity capacity635 20. 动力机器基础等效集总参数法constant strain rate consolidation test636 20. 动力机器基础地基固有周期natural period of soil site637 20. 动力机器基础动基床反力法dynamic subgrade reaction method638 20. 动力机器基础动力放大因素dynamic magnification factor639 20. 动力机器基础隔振isolation640 20. 动力机器基础基础振动foundation vibration641 20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibration642 20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 643 20. 动力机器基础基础自振频率natural frequency of foundation644 20. 动力机器基础集总参数法lumped parameter method645 20. 动力机器基础吸收系数absorption coefficient646 20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system647 21. 地基基础抗震地基固有周期natural period of soil site648 21. 地基基础抗震地震"earthquake, seism, temblor"649 21. 地基基础抗震地震持续时间duration of earthquake650 21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 651 21. 地基基础抗震地震反应谱earthquake response spectrum652 21. 地基基础抗震地震烈度earthquake intensity653 21. 地基基础抗震地震震级earthquake magnitude654 21. 地基基础抗震地震卓越周期seismic predominant period655 21. 地基基础抗震地震最大加速度maximum acceleration of earthquake656 21. 地基基础抗震动力放大因数dynamic magnification factor657 21. 地基基础抗震对数递减率logrithmic decrement658 21. 地基基础抗震刚性系数coefficient of rigidity659 21. 地基基础抗震吸收系数absorption coefficient660 22. 室内土工试验比重试验specific gravity test661 22. 室内土工试验变水头渗透试验falling head permeability test662 22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test663 22. 室内土工试验常规固结试验routine consolidation test664 22. 室内土工试验常水头渗透试验constant head permeability test665 22. 室内土工试验单剪仪simple shear apparatus666 22. 室内土工试验单轴拉伸试验uniaxial tensile test667 22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test668 22. 室内土工试验等梯度固结试验constant gradient consolidation test669 22. 室内土工试验等应变速率固结试验equivalent lumped parameter method670 22. 室内土工试验反复直剪强度试验repeated direct shear test671 22. 室内土工试验反压饱和法back pressure saturation method672 22. 室内土工试验高压固结试验high pressure consolidation test673 22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test674 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 675 22. 室内土工试验共振柱试验resonant column test676 22. 室内土工试验固结不排水试验consolidated undrained triaxial test677 22. 室内土工试验固结快剪试验consolidated quick direct shear test678 22. 室内土工试验固结排水试验consolidated drained triaxial test679 22. 室内土工试验固结试验consolidation test680 22. 室内土工试验含水量试验water content test681 22. 室内土工试验环剪试验ring shear test682 22. 室内土工试验黄土湿陷试验loess collapsibility test683 22. 室内土工试验击实试验684 22. 室内土工试验界限含水量试验Atterberg limits test685 22. 室内土工试验卡萨格兰德法Casagrande's method686 22. 室内土工试验颗粒分析试验grain size analysis test687 22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test688 22. 室内土工试验快剪试验quick direct shear test689 22. 室内土工试验快速固结试验fast consolidation test690 22. 室内土工试验离心模型试验centrifugal model test。
Unit1 Text A 石油1油,和煤一样,存在于沉积岩中,而且可能由死去很长时间的生物有机体形成。
含有石油的岩石几乎都来源于海洋,所以形成石油的有机物一定是海洋生物,而不是树木。
2 石油,并不是来自于逐渐积聚的木质物质,而可能是来自于逐渐积聚的海洋生物的脂肪物质。
比如浮游生物:大量浮游在海水表层的单细胞生物。
3 有机物的脂肪物质主要由碳氢原子组成,因此并不需要太多的化学变化就可以形成石油。
生物有机体只需在缺氧的条件下沉积到海湾浅水处的淤泥里。
其脂肪不是分解腐烂,而是逐渐积聚,并在深层的淤泥里圈闭起来,进而经过细微的原子重组,最终形成石油。
4 油比水轻,呈液态,会经由上方覆盖的孔隙性岩石向上渗透,在地球上有些地区到达表层,古人将这些表层石油称为沥青、柏油或异庚烷。
在古代和中世纪,这些石油油苗常被看作药品而不是燃料。
5 当然,表层的油苗数量很少。
而石油油藏上方有时覆盖的是非孔隙性岩石。
石油向上渗透抵达该岩石,然后在岩石下方逐渐积聚形成油层。
若在上方的岩石上钻个孔,石油就可以通过该孔向上迁移。
有时压力过大,石油会向高空喷出。
1859年在宾夕法尼亚州,由埃德温·德雷克成功打出第一口井。
6 如果可以发现一个合适的地点(勘探人员已经识别出地下可能圈闭有石油的地层结构),那么就很容易抽取这一液体燃料,这要比派人到地下把大块的固体煤炭砍成小块要容易得多。
而且一旦获得石油,可以通过地上管道运输,而不必像煤一样,由运货车经过繁重的装卸任务来运输。
7 石油便于抽取,易于运输,促进了石油的应用。
石油可以蒸馏成不同的馏分,每种馏分均由特定大小的分子组成,分子越小,该馏分就越容易蒸发。
8 到19世纪下半叶,最重要的石油馏分是由中等大小的分子构成的煤油,它不易蒸发,被用于照明。
9 然而,到19世纪末人们研制出了内燃机。
内燃机是通过在汽缸里将空气与可燃气体混合,产生爆炸来提供动力的。
最便利的可燃气体是汽油——石油的又一馏分,由小分子构成,容易蒸发。
土木工程专业英语词汇(整理版)第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics精品文库43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83 文献literature84 国际标准刊号ISSN International Standard Serial Number精品文库85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量精品文库11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会精品文库四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管精品文库29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theory 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics精品文库41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical精品文库83 文献literature84 国际标准刊号ISSN International Standard Serial Number85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基精品文库9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度精品文库45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降精品文库27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theo ry 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验。
《土木工程专业英语》教学大纲一课程简介课程编号:课程名称:土木工程专业英语(Professional English for Civil Engineering)课程类型:专业基础课学时:45 学分:3开课学期:6开课对象:土木工程专业学生先修课程:基础英语,土木工程概论或建筑概论,建筑材料,混凝土结构等。
使用教材:土木工程专业英语(上),苏小卒主编,同济大学出版社,2000.8二课程性质、目的与任务本课程是土木专业本科生的专业基础(必修)课,是为对阅读土木工程及工程管理专业英文原版书籍和文章感兴趣的学生所开设。
本课程的基本任务,是针对大学英语专业阅读阶段教学的薄弱环节,旨在进一步提高学生阅读理解能力和综合分析的能力、熟悉专业词汇、开阔视野和思路、了解科技文体、进一步提高学生运用英语的能力,以满足日益增长的国际科技交流与合作的需求。
三教学基本内容与基本要求本课程总的基本要求是:通过本课程的学习,帮助学生完成从大学基础英语阅读阶段到专业英语阅读阶段的过渡,使学生在普通外语的学习基础上,进一步学习和提高阅读和翻译一般难度的专业英语书籍和科技资料,并能以英语为工具,获取专业所需要的信息和具有在一定的专业文章写作能力。
对学生能力培养的要求:阅读速度100—120词/分钟;理解正确程度70~80%;同时具备听、说和写作专业论文的能力。
各章节内容及要求如下:1.Civil Engineering(土木工程)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。
2.Performance Criteria and Management(工作准则和管理)通过简单介绍,使学生了解这篇文章中的内容概要,熟悉科技类文献常用句型。
3.Structural Materials(建筑材料)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。
4.Mechanics of Materials(材料力学)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。
Unsaturated Soil Mechanics in Engineering PracticeDelwyn G.Fredlund1Abstract:Unsaturated soil mechanics has rapidly become a part of geotechnical engineering practice as a result of solutions that have emerged to a number of key problems͑or challenges͒.The solutions have emerged from numerous research studies focusing on issues that have a hindrance to the usage of unsaturated soil mechanics.The primary challenges to the implementation of unsaturated soil mechanics can be stated as follows:͑1͒The need to understand the fundamental,theoretical behavior of an unsaturated soil;͑2͒the formulation of suitable constitutive equations and the testing for uniqueness of proposed constitutive relationships;͑3͒the ability to formulate and solve one or more nonlinear partial differential equations using numerical methods;͑4͒the determination of indirect techniques for the estimation of unsaturated soil property functions,and͑5͒in situ and laboratory devices for the measurement of a wide range of soil suctions.This paper explains the nature of each of the previous challenges and describes the solutions that have emerged from research puter technology has played a major role in achieving practical geotechnical engineering puter technology has played an important role with regard to the estimation of unsaturated soil property functions and the solution of nonlinear partial differential equations.Breakthroughs in the in situ and laboratory measurement of soil suction are allowing unsaturated soil theories and formulations to be verified through use of the“observational method.”DOI:10.1061/͑ASCE͒1090-0241͑2006͒132:3͑286͒CE Database subject headings:Unsaturated soils;Soil mechanics;Geotechnical engineering;Research.PreambleKarl Terzaghi is remembered most for providing the“effective stress”variable,͑−u w͒,that became the key to describing the mechanical behavior of saturated soils;where=total stress and u w=pore–water pressure.The effective stress variable became the unifying discovery that elevated geotechnical engineering to a science basis and context.As a graduate student I was asked to purchase and study the textbook,Theoretical Soil Mechanics,by Karl Terzaghi͑1943͒.I had already selected the subject of unsaturated soil behavior as myfield of research and was surprised tofind considerable infor-mation on this subject in this textbook.Two of the19chapters of the textbook contribute extensively toward understanding unsat-urated soil behavior;namely,Chapter14on“Capillary Forces,”and Chapter15,on“Mechanics of Drainage”͑with special atten-tion to drainage by desiccation͒.These chapters emphasize the importance of the unsaturated soil portion of the profile and in particular provide an insight into the fundamental nature and importance of the air–water interface͑i.e.,contractile skin͒. Considerable attention was given to soils with negative pore–water pressures.Fig.1shows an earth dam illustrating how waterflowed above the phreatic line through the capillary zone ͑Terzaghi1943͒.The contributions of Karl Terzaghi toward unsaturated soil behavior are truly commendable and still worthy of study.Subsequent reference to the textbook Theoretical Soil Mechan-ics during my career,has caused me to ask the question,“Why did unsaturated soil mechanics not emerge simultaneously with saturated soil mechanics?”Pondering this question has led me to realize that there were several theoretical and practical challenges associated with unsaturated soil behavior that needed further re-search.Unsaturated soil mechanics would need to wait several decades before it would take on the character of a science that could be used in routine geotechnical engineering practice.I am not aware that Karl Terzaghi ever proposed a special description of the stress state in an unsaturated soil;however, his contemporary,Biot͑1941͒,was one of thefirst to suggest the use of two independent stress state variables when formulating the theory of consolidation for an unsaturated soil.This paper will review a series of key theoretical extensions that were required for a more thorough representation and formulation of unsaturated soil behavior.Research within the agriculture-related disciplines strongly influenced the physical and hydraulic model that Terzaghi developed for soil mechanics͑Baver1940͒.With time,further significant contributions have come from the agriculture-related disciplines͑i.e.,soil science,soil physics,and agronomy͒to geo-technical engineering.It can be said that geotechnical engineers tended to test soils by applying total stresses to soils through the use of oedometers and triaxial cells.On the other hand, agriculture-related counterparts tended to apply stresses to the water phase͑i.e.,tensions͒through use of pressure plate cells. Eventually,geotechnical engineers would realize the wealth of information that had accumulated in the agriculture-related disciplines;information of value to geotechnical engineering. Careful consideration would need to be given to the test proce-dures and testing techniques when transferring the technology into geotechnical engineering.1Professor Emeritus,Dept.of Civil and Geological Engineering,Univ. of Saskatchewan,Saskatoon SK,Canada S7N5A9.Note.Discussion open until August1,2006.Separate discussions must be submitted for individual papers.To extend the closing date by one month,a written request must befiled with the ASCE Managing Editor.The manuscript for this paper was submitted for review and pos-sible publication on February16,2005;approved on May1,2005.This paper is part of the Journal of Geotechnical and Geoenvironmental Engineering,V ol.132,No.3,March1,2006.©ASCE,ISSN1090-0241/ 2006/3-286–321/$25.00.An attempt is made in this paper to give the theory of unsat-urated soil mechanics its rightful position.Terzaghi ͑1943͒stated that “the theories of soil mechanics provide us only with the working hypothesis,because our knowledge of the average physical soil properties of the subsoil and the orientation of the boundaries between the individual strata is always incomplete and often utterly inadequate.”Terzaghi ͑1943͒also emphasized the importance of clearly stating all assumptions upon which the theories are based and pointed out that almost every “alleged contradiction between theory and practice can be traced back to some misconception regarding the conditions for the validity of the theory.”And so his advice from the early days of soil mechan-ics is extremely relevant as the theories for unsaturated soil be-havior are brought to the “implementation”stage in geotechnical engineering.IntroductionFundamental principles pivotal to understanding the behavior of saturated soils emerged with the concept of effective stress in the 1930s ͑Terzaghi 1943͒.There appeared to be considerable interest in the behavior of unsaturated soil at the First International Conference on Soil Mechanics and Foundation Engineering in 1936,but the fundamental principles required for formulating unsaturated soil mechanics would take more than another 30years to be forthcoming.Eventually,a theoretically based set of stress state variables for an unsaturated soil would be proposed within the context of multiphase continuum mechanics ͑Fredlund and Morgenstern 1977͒.There have been a number of challenges ͑i.e.,problems or difficulties ͒that have slowed the development and implement-ation of unsaturated soil mechanics ͑Fredlund 2000͒.Each of these challenges has provided an opportunity to develop new and innovative solutions that allow unsaturated soil mechanics to become part of geotechnical engineering practice.It has been necessary for geotechnical engineers to adopt a new “mindset”toward soil property assessment for unsaturated soils ͑Fredlund et al.1996͒.The primary objective of this paper is to illustrate the progres-sion from the development of theories and formulations to practical engineering protocols for a variety of unsaturated soil mechanics problems ͑e.g.,seepage,shear strength,and volume change ͒.The use of “direct”and “indirect”means of characteriz-ing unsaturated soil property functions has been central to the emergence of unsaturated soil mechanics.The key challenges faced in the development of unsaturated soil mechanics are described and research findings are presented that have made it possible to implement unsaturated soil mechanics into geotech-nical engineering practice.A series of unsaturated soil mechanics problems are presented to illustrate the procedures and methodology required to obtain meaningful solutions to plete and detailed case histories will not be presented but sufficient information is pro-vided to illustrate the types of engineering solutions that are feasible.Gradual Emergence of Unsaturated Soil Mechanics Experimental laboratory studies in the late 1950s ͑Bishop et al.1960͒showed that it was possible to independently measure ͑or control ͒the pore–water and pore–air pressures through the use of high air entry ceramic boratory studies were reported over the next decade that revealed fundamental differences be-tween the behavior of saturated and unsaturated soils.The studies also revealed that there were significant challenges that needed to be addressed.The laboratory testing of unsaturated soils proved to be time consuming and demanding from a technique standpoint.The usual focus on soil property constants was diverted toward the study of nonlinear unsaturated soil property functions.The increased complexity of unsaturated soil behavior extended from the laboratory to theoretical formulations and solutions.Originally,there was a search for a single-valued effective stress equation for unsaturated soils but by the late 1960s,there was increasing awareness that the use of two independent stress state variables would provide an approach more consistent with the principles of continuum mechanics ͑Fredlund and Morgenstern 1977͒.The 1970s was a period when constitutive relations for the classic areas of soil mechanics were proposed and studied with respect to uniqueness ͑Fredlund and Rahardjo 1993͒.Initially,constitutive behavior focused primarily on the study of seepage,shear strength,and volume change problems.Gradually it became apparent that the behavior of unsaturated soils could be viewed as a natural extension of saturated soil behavior ͑Fredlund and Morgenstern 1976͒.Later,numerous studies attempted to combine volume change and shear strength in the form of elasto-plastic models that were an extension from the saturated soil range to unsaturated soil conditions ͑Alonso et al.1990;Wheeler and Sivakumar 1995;Blatz and Graham 2003͒.The study of con-taminant transport and thermal soil properties for unsaturated soils also took on the form of nonlinear soil property functions ͑Newman 1996;Lim et al.1998;Pentland et al.2001͒.The 1980s was a period when boundary-value problems were solved using numerical,finite element,and finite difference mod-eling methods.Digital computers were required and iterative,numerical solutions became the norm.The challenge was to find techniques that would ensure convergence of highly nonlinear partial differential equations on a routine basis ͑Thieu et al.2001;Fig.1.An earth dam shown by Terzaghi ͑1943͒illustrating that water can flow above the phreatic line through the capillary zone ͑reprinted with permission of ErLC Terzaghi ͒Fredlund et al.2002a,b,c͒.Saturated–unsaturated seepage model-ing became thefirst of the unsaturated soils problems to comeinto common engineering practice.Concern for stewardshiptoward the environment further promoted interest in seepage andgeoenvironmental,advection-dispersion modeling.The1990s and beyond have become a period where therehas been an emphasis on the implementation of unsaturated soilmechanics into routine geotechnical engineering practice.A seriesof international conferences have been dedicated to the exchangeof information on the engineering behavior of unsaturated soilsand it has become apparent that the time had come for increasedusage of unsaturated soil mechanics in engineering practice.Implementation can be defined as“a unique and important stepthat brings theories and analytical solutions into engineeringpractice”͑Fredlund2000͒.There are several stages in the devel-opment of a science that must be brought together in an efficientand appropriate manner in order for implementation to becomea reality.The primary stages suggested by Fredlund͑2000͒,areas follows:͑1͒State variable;͑2͒constitutive;͑3͒formulation;͑4͒solution;͑5͒design;͑6͒verification and monitoring;and ͑7͒implementation.Research is required for all of the above-mentioned stages in order that practical,efficient,cost-effective,and appropriate technologies emerge.Primary Challenges to the Implementationof Unsaturated Soil MechanicsThere are a number of primary challenges that needed to beaddressed before unsaturated soil mechanics could become a partof routine geotechnical engineering practice.Several of thechallenges are identified here.Each challenge has an associatedsolution that is further developed throughout the manuscript.Insome cases it has been necessary to adopt a new approach tosolving problems involving unsaturated soils.In this paper,anattempt is made to describe the techniques and procedures thathave been used to overcome the obstacles to implementation;thuspreparing the way for more widespread application of unsaturatedsoil mechanics.Challenge1:The development of a theoretically sound basisfor describing the physical behavior of unsaturated soils,startingwith appropriate state variables.Solution1:The adoption of independent stress state variablesbased on multiphase continuum mechanics has formed the basisfor describing the stress state independent of soil properties.The stress state variables can then be used to develop suitableconstitutive models.Challenge2:Constitutive relations commonly accepted forsaturated soil behavior needed to be extended to also describeunsaturated soil behavior.Solution2:Gradually it became apparent that all constitutiverelations for saturated soil behavior could be extended to embraceunsaturated soil behavior and thereby form a smooth transitionbetween saturated and unsaturated soil conditions.In each case,research studies needed to be undertaken to verify the uniqueness of the extended constitutive relations.Challenge3:Nonlinearity associated with the partial differen-tial equations formulated for unsaturated soil behavior resulted in iterative procedures in order to arrive at a solution.The conver-gence of highly nonlinear partial differential equations proved to be a serious challenge.Solution3:Computer solutions for numerical models have em-braced automatic mesh generation,automatic mesh optimization,and automatic mesh refinement͓known as adaptive grid refine-ment͑AGR͔͒,and these techniques have proved to be of greatassistance in obtaining convergence when solving nonlinear par-tial differential equations.Solution procedures were forthcomingfrom the mathematics and computer science disciplines.Challenge4:Greatly increased costs and time were required for the testing of unsaturated soils.As well,laboratory equipmentfor measuring unsaturated soil properties has proven to be tech-nically demanding and quite complex to operate.Solution4:Indirect,estimation procedures for the character-ization of unsaturated soil property functions were related to thesoil–water characteristic curve͑SWCC͒and the saturated soilproperties.Several estimation procedures have emerged for eachof the unsaturated soil property functions.The computer has alsoplayed an important role in computing unsaturated soil propertyfunctions.Challenge5:Highly negative pore–water pressures͑i.e., matric suctions greater than100kPa͒,have proven to be difficultto measure,particularly in thefield.Solution5:New instrumentation such as the direct,high suc-tion tensiometer,and the indirect thermal conductivity suctionsensor,have provided new measurement techniques for thelaboratory and thefield.Other measurement systems are alsoshowing promise.These devices allow suctions to be measuredover a considerable range of matric suctions.The null type,axis-translation technique remains a laboratory reference procedure forthe measurement of matric suction.Challenge6:New technologies such as those proposed for unsaturated soil mechanics are not always easy to incorporate intoengineering practice.The implementation of unsaturated soilmechanicsfindings into engineering practice has proven to be achallenge.Solution6:Educational materials and visualization systems have been assembled to assist in effective technology transfer ͑Fredlund and Fredlund2003͒.These are a part of teaching and demonstrating the concepts of unsaturated soil behavior;information that needs to be incorporated into the undergraduateand graduate curriculum at universities.Protocols for engineeringpractice are being developed for all application areas of geotech-nical engineering.Changes are necessary in geotechnical engineering practicein order for unsaturated soil mechanics to be implemented.Eachchallenge has been met with a definitive and practical solution.In the case of the determination of unsaturated soil propertyfunctions a significant paradigm shift has been required͑Houston2002͒.The new approaches that have been developed appearto provide cost-effective procedures for the determination ofunsaturated soil property functions for all classes of problems ͑Fredlund2002͒.Laboratory and Field Visualizationof Varying Degrees of SaturationClimatic conditions around the world range from very humid to arid,and dry.Climatic classification is based on the average net moistureflux at the ground surface͓i.e.,precipitation minus potential evaporation͑Thornthwaite1948͔͒.The ground surface climate is a prime factor controlling the depth to the groundwater table and therefore,the thickness of the unsaturated soil zone ͑Fig.2͒.The zone between the ground surface and the water table is generally referred to as the unsaturated soil zone.This is some-what of a misnomer since the capillary fringe is essentially saturated.A more correct term for the entire zone above the water table is the vadose zone ͑Bouwer 1978͒.The entire zone sub-jected to negative pore–water pressures is commonly referred to as the unsaturated zone in geotechnical engineering.The unsaturated zone becomes the transition between the water in the atmosphere and the groundwater ͑i.e.,positive pore–water pressure zone ͒.The pore–water pressures in the unsaturated soil zone can range from zero at the water table to a maximum tension of approximately 1,000,000kPa ͑i.e.,soil suction of 1,000,000kPa ͒under dry soil conditions ͑Croney et al.1958͒.The water degree of saturation of the soil can range from 100%to zero.The changes in soil suction result in distinct zones of saturation.The zones of saturation have been defined in situ as well as in the laboratory ͓i.e.,through the soil–water characteristic curve ͑Fig.3͔͒.Table 1illustrates the terminologies commonly used to describe saturation conditions in situ and in the laboratory.Soils in situ start at saturation at the water table and tend to become unsaturated toward the ground surface.Soils near to the ground surface are often classified as “prob-lematic”soils.It is the changes in the negative pore–water pressures that can result in adverse changes in shear strength and volume mon problematic soils are:expansive orswelling soils,collapsible soils,and residual soils.Any of the above-mentioned soils,as well as other soil types,can also be compacted,once again giving rise to a material with negative pore–water pressures.Unsaturated Soil as a Four-Phase MixtureAn unsaturated soil is commonly referred to as a three-phase mixture ͑i.e.,solids,air,and water ͒but there is strong justification for including a fourth independent phase called the contractile skin or the air–water interface.The contractile skin acts like a thin membrane interwoven throughout the voids of the soil,acting as a partition between the air and water phases.It is the interaction of the contractile skin with the soil structure that causes an unsatur-ated soil to change in volume and shear strength.The unsaturated soil properties change in response to the position of the contrac-tile skin ͑i.e.,water degree of saturation ͒.It is important to viewTable parison of Terminology Used to Describe In Situ and Laboratory Degrees of Saturation In situ zones of saturation Zones of saturation on the soil-watercharacteristic curveCapillary fringeBoundary effect Two phase fluid flowTransition Dry ͑vapor transport of water ͒ResidualFig.2.Illustration of the unsaturated soil zone ͑vadose zone ͒on a regional and localbasisFig. 3.Illustration of the in situ zones of desaturation defined by a soil–water characteristic curvean unsaturated soil as a four-phase mixture for purposes of stress analysis,within the context of multiphase continuum mechanics.Consequently,an unsaturated soil has two phases that flow under the influence of a stress gradient ͑i.e.,air and water ͒and two phases that come to equilibrium under the influence of a stress gradient ͑i.e.,soil particles forming a structural arrangement and the contractile skin forming a partition between the fluid phases ͒͑Fredlund and Rahardjo 1993͒.The contractile skin has physical properties differing from the contiguous air and water phases and interacts with the soil structure to influence soil behavior.The contractile skin can be considered as part of the water phase with regard to changes in volume–mass soil properties but must be considered as an independent phase when describing the stress state and phenom-enological behavior of an unsaturated soil.Terzaghi ͑1943͒emphasized the important role played by surface tension effects associated with the air–water interface ͑i.e.,contractile skin ͒.Distinctive Features of the Contractile Skin :Numerous research studies on the nature of the contractile skin point toward its important,independent role in unsaturated soil mechanics.Terzaghi ͑1943͒suggested that the contractile skin might be in the order of 10−6mm in thickness.More recent studies suggest that the thickness of the contractile skin is in the order of 1.5–2water molecular diameters ͑i.e.,5Å͒͑Israelachvili 1991;Townsend and Rice 1991͒.A surface tension of approximately 75mN/m translates into a unit stress in the order of 140,000kPa.Lyklema ͑2000͒showed that the distribution of water molecules across the contractile skin takes the form of a hyperbolic tangent function as shown in Fig.4.Properties of the contractile skin are different from that of ordinary water and have a water molecular structure similar to that of ice ͑Derjaguin and Churaev 1981;Matsumoto and Kataoka 1988͒.The Young–Laplace and Kelvin equations describe fundamen-tal behavioral aspects of the contractile skin but both equations have limitations.The Young–Laplace equation is not able to explain why an air bubble can gradually dissolve in water without any apparent difference between the air pressure and the water pressure.The validity of the Kelvin equation becomes suspect as the radius of curvature reduces to the molecular scale ͑Adamson and Gast 1997;Christenson 1988͒.Terzaghi ͑1943͒recognized the limitations of the Kelvin equa-tion and stated that if the radius of a gas bubble “approaches zero,the gas pressure …approaches infinity.However,within the range of molecular dimensions,”the equation “loses its validity.”Although Terzaghi recognized this limitation,later researchers would attempt to incorporate the Kelvin equation into formula-tions for the compressibility of air–water mixtures,to no avail ͑Schuurman 1966͒.The details of the laws describing the behav-ior of the contractile skin are not fully understood but the contractile skin is known to play a dominant role in unsaturated soil behavior.Terzaghi ͑1943͒stated that surface tension “is valid regardless of the physical causes.…The views concerning the molecular mechanism which produces the surface tension are still controversial.Yet the existence of the surface film was established during the last century beyond any doubt.”Designation of the Stress StateState variables can be defined within the context of continuum mechanics as variables independent of soil properties required for the characterization of a system ͑Fung 1965͒.The stress state variables associated with an unsaturated soil are related to equilibrium considerations ͑i.e.,conservation of energy ͒of a multiphase system.The stress state variables form one or more tensors ͑i.e.,3ϫ3matrix ͒because of the three-dimensional Cartesian coordinate system generally used for the formulation of engineering problems ͑i.e.,a three-dimensional world ͒.The description of the state variables for an unsaturated soil becomes the fundamental building block for an applied engineering science.The universal acceptance of unsaturated soil mechanics depends largely upon how satisfactorily the stress state variables can be defined,justified,and measured.Historically,it has been the lack of certainty regarding the description of the stress state for an unsaturated soil that has been largely responsible for the slow emergence of unsaturated soil mechanics.Biot ͑1941͒was probably the first to suggest the need for two independent stress state variables for an unsaturated soil.This is evidenced from the stress versus deformation relations used in the derivation of the consolidation theory for unsaturated soils.Other researchers began recognizing the need to use two independent stress state variables for an unsaturated soil as early as the 1950s.This realization can be observed through the three-dimensional plots of the volume change constitutive surfaces for an unsatur-ated soil ͑Bishop and Blight 1963;Matyas and Radakrishna 1968͒.It was during the 1970s that a theoretical basis and justi-fication was provided for the use of two independent stress state variables ͑Fredlund and Morgenstern 1977͒.The justification was based on the superposition of coincident equilibrium stress fields for each of the phases of a multiphase system,within the context of continuum mechanics.From a continuum mechanics stand-point,the representative element volume ͑REV ͒must be suffi-ciently large such that the density function associated with each phase is a constant.It should be noted that it is not necessary for all phases to be continuous but rather that the REV statistically represents the multiphase system.Although the stress analysis had little direct application in solving practical problems,it helped unite researchers on how best to describe the stress state of an unsaturated soil.Three possible combinations of independent stress state vari-ables were shown to be justifiable from the theoretical continuum mechanics analysis.However,it was the net normal stress ͓i.e.,−u a ,where =total net normal stress and u a =pore–air pressure ͔and the matric suction ͑i.e.,u a −u w ,where u w =pore–water pres-sure ͒combination of stress state variables that proved to be the easiest to apply in engineering practice.The net normal stress primarily embraces the activities of humans which aredominatedFig.4.Density distribution across the contractile skin reprinted from Liquid–Fluid Interface ,V ol.3of Fundamental of Interface and Colloid Science,J.Lyklema ͑2000͒,with permission from Elsevierby applying and removing total stress͑i.e.,excavations,fills,and applied loads͒.The matric suction stress state variable primarily embraces the impact of the climatic environment above the ground surface.The stress state for an unsaturated soil can be defined in the form of two independent stress tensors͑Fredlund and Morgenstern1977͒.There are three sets of possible stress tensors, of which only two are independent.The stress state variables most often used in the formulation of unsaturated soil problems form the following two tensors:΄͑x−u a͒yxzxxy͑y−u a͒zyxzyz͑z−u a͒΅͑1͒and΄͑u a−u w͒000͑u a−u w͒000͑u a−u w͒΅͑2͒wherex,y,andz=total stresses in the x,y,and z directions, respectively;u w=pore–water pressure;and u a=pore–air pressure.The stress tensors contain surface tractions that can be placed on a cube to represent the stress state at a point͑Fig.5͒.The stress tensors provide a fundamental description of the stress state for an unsaturated soil.It has also been shown͑Barbour and Fredlund 1989͒that osmotic suction forms another independent stress tensor when there are changes in salt content of either a saturated or unsaturated soil.All the stress state variables are independent of soil properties and become the“keys”to describing physical phenomenological behavior,as well as defining functional relationships for unsaturated soil properties.The inclusion of soil parameters at the stress state level is unacceptable within the context of continuum mechanics.As a soil approaches saturation,the pore–air pressure,u a, becomes equal to the pore–water pressure,u w.At this point,the two independent stress tensors revert to a single stress tensor that can be used to describe the behavior of saturated soils:΄͑x−u w͒yxzxxy͑y−u w͒zyxzyz͑z−u w͒΅͑3͒Variations in the Description of Stress StateStress tensors containing stress state variables form the basis for developing a behavioral science for particulate materials. The stress tensors make it possible to writefirst,second,and third stress invariants for each stress tensor.The stress invariants associated with thefirst and second stress tensors are shown in Fredlund and Rahardjo͑1993͒.It is not imperative that the stress invariants be used in developing constitutive models;however, the stress invariants are fundamental in the sense that all three Cartesian coordinates are taken into consideration.There have been numerous equations proposed that relate some of the stress variables to other stress variables through the inclusion of soil properties.It is important to differentiate be-tween the role of these equations and the description of the stress state͑at a point͒in an unsaturated soil.It is also important to understand the role that these equations might play in subsequent formulations for practical engineering problems.The oldest and best known single-valued relationship that has been proposed is Bishop’s effective stress equation͑Bishop 1959͒:Ј=͑−u a͒+͑u a−u w͒͑4͒whereЈ=effective stress and=soil parameter related to water degree of saturation,and ranging from0to1.Bishop’s equation relates net normal stress to matric suction through the incorporation of a soil property,.Bishop’s equation does not qualify as a fundamental description of stress state in an unsaturated soil since it is constitutive in character.It would be erroneous to elevate this equation to the status of stress state for an unsaturated soil.Morgenstern͑1979͒explained the limitations of Bishop’s effective stress equation as follows:•Bishop’s effective stress equation“…proved to have little impact on practice.The parameter,,when determined for volume change behavior was found to differ when determined for shear strength.While originally thought to be a function of degree of saturation and hence bounded by0and1,experi-ments were conducted in whichwas found to go beyond these bounds.•The effective stress is a stress variable and hence related to equilibrium considerations alone.”Morgenstern͑1979͒went on to explain:•Bishop’s effective stress equation“…contains the parameter,,that bears on constitutive behavior.This parameter is found by assuming that the behavior of a soil can be expressed uniquely in terms of a single effective stress variable and by matching unsaturated soil behavior with saturated soil be-havior in order to calculate.Normally,we link equilibrium considerations to deformations through constitutive behavior and do not introduce constitutive behavior into the stress state.Another form of Bishop’s equation has been used by several researchers in the development of elastoplastic models͑Jommi 2000;Wheeler et al.2003;Gallipoli et al.2003͒.ij*=ij−͓S w u w+͑1−S w͒u a͔␦ij͑5͒whereij=total stress tensor;␦ij=Kroneker delta or substitutiontensor;ij*=Bishop’s average soil skeleton stress;and Sw=water degree of saturation.In this case,the water degree of saturation has been substituted for thesoil parameter.The above-mentioned equation is once again empirical and constitutive in character.Consequently,the Fig.5.Definition of stress state at a point in an unsaturated soil。
Unit 7 Soil Mechanics
(土力学)
Grain size(颗粒尺寸)is the basis of soil mechanics, since it is this which decides whether a soil is frictional(有摩阻力的)or cohesive(有粘结力的), a sand or a clay (粘土). Starting with the largest sizes, boulders(漂石)are larger than 10 cm, cobbles (卵石)are from 5 cm to 10 cm, gravel(砾石)or ballast(碎石)is from about 5 cm to 5 mm, grit(粗砂)is from about 5 mm to 2 mm, sand is from 2 mm to 0.06 mm. All these soils are frictional, being coarse(粗糙的)and thus non-cohesive. Their stability depends on their internal friction. For the cohesive or non-frictional soils the two main internationally accepted size limits(范围)are: silt(淤泥)from 0.02 mm to 0.002 mm, and clay for all finer material. There are, of course, many silty clays(粉质粘土)and clayey silts(粘质粉土).
Every large civil engineering job starts with a soil mechanics survey(地基勘测)in its early stage. The first visit on foot(踏勘)will show whether the site might be suitable, in other words, whether money should be spent on sending soil-sampling equipment out to it. The soil samples and the laboratory results obtained from the triaxial test, shear test and so on will show at what depth the soil is likely to be strong enough to take the required load. For a masonry or steel structure, this is where soil mechanics survey will end, having rarely cost more than 2 percent of the structure cost.
Generally, the strength of a soil increases with depth. But it can happen that it becomes weaker with depth. Therefore, in choosing the foundation pressure(地基压力)and level(深度)for this sort of soil, a knowledge of soil mechanics is essential, since this will give an idea of(对..有所了解)the likely settlements.
There are, however, several other causes of settlement apart from consolidation(固结)due to load. These causes are incalculable(不可计算的)and must be carefully guarded against(预防). They include frost(霜冻)action, chemical change in the soil, underground erosion(侵蚀)by flowing water, reduction of the ground water level, nearby construction of tunnels(隧道)or vibrating machinery(机械)such as vehicles.
Static load can cause elastic (temporary) or plastic (permanent)settlement, consolidation settlement being permanent. However, when plastic flow(塑性流)is mentioned in English, it generally means the failure of a soil by overload in shear. Consolidation settlement occurs mainly in clays or silts.
From dynamic load alone the commonest settlements are found in sands or gravels, caused by traffic or other vibration, pile driving(打桩)or other earth shocks(冲击). A drop(降低)in the ground water level will often cause the soil to shrink and a rise may cause expansion(膨胀)of the soil. Ground water is lowered by the drainage(排水)which can be caused by any deep excavation(深开挖). The shrinkage which can occur with drying(干燥)is well shown by the clay underlying Mexico City, a volcanic ash. After seven weeks drying this clay shrinks to 6.4 percent of its initial volume. It is an unusual clay with the very high voids ratio(孔隙比)of 93.6 / 6.4 = 14.6.
Underground erosion is the removal of solids(固体颗粒的流失), usually fines(细颗粒), from the soil by the flow of underground water. The solids can be removed as solids(固态)or in solution(溶解状态), though only a few rocks are soluble enough(充分溶解)to be removed in this way. Rock salt(岩盐)is the commonest example of a soluble rock. Potassium salts(钾盐)also are soluble.
The permeability(渗透性)of a soil is important for calculations of underground flow(地下潜流), for example of oil or water to a well, or of water into a trench(排水沟)dug for a foundation, or of water through an earth dam(土坝). Of the loose soils which can be dug with spade(铲), clays are the least permeable, silts slightly more(稍大), sands yet more(更大), and gravels even more. In other words, the permeability is in direct proportion to(与..成正比)the grain size of the soil.
When a well is being pumped(抽水), the water flows towards(流向)it from every direction and the ground water surface (water table地下水位) around it sinks. As the distance from the well increases, the water table is lowered rather less, so that around the well it becomes shaped like a funnel(漏斗形), though it is usually called a cone of depression(降落锥体).。