当前位置:文档之家› 6S50MC-C柴油机活塞头的强度分析

6S50MC-C柴油机活塞头的强度分析

6S50MC-C柴油机活塞头的强度分析
6S50MC-C柴油机活塞头的强度分析

大连海事大学

硕士学位论文

6S50MC-C柴油机活塞头的强度分析

姓名:吴伋

申请学位级别:硕士

专业:轮机工程

指导教师:段树林

20100601

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级: 作者: 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核 指导老师: 2007.11.05

班级 姓名 一、 课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、 课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 三、 设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为E 、μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且r F = 2t F 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4, 3l =1.2r,已知数据如下表:

中重型柴油机活塞设计技术

中重型发动机活塞设计 摘要:探讨活塞疲劳开裂及试验研究,结合活塞的材料等介绍活塞的发展趋势及结构特点、性能及试验等。 关键词:活塞类型;液态模锻;纤维强化;内冷通道;试验 1概述 中、重型发动机普遍采用增压技术,强化程度大,爆发压力高,对作为发动机“心脏”的活塞,提出了越来越高的要求。在过去的十几年中,平均有效压力在设计上持续升高,在最近的十年中将可能达到30bar。这直接导致了气缸组件最大缸压和热负荷的增加。在追求低燃油耗的情况下,缸压200bar的发动机已较为普遍。 活塞主要采用铝-硅共晶合金材料,面对日益苛刻的发动机负荷,其适用区域构成了一定的限制。活塞主要作用是将能源转化为负荷输出。由于热负荷过大而引起的活塞烧顶、开裂、拉缸、变形和异常磨损等热损坏时有发生。另外,由于热负荷不均匀所引起的热变形、热应力以及对材料的热强度、摩擦副冷却等的影响也大大的限制了重型发动机的发展,成为重型车发展的一大障碍。在设计开发过程中,有必要找出活塞的失效模式并针对这些失效模式作出分析,找出改进的方法,提高活塞的使用寿命、可靠性,促进内燃机的发展和完善。 2活塞主要失效模式 活塞三个主要易受破坏区域: (1)顶部-由于承受较高负荷产生裂纹及与燃料有关的作用引起的腐蚀。 (2)销座-由于高温下活塞材料表面承受较高的交变燃烧压力作用而引起裂纹。 (3)环槽-由于位置较高的一环槽设计承受较高负荷限制了传统的镍基环槽加强作用的应用。 针对以上活塞主要失效模式,一般从三个方向解决: (1)铝合金性能进一步提高 (2)材料选用锻铁或钢 (3)改进活塞结构设计 3活塞类型及材料的研究 为了更好的适应中速柴油机的要求,活塞专业厂家在活塞结构类型及材料研究方面已开展了大量的工作。 3.1铝基体内冷通道活塞 铝合金活塞带内冷通道技术从20世纪60年代后期成为主要的产品,并且发展成能

柴油发动机活塞失效分析

柴油发动机活塞失效分析 材料科学与工程学院金属材料工程专业笑嘻嘻 指导教师:学习 1.前言 柴油机作为各种机械的动力装置,活塞是其主要配件之一,由于它在气缸内以高速度作不匀速往复运动,且又在高温、高压和液体润滑困难等条件下工作,所以是一种容易磨损的配件。在一般正常使用情况下,只有在柴油机大修时才更换新活塞。活塞主要失效形式有:环岸断裂,严重时整圈脱落;环槽,销座和裙部的严重磨损;销座内侧上部出现裂纹以及燃烧室边缘烧蚀【1】。 在实际工作中,活塞除了正常磨损外,还有早期损坏失效的可能。如其顶部与气门相碰形成印痕、活塞被捣碎及活塞顶部被顶出一个锥坑等【2】。柴油机因运转不正常,排气声音显著变化而停车后,若正转不动,反转易,则极有可能发生上述故障,至于故障产生的原因,可能多种多样的,但归纳起来,不外乎使用、维修不当所致。 2.柴油发动机活塞的主要失效形式 2.1环槽的磨损 钢顶铝裙活塞在运行中经常出现活塞环槽严重磨损的情况,尤其是货运车更加突出,其原因主要有:首先是活塞环与缸套的匹配不好,故寿命太短.随着大修间隔时间的延长,特别是激光淬火缸套的使用,使与之配对的活塞环更不耐磨,活塞环后期已进入剧烈磨损阶段,活塞环组已不能正常封气、控油,机油消耗明显上升,这样就会使活塞环、活塞环槽及缸套剧烈磨损。另外,空气及机油滤清器的滤清效果不佳,机油没有按规定更换,机油内磨料过多,大修间隔时间过长,发动机高速、重载、柴油机运行条件恶化,喷油器雾化不良,燃烧质量差等都是加速活塞环槽、缸套和活塞环磨损的因素【3】。 2.2活塞顶部开裂 活塞顶开裂主要是由于柴油机载荷反复变化而产生的热应力循环,气缸内燃烧压力周期

柴油机曲轴设计

1前言 1.1柴油机与曲轴 1.1.1柴油机的工作原理 柴油机的每个工作循环都要经历进气、压缩、做功和排气四个过程。 四行程柴油机的工作过程:柴油机在进气冲程吸入纯空气,在压缩冲程接近终了时,柴油经喷油泵将油压提高到10MPa以上,通过喷油器以雾状喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。压缩终了时气缸内空气压力可达3.5~4.5MPa,温度高达476.85℃~726.85℃,极大地超过柴油的自燃温度,因此柴油喷人气缸后,在很短的时间内即着火燃烧,燃气压力急剧达到6~9MPa,温度升高到1726.85℃~2226.85℃。在高压气体推动下,活塞向下运动并带动曲轴旋转做功。废气同样经排气门、排气管等处排出。 四行程柴油机的每个工作循环均经过如下四个行程: (1)进气行程在这个行程中,进气门开启,排气门关闭,气缸与化油器相通,活塞由上止点向下止点移动,活塞上方容积增大,气缸内产生一定的真空度。可燃混合气被吸人气缸内。活塞行至下止点时,曲轴转过半周,进气门关闭,进气行程结束。 由于进气道的阻力,进气终了时气缸内的气体压力稍低于大气压,约为0.07~0.09MPa。混合气进入气缸后,与气缸壁、活塞等高温机件接触,并与上一循环的高温残余废气相混合,所以温度上升到96.85℃~126.85℃。 (2)压缩行程进气行程结束后,进气门、排气门同时关闭。曲轴继续旋转,活塞由下止点向上止点移动,活塞上方的容积缩小,进入到气缸中的混合气逐渐被压缩,使其温度、压力升高。活塞到上止点时,压缩行程结束。 压缩终了时鼓,混合气温度约为326.85℃~426.85℃,压力一般为0.6~ 1.2MPa。 (3)做功行程活塞带动曲轴转动,曲轴通过转动把扭矩输出。 (4)排气行程进气口关闭,排气口打开,排除废气。 由上可知,四行程汽油机或柴油机,在一个工作循环中,只有一个行程作功,其余三个行程作为辅助行程都是为作功行程创造条件的。因此,单缸发动机工作不平稳。现代汽车都采用多缸发动机,在多缸发动机中,所有气缸的作功行程并不同时进行,而尽可能有一个均匀的作功间隔,因而多缸发动机曲轴运转均匀,工作平稳,并可获得足够大的功率。例如六缸发动机,在一个工作循环中,曲轴要旋转720°,曲轴转角每隔120°就有一个气缸作功。

柴油机活塞烧顶故障原因浅析

柴油机活塞烧顶故障原因浅析 时间:2010-03-07 18:19来源:未知作者:cndeser 点击: 746次 柴油机在使用的过程中活塞烧顶是常见的现象,本文将主要从以下几个方面讲述柴油机活塞烧顶的原因,希望用户在使用柴油机时加强维护,使柴油机一直保持良好的状态。柴油机活塞烧顶的主要原因: 1.喷油器滴油或者雾化不良,柴油机内燃油长时间再活塞顶部燃烧, 柴油机在使用的过程中活塞烧顶是常见的现象,本文将主要从以下几个方面讲述柴油机活塞烧顶的原因,希望用户在使用柴油机时加强维护,使柴油机一直保持良好的状态。柴油机活塞烧顶的主要原因: 1.喷油器滴油或者雾化不良,柴油机内燃油长时间再活塞顶部燃烧,造成活塞顶部高温,从而使活塞烧顶。 2.柴油机活塞严重磨损或者断裂机油上窜,导致活塞烧顶。 3.选择了劣质润滑油,加速了柴油机汽缸磨损,曲轴箱废气压力增大,燃烧室内积碳增多,从而导致活塞烧顶。 4.柴油机各缸供油量和供油时间不均匀,使部分汽缸燃烧过程恶化,形成积炭或者严重后燃,柴油燃烧的热量使部分汽缸内的活塞顶温度过高,导致柴油机材料热疲劳而烧熔,导致活塞烧顶。 5.活塞缸套质量有问题,如果柴油机的活塞在铸造时存在气孔、疏松、微裂纹、夹渣等缺陷,在高温高压作用下,这些缺陷就会成为疲劳源而导致活塞疲劳损坏;活塞中的夹渣首先熔化,造成活塞烧熔。所以柴油机在选择活塞时一定要注意选用原厂或质量过硬的活塞。 6.活塞顶间隙不当,装配柴油机时,如果活塞顶间隙调整不当,就会影响柴油机的压缩比,导致活塞拉缸或者活塞烧顶,这就要求柴油机在装配时要严格按照要求调整。 7.超负荷的柴油发动机转速运行很长一段时间,或坏的发动机冷却。活塞有一个长期热应力和机械应力,容易疲劳消融。 8.活塞环损坏或折断。活塞环损坏或折断导致活塞环装配不能密切缸壁,活塞顶部不能散去大规模的热量,而且还导致窜高温气体,其结果是顶端活塞和活塞环槽过热而烧融。 发动机,特别是柴油机,拉缸和活塞烧顶是较为常见的故障之一。发动机(柴油机)拉缸和活塞烧顶大多发生在活塞顶部和第一、二道活塞环槽处,损坏形式主要有顶面烧熔、穿孔、麻坑和顶部周围处的键槽状缺口、塌陷。活塞烧顶将导致高温燃气窜入曲轴箱、加速润滑的氧化变质、汽缸密封性变差、压缩比下降、

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级:441006班 作者:刘百川44100608 题目:单缸柴油机曲轴的强度设计 及刚度计算、疲劳强度校核题号:4 数据号:24 指导老师:李锋

课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学课程之后,结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学的知识的综合应用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,对实际工作能力有所提高。具体有以下六项: 1.使所学的材料力学知识系统化,完整化。 2.在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来。 4.综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 5.使我们初步了解和掌握工程实践中的设计思想和设计方法。 6.为后续课程的学习打下基础。 课程设计的任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为,E μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4 1.6h D ≤≤,2.54h b ≤≤, 3 1.2l r =。

387柴油机设计(活塞连杆组)

387柴油机设计(活塞连杆组) 摘要 本文主要介绍387柴油机活塞连杆组的设计。在本次设计中,考虑到387柴油机主要应用于农业生产中的中小型机械,环境往往较为恶劣,需要内燃机具有较好的动力性能为农机产品提供足够的动力。本次设计在387柴油机基础上加大了活塞的工作行程,改球形燃烧室为W形燃烧室,使其动力性与经济性都有所提高。但由于工作行程的加大,平衡性变差,噪音与震动加大,在设计时对其采取一定的措施。燃烧系统采用直喷型,易启动,节能效果明显,可使经济性和动力性大大提高。发动机转速为3000r/min左右,12h标定功率约27kW,符合当今低速汽车对转速及功率的需求。通过参数及工艺性能的控制可使燃油消耗率保持在245g/kW.h以内。本文着重讨论了活塞连杆组部位的设计要求及特点。 本人主要任务是设计387柴油机的活塞连杆组,首先根据柴油机的性能指标对柴油机主要的性能参数进行了选择。然后在参照387柴油机的活塞连杆组进行结构设计。在阐述活塞连杆组设计过程的同时也对主要零部件的设计要点作了总结。本说明书中重点论述了387柴油机活塞连杆组的设计依据与设计过程。 关键词:柴油机,活塞,连杆

THE DESIGN OF 387 DIESEL ENGINE (PARTS OF PISTON GROUP) ABSTRACT This paper mainly introduces the design of the 387 diesel engine parts of piston group. In this design, considering the 387 diesel engines are mainly applied in small and medium-sized machinery, agricultural production environment is bad, need often has better performance for internal machinery products provide enough power. The Diesel 387 which designed this time is on the basis of the old Diesel 387 and increasing the piston stroke, with its power performance and economical efficiency enhanced. However, because of the work itinerary increased, its balance became worse, noise and vibration also increased. So in this design, I have to take some certain measures. Combustion Chamber using injection type, easy to start, energy saving effect, and can make the efficiency and performance improved greatly. The engine speed is 3000r/min, about 27kW/12h calibration power, speed and the current low power of the car needs. Through the parameters and process performance control can make fuel consumption in 245g/kW.This paper discusses the design requirements and characteristics of the cylinder important parts。 My main task is to design 387 engine parts of piston group. On the first, according to the diesel’s performance target, I should to choose the main performance mark of the diesel. Then in the light of the design of 387 diesel parts of piston group to design the structure. When explained the process of the parts of piston group design, I also summarized the main parts. This thesis focused on expounding the foundation and process of the 387 diesel engine parts of piston group design. KEY WORDS:diesel engine, the piston, the connecting rod,

100系列柴油机活塞设计

100系列柴油机活塞设计 前言 活塞是发动机中的主要配件之一,它与活塞环、活塞销等零件组成活塞组,与气缸盖等共同组成燃烧室,承受燃气作用力并通过活塞销和连杆把动力传给曲轴,以完成内燃发动机的工作过程。由于活塞处于一个高速、高压和高温的恶劣工作环境,又要考虑到发动机的运行平稳及耐用,因此要求活塞也必须要有足够的强度和刚度,导热性好,耐热性高,膨胀系数小(尺寸及形状变化要小),相对密度小(重量轻),耐磨及耐腐蚀,还要成本低。由于要求多而高,有些要求互相矛盾,很难找到一个能够完全满足各项要求的活塞材料。现代发动机的活塞普遍用铝合金制造,因为铝合金材具有密度小,导热性好的突出优点,但同时又有膨胀系数比较大,高温强度比较差的缺点,这些缺点只能通过合理的结构设计以满足使用要求。所以,发动机的质量优劣,不但要看采用的材料,同时也要看设计的合理性。 1活塞概述 活塞是发动机的“心脏”,承受交变的机械负荷和热负荷,是发动机中工作条件最恶劣的关键零部件之一。活塞的功用是承受气体压力,并通过活塞销传给连杆驱使曲轴旋转,活塞顶部还是燃烧室的组成部分。 1.1 活塞的工作条件 活塞在高温、高压、高速、润滑不良的条件下工作。活塞直接与高温气体接触,瞬时温度可达2500K以上,因此,受热严重,而散热条件又很差,所以活塞工作时温度很高,顶部高达600~700K,且温度分布很不均匀;活塞顶部承受气体压力很大,特别是作功行程压力最大,汽油机高达3~5MPa,柴油机高达6~9MPa,这就使得活塞产生冲击,并承受侧压力的作用;活塞在气缸内以很高的速度(8~12m/s)往复运动,且速度在不断地变化,这就产生了很大的惯性力,使活塞受到很大的附加载荷。活塞在这种恶劣的条件下工作,会产生变形并加速磨损,还会产生附加载荷和热应力,同时受到燃气的化学腐蚀作用。1.2活塞的功用 活塞的功用是承受气体压力,并通过活塞销传给连杆驱使曲轴旋转,活塞顶部还是燃烧室的组成部分。

柴油机曲轴工艺过程及夹具毕业设计论文

重庆大学网络教育学院 毕业设计(论文) 柴油机曲轴零件加工工艺及夹具设计 学生所在校外学习中心江苏张家港校处学习中心批次层次专业111 专升本机械设计制造及其自动化学号 w11107861 学生 指导教师 起止日期 2013.1.21--2013.4.14

摘要 曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。 这次毕业设计介绍柴油机曲轴加工工艺规程及相关夹具的设计,及曲轴的规程制定中遇到问题的分析,经济性分析,工时定额,切削用量的计算。同时还介绍曲轴加工中用到的两套夹具的设计过程。在工艺设计中,结合实际进行设计,对曲轴生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。 根据现阶段机械零件的制造工艺和技术水平,本着以制造技术的先进性,合理性,经济性进行零件的形状、尺寸、精度等级、表面粗糙度、材料等技术分析。并根据以上分析来选择合理的毛坯制造方法,设计工艺规程,夹具设计。 关键词:柴油机曲轴工艺夹具

目录 中文摘要…………………………………………………………………………………………I 1.引言 (1) 2.曲轴的生产纲领 (2) 3.零件的分析 (2) 3.1曲轴的用途及工作条件 (2) 3.2分析零件上的技术要求,确定要加工的表面 (3) 3.3加工表面的尺寸和形状精度 (4) 3.4尺寸和位置精度 (4) 3.5加工表面的粗糙度及其它方面的质量要求 (4) 3.6热处理要求 (4) 4.曲轴材料和毛坯的定 (4) 4.1确定毛坯的类型 (4) 4.2确定毛坯的生产方法 (4) 4.3确定毛坯的加工余量 (4) 5.曲轴的工艺过程设计 (5) 5.1粗、精加工的定位基准 (5) 5.1.1粗加工 (5) 5.1.2粗加工 (5) 5.2工件表面加工方法的选择 (5) 5.3曲轴机械加工的基本路线 (5) 5.4加工余量及毛坯尺寸 (6) 5.5工序设计 (6) 5.5.1加工设备与工艺装备的选择 (8) 5.5.2机械加工余量、工序尺寸及公差的确定 (9) 5.6确定工时定额 (11) 5.7机械加工工艺规程卡片和机械加工工序卡片 (12) 5.7.1机械加工工艺过程卡片 (12) 5.7.2机械加工工序卡片 (12) 6.柴油机曲轴加工键槽夹具设计 (13) 6.1.1夹具类型的分析 (13) 6.1.2工装夹具定位方案的确定 (13) 6.1.3工件夹紧形式的确定 (13) 6.1.4对刀装置 (13) 6.1.5分度装置的确定以及补补助装置 (14) 6.1.6夹具定位夹紧方案的分析论证 (14) 6.1.7夹具结构类型的设计 (15) 6.2夹具总图设计 (16) 6.4绘制夹具零件图 (16)

活塞结构设计与工艺设计毕业设计说明书

目录 前言 (1) 1活塞的概述 (2) 1.1活塞的功用及工作条件 (2) 1.2活塞的材料 (2) 1.3活塞结构 (2) 1.3.1活塞顶部 (2) 1.3.2活塞头部 (3) 1.3.3活塞裙部 (3) 2活塞的结构参数 (4) 3活塞最大爆发压力的计算 (5) 3.1热力过程计算 (5) 3.2柴油机的指示参数 (8) 3.3柴油机有效效率 (10) 4活塞销的受力分析 (12) 5活塞的加工工艺 (14) 参考文献: (15)

前言 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。

1活塞的概述 1.1活塞的功用及工作条件 全套图纸及更多设计请联系QQ:360702501活塞是曲柄连杆机构的重要零件煤气主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。 活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 活塞顶部直接与高温燃气接触,活塞顶部的温度很高,各部的温差很大,柴油机活塞顶部常布置有凹坑状燃烧室,使顶部实际受热面积加大,热负荷更加严重。高温必然会引起活塞材料的强度下降,活塞的热膨胀量增加,破坏活塞与气缸壁的正常间隙。另外,由于冷热不均匀所产生的热应力容易使活塞顶部出现疲劳热裂现象。所以要求活塞应有足够的耐热性和良好的导热性,小的线膨胀系数。同时在结构上采取适当的措施,防止过大的热变形。 活塞运动速度和工作温度高,润滑条件差,因此摩擦损失大,磨损严重。要求应具良好的减摩性或采取特殊的表面处理。 1.2活塞的材料 现代内燃机广泛使用铝合金活塞。铝合金导热性好(比铸铁大3-4倍),密度小(约为铸铁的1/3)。因此铝活塞惯性力小,工作温度低,温度分布均匀,对改善工作条件减少热应力延缓机油变质有利。目前铝活塞广泛采用含硅12%左右的共晶铝硅合金制造,外加铜和镍,以提高热稳定性和高温机械性能。铝活塞毛胚可采用金属模铸造,锻造和液压模锻等方法生产。 为了提高铝活塞的强度和硬度,并稳定形状尺寸,必须对活塞进行淬火和时效热处理。 1.3活塞结构 活塞按部位不同,分为顶部,头部和裙部三部分。 1.3.1活塞顶部 活塞顶部是燃烧室的组成部分,其形状与燃烧室形状和压缩比有关,一般有平顶,凸

柴油机曲轴工艺设计方案[]

0 引言 本次毕业设计是关于R180柴油机曲轴的工艺设计及其中两道工序的夹具设计。 曲轴是柴油机中的关键零件之一,其材质大体分为两类:一是钢锻曲轴,二是球墨铸铁曲轴。由于采用铸造方法可获得较为理想的结构形状,从而减轻质量,且机加工余量随铸造工艺水平的提高而减小。球铁的切削性能良好,并和钢制曲轴一样可以进行各种热处理和表面强化处理,来提高曲轴的抗疲劳强度和耐磨性。而且球铁中的内摩擦所耗功比钢大,减小了工作时的扭转振动的振幅和应力,应力集中也没有钢制曲轴来的敏感。所以球墨铸铁曲轴在国内外得到广泛采用。本次设计中曲轴的材质为球铁。 从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。 目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术工程仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和自动线,生产线一般由几段独立的自动化生产单元组成,具有很高的灵活性和适应性。采用龙门式自动上下料,集放式机动滚道传输,切削液分粗加工与精加工两段集中供应和回收处理。②曲轴的主要加工工序基准中心孔,一般采用质量定心加工方式,这样在静平衡时,加工量很少。③轴颈的粗加工一般采用数控铣削或车拉工艺。工序质量可达到国内粗磨后的水平,且切削变形小、效率高。铣削和车拉是曲轴粗加工的发展方向。④国外的曲轴磨床均采用CNC控制技术,具有自动进给、自动修正砂轮、自动补偿和自动分度功能,使曲轴的磨削精度和效率显著提高。⑤油

活塞结构设计与工艺设计

摘要 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞式内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏。本设计通过对内燃机铝活塞加工技术的发展、活塞的工作环境以及结构特点的分析,确定了活塞的加工过程以及加工方案。其中主要包括:活塞顶部设计、活塞头部设计、活塞裙部设计、活塞的结构参数设计、和加工工艺的设计。 关键词:内燃机活塞结构加工

Abstract The continuous development of the internal combustion engine, is built on the basis of the performance and life of the main components continue to improve and enhance, especially with the improvement of the degree of enhancement of the engine, power increases and an increase in speed, parts and components in particular, is a direct injection diesel engine pistonwork environment becomes worse. The structure of the piston directly affect the temperature distribution of the piston and the thermal stress distribution, and therefore it is necessary to predict and evaluate the structure and performance of the piston。 The most critical moving parts of the piston engine under high temperature and pressure to withstand repeated alternating load, which is known as the heart of the internal combustion engine. The design through the development of the internal combustion engine the aluminum piston processing technology, the the piston work environment as well as the analysis of the structural features identified piston processing and processing programs. Which mainly include: design of the top of the piston, piston head design, piston skirt design, structure parameters of the design of the piston, the piston calculation of the maximum explosion pressure and the process design. KEY WORD :Internal combustion engine Piston structure Machining

柴油机活塞设计计算与分析

柴油机活塞设计计算与分析 来源:作者:时间:2010-05-17 [ 摘要 ] 应用ANSYS软件对柴油机重要部件—活塞原结构及其改进后的方案进行三维有限元分析。首先,对活塞进行热分析,得到它的温度场分布情况,并在此基础上计算其不同工况下的综合应力场. 分析结果表明:新方案活塞的强度、刚度以及可靠性均优于原结构。 [ 关键词 ]柴油机;活塞;有限元分析;温度场 Comparative Analysis on New and Old Piston of 16V280ZJH Di esel . [ Abstract ] By using software ANSYS,three-dimensional FEA is a pplied to the piston,an important parts of diesel,when it is in its original form and its modified structure. Fi rst of all,the thermal analysis is presented and the tem perature distribution of the piston is obtained. Based o n this condition,the integrative stress field is compute d in various working performanc e o f the piston. The resu lts of this analysis indicate that the strength,rigidity and reliability of the new structure of the piston are b etter than its original form. [ Keyword ] Diesel;Piston;FEA; temperature field 1前言 活塞是柴油机的主要受热零件,工作时,处于高温、高压、高负荷的恶劣环境下,经受周期性交变的机械负荷和热负荷的作用,容易发生故障。因此,活塞的结构是否合理,热负荷分布是否均匀,强度和刚度是否满足设计要求,一直是设计人员在柴油机研发和改进中十分关注的热点问题。 我厂16V280ZJH型大功率柴油机原活塞,在运用中暴露出可靠性严重不足的缺陷。为提高活塞的可靠性,保证柴油机整机的使用寿命,我厂针对出现的问题,对活塞原进行改进,开发出了新结构的柴油机活塞。为验证改进后的效果,并为活塞的进一步改进和优化提供依据,我们应用大型分析软件

摆动活塞式发动机的结构设计

前言 内燃机的发明,带动了汽车的发展,给世人在“行”上带来极大的便利,使得窨距离缩小,人们的工作速度得以提高。近年来随着电子技术的发展,又使汽车发动机如虎添翼,成为高新技术的集成。 汽车用内燃机作动力并发展成为支柱产业,在历史上有几次革命性的进步,第一次是石油作为内内燃机的燃料,这使发动机摆脱了最初建立在煤气为燃料基础上的固定式发动机,从而迈向移动式的车用动力。第二次革命是汽车生产的工业化。第三次是电子技术与发动机技术相结合。电子技术最初在汽油机上的应用是实现电子点火,然后到电控燃油喷射,至今天点火和喷射的集成管理。 短短几十年,发动机成为高新技术的集成。无论是燃油经济性、动力性、废气排放水平等等,是任何一种其他动力机械所无法比拟的。这一切都来源于电子技术发挥的作用。汽车内燃机是通过燃料的燃烧,把燃料的化学能转化为热能,再将热能转化为机械功的热动力机械。热力学、燃烧学和机械学的理论分析表明,内燃机是热效率最高的热力机械,但仍存在着巨大的节能及降低尾气污染的潜力。

1内燃机 1.1内燃机的概述 内燃机是发动机的一种。发动机是把某种形式的能转变为机械能的机器。能够将燃料中的化学能经过燃烧转变为热能,并通过一定的结构使之再转化为机械能的发动机也称为热机。内燃机是热机的一种,他区别于其他形式热机的特点,是燃料在机器内部燃烧,燃料燃烧时放出大量的热量,使燃烧后的气体膨胀推动机械做功。燃气是实现热能向机械能转化的媒介物质,这种媒介物质称为工作介质[1]。 发动机可以根据不同的特征来分类: ⑴按所用燃料分有汽油发动机、柴油发动机和其他代用燃料发动机。汽油发 动机是用电火花强制点燃由汽油与空气组成的可燃混合气,使之燃烧并产生热能,故汽油机又称强制点火式发动机。柴油机使用的柴油是直接喷入发动机气缸,在高温高压条件下自燃而产生热能,故柴油机又称压燃式发动机。 ⑵按完成一个工作循环所需要的活塞冲程数分有四冲程发动机和二冲程发动 机。 ⑶按结构特点分有水冷发动机和风冷发动机;单缸发动机和多缸发动机。多 缸发动机根据各缸的排列方式,又有直列式发动机和“V”形发动机等。汽车发动机大多采用水冷式多缸发动机。 ⑷按活塞的运动方式分有往复活塞式发动机和旋转发动机。往复活塞发动机 的活塞为上下运动,旋转发动机的活塞是旋转的[2]。 现代汽车用的内燃机绝大多数为往复活塞式内燃机。为了方便叙述我们对各种型式的内燃机都简称为内燃机或发动机。本文主要介绍的便是在旋转活塞式发动机上进行改造,而得出的摆动活塞式发动机,其工作冲程为二冲程。 发动机是汽车、拖拉机、飞机和船舶等机器的动力源,是它们的“心脏”,其性能是决定这些机器使用性能好坏的关键。往复机已有百年的历史了,经过长期使用和发展,到目前,不论是二冲程还是四冲程,可以说已经达到了比较完善的程度。它的最大优点是经济可靠,因此在工农业和交通运输业中,一直占据主要地位。 1.2选题的背景 众所周知,往复机的基本结构方案,是利用曲轴连杆机构,将活塞的往复运动转

柴油机活塞环拆卸与装配(谷风优文)

柴油机活塞环拆卸与装配 活塞环拆卸: 1、简介 活塞环是装于活塞环槽内具有弹性的金属圆环,是柴油机燃烧室的组成零 件之一,具有保持活塞与气缸套之间的有效密封作用和将活塞热量传递给气缸壁的散热作用,以及调节气缸润滑油的作用。按其功用不同可分为气环(压缩环、密封环)和油环(刮油环)两种。 在十字头式柴油机里,气缸采用专门的润滑机构进行润滑,所以一般只装压缩环,没有刮油环,而另设有承磨环。 气环:主要作用是防止气缸中的气体漏泄和将活塞上的部分热量传递给气缸。并起支撑活塞的作用。以上这些作用中密封作用尤其重要,对于冷却式活塞埸是如此。压缩环的密封作用是靠环本身的弹性将环压紧在缸壁上,间隙很小,形成第一次密封。由于间隙节流在环的上下平面和内侧产生不平衡的气的体力,将环进一步压紧在缸壁和环槽上,形成第二次密封。值得注意的是:第二次密封是建立在第一次密封的基本上的,若环的弹性消失,第一次和第二次密封将均不存在。通常为了保证密封可靠,均安装多道气环,如4~5道气环油环:筒形活塞式柴油机,活塞和气缸套之间是靠飞溅来和滑油进行润滑的。由于飞溅到气缸壁上的滑油一般较多。而且气环会通过泵油作用把滑油泵入燃烧室,这不仅增加了滑油的消油量,而且还会污染活塞、气缸、气阀和排气管道。因此在气环下面安装1~3道刮油环,调节气缸壁面上的滑油以保证良好的气缸润滑,油环工作时在是运动中将油刮下,并把气缸壁上多余的滑油,经环上的泄油孔和环槽上的泄油孔排回曲轴箱 承磨环:十字头式柴油机专门为活塞与气缸的磨合而设置的承磨环(超短裙活塞不设置,短裙活塞设置1~2道承磨环,长裙活塞设置2~4道承磨环)。承磨环在运动中

柴油机曲轴飞轮设计说明书

第一章前言 1.1柴油机曲轴设计的背景 柴油机具有良好的经济性、动力性及较高的热效率等显著优点, 在汽车节能等方面有较大的潜力。经过多年的研究和新技术的应用,现代柴油机的现状已与往日不可同日而语。随着电控喷射、高压共轨、涡轮增压、中冷等先进技术的应用,柴油机在重量、噪音、烟度等方面已取得了重大的突破。我国小缸径多缸增压柴油机已取得了较快的发展,但整个市场的需求还在增长。2000年,中国4缸以上、缸径小于100mm的多缸机年产量约63.9W台,主要用于农用运输车、轻型车、面包车、轮式拖拉机、中小型工程机械、小型船舶主辅机等。由此可见,小缸径多缸柴油机的市场前景还是很客观的。 四缸柴油机主要应用于中型轮式拖拉机、中型联合收割机、中型工程机械、轻型汽车等的配套。随着人们对柴油机认识的逐步转变,柴油机的应用领域也在不断地扩大。柴油机热效率高,能量利用率高,节能等特点也得到认可。柴油机的供油系统相对简单,柴油机的可靠性也比汽油机好。在相同的功率情况下,柴油机的低速扭矩性较好,功率大,完全符合农用机械的使用要求。 随着电喷、高压共轨、增压中冷等先进技术的应用,柴油机的燃烧不断得到改善,在节能和有害物的排放方面的优势已逐渐显现出来。现代柴油机随着强化程度的提高,柴油机单位功率的比重也明显降低,轻量化、高速化、低油耗、低噪音和低排放成为现代柴油机的发展方向 曲轴是发动机中最重要的零件之一,发动机的全部功率都是通过它输出的。而且曲轴是在不断周期性变化的力、力矩(包括扭矩和弯矩)的共同作用下工作的,极易产生疲劳破坏。曲轴形状复杂,应力集中严重,因此设计中必须使曲轴有足够的疲劳强度,以保证正常工作。 曲轴是柴油发动机的重要零件。它可以是有若干个相互错开一定角度的曲柄(或曲拐)加上功率输出端和自由端构成的。每个曲柄又

相关主题
文本预览
相关文档 最新文档