当前位置:文档之家› 碳纤维产业现状及发展前景

碳纤维产业现状及发展前景

碳纤维产业现状及发展前景
碳纤维产业现状及发展前景

碳纤维:从“无”到“有”到“好”

随着国家政策扶持力度的不断增大及市场需求的日益增长,我国碳纤维出现了前所未有的产业化建设热潮,国产碳纤维技术和产业化水平显著提高。特别是最近十年,在国家科技与产业计划的支持下,高性能碳纤维及其复合材料在关键技术、装备及应用等方面取得了突破性进展,初步建立起国产碳纤维制备技术研发、工程实践和产业化建设的较完整体系,技术发展速度明显加快,产品质量不断提高,有效缓解了国防建设重大工程对国产高性能碳纤维的迫切需求。

目前,国内大小碳纤维生产企业近40家,其中,拥有千吨以上规模生产线的企业4家,拥有五百吨级生产线的企业5家。国产碳纤维总产能达到1.96万吨。主要产品为12K及以下规格小丝束PAN基碳纤维,其中,T300级碳纤维性能达到国际水平,已进入产业化发展阶段,并在航空航天领域得到了应用;T700级碳纤维已建成千吨级生产线,产品进入应用考核阶段,低成本干喷湿纺T700级碳纤维已经实现规模化生产;T800级碳纤维吨级线建成并已实现批量生产。但高模、高模高强碳纤维的工程化制备技术及更高等级碳纤维的制备关键技术还有待攻关。

总体上讲,目前我国碳纤维产业整体发展水平仍与国外存在较大差距。主要表现在碳纤维原丝生产工艺路线单一、纺丝速度慢、效率低;生产线规模小,产能分散,低端产品产能过剩但生产线开工率低,年产量不足产能的20%;产品品种规格单一、性能稳定性不高、同质化现象严重、成本居高不下;生产装备自主设计制造能力不足、对生产工艺的适应性差;油剂、上浆剂等原辅料开发不配套;下游应用技术发展与碳纤维技术不匹配,下游应用市场对碳纤维产业发展牵引力不足等。特别是,由于低成本、稳定化、规模化生产技术的欠缺,绝大多数碳纤维产品的成本与市场售价倒挂,我国碳纤维企业面临着国内企业间恶性竞争和国外企业恶意压价的内忧外患,生存状况不容乐观。

而目前,国际碳纤维产业及下游应用市场均呈现欣欣向荣的繁荣景象,一方面国际碳纤维应用市场继续以6-8%的增速不断扩大,应用领域进一步拓展;另一方面,全球各大碳纤维制造商已陆续宣布了大幅扩产计划,市场竞争空前激烈。

面对国际碳纤维产业如此明确的发展信号,“十三五”期间,我国碳纤维产

业发展的主要任务不是继续新建产能、低水平重复,而是有效利用现有产能,进一步开发低成本、稳定化、规模化碳纤维制造技术,不断提高产品品质,提高企业的市场竞争力。具体来讲,技术方面要实现从跟踪创新到原始创新的跨越,使国产碳纤维技术、产品性能、生产成本与国际先进水平相当。重点突破国产T300级、T700级碳纤维的低成本、稳定化、规模化生产技术,使碳纤维质量价格与进口产品相当,产品性能全面满足工业领域使用要求;突破百吨级国产T800级高强中模碳纤维工程化制备技术,产品性能指标达到日本东丽T800水平;开展更高等级碳纤维制备的关键技术开发,实现国产碳纤维品种系列化和工艺多元化;同时,要努力提升国产装备的设计制造和二次改造升级能力,确保设备与生产工艺相适应,实现国产装备的自主保障。产业化方面,应当通过体制机制创新,进一步巩固骨干企业的优势地位,形成一定数量、稳定发展的碳纤维生产-应用产业链,通过能源、交通、建筑、体育等下游市场的应用牵引,做大做强碳纤维产业,实现各领域用碳纤维的全品系自主保障能力。

为此,“十三五”期间希望国家能够加强顶层设计,一方面通过产业政策倾斜,引导碳纤维研究、生产和应用单位强强联合、协作发展,鼓励企业作为创新主体发挥积极性和主动性,大力推动碳纤维-中间产品-复合材料应用全产业链的建立和完善,真正将国产碳纤维的应用落到实处,解决目前碳纤维生产企业的生存出路问题;另一方面,建立产品应用奖励机制,通过销售后补贴、电力补贴、流转税返还、增值税返还、贴息或无息贷款等优惠政策,鼓励碳纤维企业的生产销售行为及市场应用开发,减小企业的资金压力,提高生产积极性,让我国碳纤维产业不仅“能生存”,而且“活得好”。

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料芯导线在新建与改造线路应用技术经济分析

碳纤维复合材料芯导线 在新建与改造线路应用技术经济分析[摘要]碳纤维复合材料芯导线的出现为线路增容和减少输电走廊等问题的解决提供了一种途径。本文分析了其优点并调研了其在国内外的科研、应用情况。本文结合我国220kV改造线路和500kV新建线路的典型参数,计算分析了应用碳纤维复合材料芯导线的技术经济性,从结果可见碳纤维复合材料芯导线的应用从技术上讲是可行的,从经济上讲是合理的。 [关键词] 碳纤维复合材料芯导线,500kV新建线路,220kV改造线路,技术经济比较; 1.前言 随着我国经济的快速发展,电力需求不断增长,电力负荷不断增加。在土地资源日益稀缺、用电需求持续增长的情况下,如何使输电走廊尽可能少地占用土地资源,又能提高电网的输电能力,已经成为日益重要、亟待解决的难题,提高新建线路的单位输送容量和实施现有线路的扩容改造是两条有效的途径。 相比于同规格的钢芯铝绞线,碳纤维复合材料芯导线具有质量轻、抗拉强度大、线膨胀系数小、弧垂小、载流量大、耐高温、耐腐蚀等特点。[1]碳纤维复合材料芯导线的共同特点是芯主要由碳纤维和热硬化性树脂构成。碳纤维是由含碳量较高且在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的特种纤维。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,同时沿纤维轴方向表现出很高的强度,具有很高的比强度。碳纤维增强环氧树脂复合材料比重

小、刚性好、强度高,其比强度、比模量等综合指标在现有结构材料中是最高的,能够满足输电导线在强度、刚度、重量、疲劳特性等方面的严格要求。 [2]碳纤维复合材料芯导线技术的工程应用推广,符合国家电网公司推动“两型三新”线路建设的精神,不仅对于提高输电线路的输送容量和电网的安全可靠性,以及降低架空输配电工程总造价具有非常重要的意义;还将促进新技术、新工艺、新材料的研究;也势必推动国内相关产业的技术升级与进步。 碳纤维复合材料芯导线能否在新建线路和扩容改造工程中应用,不仅要在技术上可行还要在经济上合理,因此要结合具体的工程进行技术经济比较。 2 国内外研究和应用现状 2.1 日本的概况 20世纪90年代,日本昭和电线电缆株式会社、东京制纲株式会社和东北电力株式会社共同开发了一种称为ACFR(碳纤维芯铝绞线)的低驰度导线,主要用于解决既有架空输电线路导线弧垂过大、对地净距不足的问题。其基本思想是用相同直径的碳纤维复合材料(Carbon Fiber Reinforced Polymer,CFRP)代替一般钢芯铝绞线(ACSR)中的钢芯,结构和外观如图2-1所示。复合材料芯的质量是常规钢芯的约1/5,线膨胀系数约为1/12。试验证明,这种新型复合材料芯导线的抗拉强度远远超过了ACSR,在常温下的应力——伸长特性呈现弹性体,没有塑性变性,断裂时的伸长量比钢绞线小,约为1.6%。耐热性基本与ACSR相同。ACFR在提高导线强度、降低导线重量和驰度方面具有突出的优点,其迁移点温度约为70℃,运行温度达150℃,重量比相同直径的ACSR导线轻30%。当导电体采用耐热铝时,可以得到耐热性能更好的TACFR导线,在降低导线驰度的同时,提高导线的载流量[3]。ACFR是ACSR 一对一的材料替换,导线外形、结构构造形式和尺寸与传统导线完全一样。

ACCC碳纤维复合芯导线

ACCC碳纤维复合芯导线 ACCC碳纤维复合导线是目前全世界电力输变电系统理想的取代传统的钢芯铝铰导线、铝包钢导线、铝合金导线及进口殷刚导线的新产品,ACCC碳纤维复合导线与传统导线相比具有重量轻、强度大、低线损、弛度小、耐高温、耐腐蚀、与环境亲和等优点,实现了电力传输的节能、环保与安全。 ACCC碳纤维复合芯导线系列主要优点是: 1.强度为普通导线的2倍。普通钢丝的抗拉强度为1240Mpa-1410Mpa,而AC CC导线的碳纤维混合固化芯棒,是前者的两倍。 2.导电率高,节能6%。由于ACCC导线不存在钢丝材料引起的磁损和热效应,而且在输送相同负荷的条件下,具有更低的运行温度,可以减少输电损失约6%。 3.低弧垂,降低2倍以上垂度。ACCC导线与ACSR导线相比具有显著的低弛度特性,在高温条件下弧垂不到钢芯铝绞线的1/2,能有效减少架空线的绝缘空间走廊,提高了导线运行的安全性和可靠性。 4.重量轻10-20%。碳纤维复合芯导线的比重约为钢的1/4,在相同的外径下,A CCC的铝截面积为常规ACSR导线的1.29倍。ACCC导线单位长度重量比常规AC SR导线轻10-20%,显示了ACCC导线重量轻的优点。 5、耐腐蚀,使用寿命高于普通导线的2倍。碳纤维复合材料与环境亲和,同时避免了导体在通电时铝线与镀锌钢线之间的电化腐蚀问题,有效地延缓导线的老化,使用寿命高于普通导线的2倍。 6、同样容量线路投资成本低于普通导线。由于ACCC碳纤维复合导线倍容量运行,而且抗拉强度高、弛度小、重量轻等特点,可使杆、塔之间的跨距增大,高度降低,同样容量线路成本比普通导线低。 7、节约一半铝材的消耗。按每年电力电路200万吨铝用量计算,能节约铝材近100万吨。从保护环境、改善人类生态环境方面来说,具有划时代的意义

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

聚丙烯腈基碳纤维的制备-表面处理

碳纤维表面处理 碳纤维作为一种具有高强度高模量的先进材料,通常需要与其他基体材料进行复合制备成复合材料进行使用。由于碳纤维本身经过1300℃以上的高温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具有较强的惰性,与高分子树脂等基体进行复合时,纤维与树脂的结合较差,影响纤维优异力学性能的发挥,并最终影响复合材料的性能。因此在碳纤维制备过程中,通常需要对碳纤维进行表面处理,增加其表面的活性基团,增强与树脂等基体之间的结合。 5.3.1 表面处理方法 由于碳纤维表面处理对其复合材料性能提高的作用,因此表面处理方法的研究也是碳纤维制备技术研究的重点。经过多年的研究,科研工作者开发了多种对碳纤维进行表面处理方法,表5.11列出了可以对碳纤维进行表面处理的不同方法及其影响因素。在这些处理方法中,目前应用在工业化生产上的基本上都是电解氧化法。 表5.11 碳纤维表面处理方法和影响因素 序 号 类型处理方法影响因素 1 气相氧化O2、O3、NO2、NO、SO2、NH3、空气、水蒸气/空气、NO/ 空气 时间、温度、浓度、流量2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O2/ H2SO4、 NaClO3/ H2SO4、KMnO4/ H2SO4 时间、温度、组成比例、 3 电解氧化氨水、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、NaCl、 Na2CO3、NH4NO3、NaHCO3等水溶液时间、电压、电流密度、电解质浓度 4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝 酸铋、钒酸盐、钼酸盐 时间、温度、催化剂量 5 电引发聚 合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、 醋酸乙烯、丙烯酰胺、乙烯基吡咯烷 时间、电压、电流、溶剂、 单体浓度 6 聚合物电 沉积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马 来酸酐共聚物 时间、电压、电流、溶剂、 共聚物离子浓度 7 表面涂覆PVA、PVC、PAN、硅烷物,硬性聚氨酯炭黑树脂组成含量、涂覆量 8 高温气相 沉积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、石墨晶须、 碳 温度、时间、载气、试剂 含量 9 表面聚合 物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈-苯乙烯、丙烯腈、异 氰酸酯 时间、氧化程度、接枝量、 浓度 10 等离子体 处理O2、NH3、Ar、N2、空气、SiC涂层、AN聚合时间、真空度、功率、流 动速度 11 电子辐照γ射线等辐照剂量、时间 5.3.1.1 气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、氧等)中,在加温、加催化剂等特殊

2016-2020中国碳纤维复合材料行业发展前景预测分析报告

深圳中企智业投资咨询有限公司

2016-2020年中国碳纤维复合材料行业发展前景 预测分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/069180700.html, 1

目录 2016-2020年中国碳纤维复合材料行业发展前景预测分析 (3) 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 (3) 一、未来碳纤维复合材料发展分析 (3) 二、未来碳纤维复合材料行业技术开发方向 (3) 2、自动化生产 (3) 3、大规模生产 (3) 4、碳纤维复合材料废旧部件的再生回用技术 (4) 三、总体行业“十三五”整体规划及预测 (4) 第二节2016-2020年中国碳纤维复合材料行业市场前景分析 (4) 一、产品差异化是企业发展的方向 (4) 二、渠道重心下沉 (5) 2

2016-2020年中国碳纤维复合材料行业发展前景预测分析 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 一、未来碳纤维复合材料发展分析 碳纤维复合材料作为新兴的非金属材料具有广阔的应用前景。首先其广泛的应用于航空、航天等军事领域,并随着在军事领域应用的不断深入,相关的制造及使用技术日臻成熟,从而带动了碳纤维复合材料在民用领域应用的极大发展,主要应用在机械电子、建筑材料、文体、化工、医疗等方面,并正在快速的取代传统金属材料成为结构用材的首选。 二、未来碳纤维复合材料行业技术开发方向 1、3D打印成型技术 3D打印技术技术是有望成为高效低成本制备各种碳纤维复合材料结构部件的创新工艺,为此近年来企业界、大学、科研院所、政府机构等,都在安排研发和改进3D打印技术,并取得了产业化成果。以往制备塑料和金属的3D打印机部件,能耗较高,尺寸有限,而应用于碳纤维复合材料时,不仅部件强度与刚性可提高,还可提高导热性和降低热膨胀系数,因此无需使用炉子,可消除所有尺寸限制。 2、自动化生产 汽车生产厂家现都采用机器人组装相对小和固定形状的部件,但这些机器人并不能加工大型碳纤维复合材料部件,因为这些部件缺乏形状固定性,因而多采用手铺制造和热压罐固化。如何加工大型碳纤维复合材料是未来重要的技术开发方向之一。 3、大规模生产 5年前日本公司在市场上导入了“Sereebo”长碳纤维增强热塑性树脂(CFRTP),并与GM汽车公司等合作开发其潜在市场。其中碳纤维的分布和取向是可控的,基材的各向同性可保持到最终部件,成型时间只有60s,它比铝合金轻20%~30%,并具有更好的耐疲劳性和抗冲击性而价格略高些,适用于汽车结 3

碳纤维表面处理

学院:材料科学与工程学院 研究方向:炭纤维及复合材料题目:炭纤维表面处理研究进展

炭纤维表面处理研究进展 摘要:本文简单介绍了炭纤维的表面性质,比如比表面积、粗糙度、表面化学结构、表面的润湿性,并针对国内外对炭纤维进行表面处理的气相氧化法、液相氧化法、电化学氧化法等方法进行论述,以及SEM、TMA、ILSS、XPS等表征手段进行分析,由于界面表征手段的多样性,和界面作为另一新相的特点,对未来研究工作的研究重点进行论述。 关键词:炭纤维;表面处理;表征方法;复合材料 1. 前言 ℃) —1400℃) 2000—3000℃)上图为制取沥青基炭纤维的整个过程,但是炭纤维一般很少直接

应用,大多是经过深加工制成中间产物或复合材料使用,由于在高温惰性气体中炭化处理,随着非碳元素的逸走和碳的富集,使其表面活性降低,表面张力降低,与基体的润湿性变差。此外,为了提高炭纤维的拉伸强度应尽可能的减少表面缺陷,因此比表面积也较小,一般不超过1㎡/g。这样平滑的表面与基体的锚定效应也较差,导致复合材料的层间剪切强度的降低,达不到实用设计的要求,为使炭纤维表面由增液性变为亲液性,就要对炭纤维表面处理使它的ILSS由55—70MPa提高到90MPa或95MPa,因此对炭纤维进行表面处理是使炭纤维用于实际投入市场的关键步骤,使性能达到实用和设计的要求。石墨纤维更需要表面处理。 2 炭纤维的表面性质 2.1 炭纤维的比表面积和表面粗糙度 对于高性能炭纤维,比表面积一般在1㎡/g以下,活性比表面积更小。经过表面处理后,活性表面积显著提高,炭纤维几乎提高2倍,ILSS也随之提高很多 2.2 炭纤维的表面化学结构 炭纤维表面不仅有焦油污染物而且含活性基团较少,表现出憎液性,表面处理时,不仅氧化刻蚀除去表面沉积物,而且进行表面氧化而引入含氧基团,呈现亲液性,化学反应历程如下:由C-H氧化成羟基进而成羰基最后氧化成羧基。处理后引入含氧官能团,表面含氧量显著增加,对水的润湿性大幅度提高,最终导致复合材料ILSS的显著提高。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维复合材料

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大 4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法 干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,

碳纤维复合材料芯导线规模化应用工程 复合材料芯软铝型线绞线及配套金具-技术规范通用部分-16.09.07

国家电网公司集中规模招标采购 碳纤维复合材料芯导线规模化应用工程复合材料芯软铝型线绞线及配套金具 招标文件 (技术规范通用部分) 国家电网公司 二〇一六年九月

1总则 1.1一般规定 1.1.1投标人应具备招标公告所要求的资质,具体资质要求详见招标文件的商务部分。 1.1.2投标人须仔细阅读包括本技术规范(通用部分和专用部分)在内的招标文件阐述的全部条款。投标人提供的复合材料芯软铝型线绞线(以下简称导线)及其配套金具应符合招标文件所规定的要求。 1.1.3本技术规范提出了对导线及其配套金具的技术上的规范和说明。 1.1.4本技术规范提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,投标人应提供符合本技术规范引用标准的最新版本和本技术规范要求的全新产品,如果所引用的标准之间不一致或本技术规范所使用的标准与投标人所执行的标准不一致时,按要求较高的标准执行。 1.1.5如果投标人没有以书面形式对本技术规范的条文提出差异,则意味着投标人提供的产品完全符合本技术规范的要求。如有与本技术规范要求不一致的地方,必须逐项在投标人技术偏差表中列出。 1.1.6本技术规范将作为订货合同的附件,与合同具有同等的法律效力。本技术规范未尽事宜,由合同签约双方在合同谈判时协商确定。 1.1.7本技术规范中涉及有关商务方面的内容,如与招标文件的商务部分有矛盾时,以商务部分为准。 1.1.8本技术规范通用部分各条款如与技术规范专用部分有冲突,以专用部分为准。 1.2投标人应提供的资格文件 投标人应按下列内容和顺序提供详实的文件。投标人应保证所提交文件的真实性。 1.2.1 投标人应提供所投产品制造所依据的技术规范和工艺标准。 1.2.2 除以上内容外,投标人应对本技术规范书要求的其他内容明确应答或明确承诺。如果需要的话,投标人应免费提交招标人要求的供合理评标用的补充数据和资料。 1.2.3 投标人应提供有效期为5年(指试验报告出具日期至开标日小于或等于5年)的复合材料芯软铝型线绞线型式试验报告。型式试验报告的导线截面不小于所招标导线截面(型式试验报告中的复合材料芯棒厂家与本次投标的复合材料芯棒供应商应一致,大截面可代替小截面、高耐热等级可代替低耐热等级、高强度级别可代替低强度级别)。投标时应提供配套金具的制造商名称。 1.2.4投标人应承诺在供货前提供所招标导线型号规格一致的有效期为3年(指试验报告出具日期至开标日小于或等于3年)的导线、耐张线夹、接续管制造单位型式试验报告,。投标人应在供货前提供有效期为5年(指试验报告出具日期至开标日小于或等于5年)的悬垂线夹、间隔棒、防振锤、连接金具等配套金具制造单位的有效型式试验报告。耐张线夹、接续管、悬垂线夹、间隔棒、防振锤、连接金具等配套金具允许外购外协。 (a)复合材料芯软铝型线绞线型式试验包括绞线试验、芯棒试验和软铝型线试验。 绞线试验项目包括:常温拉断力、高温拉断力、应力-应变试验、线膨胀系数、弧垂-温度、常温蠕变、高温蠕变、过滑轮、振动疲劳、20℃直流电阻、截面积、外径、线密度、载流量、表面质量、节径比和绞向、平整度、紧密度、电晕及无线电干扰试验。 芯棒试验包括:外观、直径公差及f值、抗拉强度、线膨胀系数、密度、卷绕、扭转、固化度、径向耐压试验、玻璃化转变温度Tg、高温抗拉强度、弹性模量、耐荧光紫外老化、盐雾试验、玻纤层厚度。 铝单线试验项目包括:外观、尺寸偏差、机械性能、电性能。 (b)耐张线夹及接续管型式试验。

碳纤维的表面处理

新产品与新技术 碳纤维的表面处理 吴 庆 陈惠芳 潘 鼎 (东华大学材料学院 上海200051) 摘 要 本文综述了碳纤维的表面结构与性能,介绍了两种通用的碳纤维表面处理方法:电化学氧化法和等离子氧化法;同时也总结了碳纤维表面处理对提高碳纤维/树脂复合材料界面的粘接机理。 关键词 碳纤维,表面处理,复合材料界面,粘接机理,IL SS SURFACE TREATMENT OF CARBON FIBER Wu Qing Chen Huifang Pan Ding (Material Depatment of Donghua University,Shanghai200051) Abstract A review of the surface structure and performance of carbon fiber is presented.Two general surface treatment method of carbon fiber is introduced:electrochemical and plasma oxidation; The adhesion mechanisms contributing to the improvements in the interface of carbon fiber/resin com2 posites are also summarized. K ey w ords carbon fiber,surface treatment,composite interface,adhesion mechanism,IL SS 碳纤维(CF)具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异的性能[1],这些性能使其成为近年来最重要的增强材料之一,从而在很多领域都得到了广泛的应用。 碳纤维绝大多数是以复合材料的形式使用,其中,又以碳纤维增强树脂基复合材料(CFRP)为应用的主要形式[2]。复合材料的性能不仅取决于其组成材料,更取决于其组成材料之间的界面质量,良好的界面结合能有效地传递载荷,充分发挥增强纤维的高强高模的特性,提高复合材料的机械性能[3]。但碳纤维/树脂两相界面之间的粘接性能相当差[4]。这就导致两者间较差的应力转移,以致不能充分发挥出复合材料潜在的力学性能。所以必须对碳纤维进行表面处理[5],从而提高复合材料的层间剪切强度(IL SS)。 本文将首先简要介绍碳纤维的表面结构与性能,在此基础上介绍两种通用的表面处理方法,并尝试对表面处理对界面粘接强度的促进机理作出解释。 1 碳纤维的表面结构与性能 111 碳纤维的结构 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的[6]。因此,碳纤维实际上几乎是纯碳(含碳量90%以上)。在热裂解下,排出其它元素,形成石墨晶格结构。但实际的碳纤维结构并不是理想的石墨点阵结构,而是属于“乱层石墨结构”[7]。在乱层石墨结构中,石墨层片是一级结构单元,其直径约为200!;碳纤维的二级结构单元是石墨微晶,石墨微晶一般由数张到数十张层片组成,微晶厚度L c约100!,微晶直径L a约200!,层片与层片之间的距离叫面间距d(d约为314!);由石墨微晶再组成原纤结构,其直径为500!左右,长度为数千!,这是纤维的三级结构单元。最后由原纤结构组成碳纤维的单丝,直径一般为6~8μm。 通过在氧气(O2)等离子体中用腐蚀方法研究碳

碳纤维复合材料在新能源汽车行业中的应用

近几年来,随着低碳环保意识、高新技术的不断发展,尤其是当前汽车轻量化的发展环境中,碳纤维复合材料(CFRP)凭借其超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等特性,成为了当下汽车产业的原材料首选,在汽车上的应用日渐普及。本文将对碳纤 维复合材料(CFRP)所具有的特性、及其在汽车行业的运用情况进行了深入探讨,力求为碳纤维复合材料(CFRP)的未来运用提供一定的参考。 0 引言 随着社会经济的快速发展,低碳节能、高效低成本已经成为各个行业市场竞争的必然选择,低碳环保、节能减排也是当前政府非常重视与强调的,尤其是工业生产与汽车产业。在政府、社会相关宣传与个人环保意识不断提升的推动下,汽车等相关领域不断创新与发展,为新型 低成本三维复合材料带来发展契机。碳纤维复合材料不仅具有良好的性能,诸如:超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等,在提升性能方面具有不可替代作用,还能降低车身的总体成本,非常有利于汽车赢得消费者的青睐并抢占更多的市场份额。碳纤 维复合材料在汽车车身中的运用已经成为世界各国争相发展的一门关键技术,尤其是具有成 熟汽车产业市场的欧美国家与日本,这些国家各大车厂在进行汽车生产的过程中都大量选用 了碳纤维材料,实现优化车体结构、降低汽车车身生产成本以及提高汽车性能的目标。 本文将深入探讨碳纤维复合材料的特性及其在汽车行业运用现状,结合碳纤维复合材料在 汽车行业中的运用实例,分析碳纤维复合材料所具有的优势,展望碳纤维复合材料在汽车行 业中的运用前景。 1 碳纤维复合材料《CFRP)介绍 1.1碳纤维复合材料概念 碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新 型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处 理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且 具有耐腐蚀、高模量的特性。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可 加工性,是新一代增强纤维。碳纤维与树脂、金属、陶瓷等基体复合,制成的结构材料简称 碳纤维复合材料。 1.2碳纤维复合材料的特征 (1)超强抗拉弹性 碳纤维复合材料具有超强抗拉弹性,通常情况下高于3 500 MPa、这种强度是钢铁的7倍。另外,不但抗拉弹性远远高于钢,其比模量也远远高于钢。 (2)耐高温、耐腐蚀 相较于其他的材料而言,CFRP具有轻量化、刚强、柔韧性外,还具有耐高温、耐腐蚀、 耐疲劳等超强性能。除此之外,独特的碳结构让其拥有大面积的整体成型特征,同时,它还 拥有良好的稳定性与设计可塑造性,正是这些独有的特征让其可以在车轻量化实现线性增长。 (3)能量吸收性能优越 优越的能量吸收性能是CFRP材料在汽车中被广泛运用的主要原因。CFRP材料是同类的 钢质零部件质量的一半不到,是同类铝制零部件质量的70%左右,质量轻,还能抵抗更大的 冲击,足见CFRP材料的优越性。 1.3碳纤维复合材料发展历史与发展现状 从20世纪70年代开始,CFRP材料开始受到世界各国相关研究人员的关注。在国内的发

碳纤维复合芯导线

1、前言 现代经济的飞速发展加速了电力工业的发展,也大大推动了输电线路的技术进步。架空输电导线作为输送电力的载体,在输电线路中占有极为重要的地位。为了安全可靠地多送电,各国有关科技工作者一直不断努力地寻求架空输电线路用导线,以取代各种传统的导线。长期以来,传统的架空输电导线主要使用钢芯铝绞线,为了提高防腐性能,开发了铝包钢芯铝绞线等。为了提高强度,开发了钢芯铝合金绞线,全铝合金绞线,铝包钢芯铝合金绞线等,为了提高导线的耐热性能和输送容量,开发了各种耐热铝合金导线;为了降低导线弛度,开发了用殷钢芯代替普通钢芯的低弛度导线等。 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。随着材料科学的不断进步,在上世纪90年代,人们尝试用碳纤维复合材料代替金属材料来制作导线的芯材,并取得了一定的成果,已开发出几种复合材料合成芯导线。 这种新型复合材料合成芯导线充分发挥了有机复合材料的特长,与现有各种架空导线相比,具有重量轻、强度大、耐高温、耐腐蚀、线损低、弛度低等优点。可以说,新型复合材料合成型导线是一种全新概念的架空输电线路用导线,它实现了电力传输的节能、环保与安全。 2、国际复合材料芯电缆产业现状及发展趋势 目前国际上在已取得一定成果的碳纤维复合材料芯导线中,日本的碳纤维芯铝绞线和美国的碳纤维和玻璃纤维混合芯铝绞线较为典型。其中日本一家碳纤维导线企业的产量就占到世界40%左右 日本是开发架空线路特种导线品种较多的国家。在新型复合合成芯导线方面,最早是作为一种改进型低弛度导线而提出的;而实际上新型复合材料合成芯导线的优点,远止低弛度一个方面。在架空输电线路中,由于周边环境的变化,有时会发生输电导线与线下被跨越物之间电气隔离距离不够的情况。为了确保隔离距离,通常需要迁移铁塔、改建或改造铁塔。但是,由于用地的制约以及铁塔造价等原因,解决电气隔离距离不够问题最好的办法是更换导线。早在20世纪70年代,在城网改造中,为了增加输电容量,对于架空送电旧线路导线对地距离和相间距离不够的问题,根据殷钢的线膨胀系数比普通钢小得多的特点,用殷钢芯代替普通钢芯,开发了作为低弛度导线的殷钢芯铝绞线。由于这种导线的结构与通常的钢芯铝绞线相同,原来的绝缘子和金具均可以照旧使用,施工工具也可以照旧使用,它能在于铁塔不变的情况下,仅更换导线就行。到了20世纪90年代,日本学者研究用碳纤维芯代替钢芯,开发出了一种新型复合材料合成芯导线,即碳纤维芯铝绞线。这种导线与通常的钢芯铝绞线具有相同的外径和强度,架线施工中不需要特殊的机具和方法。在这种导线中,通常的钢芯铝绞线的钢芯被用碳纤维制成的复合材料芯线所代替,这是一种重量轻、线膨胀系数小,具有良好弛度特性的

碳纤维表面处理

碳纤维表面处理阅读报告 碳纤维是用分解温度低于熔融温度的纤维聚合物, 通过千度以上固相热解而制成的具有比强度高、比模量高、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能, 在航天、航空等高科技领域中被广泛用于碳纤维增强复合材料。 表面物理性能主要包括表面形貌、表面沟槽大小及分布、表面粗糙度、表面自由能等。从表面形态上看, 碳纤维的表面有很多孔隙、凹槽、杂质及结晶, 这些对复合材料的粘结性能有很大影响。碳纤维表面的化学反应活性与其活性基团的浓度密切相关,而这些活性基团主要为羟基、羧基和环氧基团等含氧官能团,故O/C比(氧元素与碳元素比值)可以间接反映碳纤维的化学活性 传统的粘合理论认为被粘物表面的不规则性有利于粘合剂的填入,固化后粘合剂和被粘物表面发生咬合而固定,同时表面粗糙的被粘物会增加真实的粘结面积,粘合强度亦随表面粗糙度的增加而增加,所以碳纤维表面沟槽状态和表面粗糙度可能对其界面强度有影响。常用的表面处理方法有氧化法和非氧化法两大类。 氧化法 1.气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等) 中, 在加温、加催化剂等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度(IFSS) 和层间剪切强度(ILSS) 等力学性能均可得到有效提高, 但材料的冲击强度降低较大。此法按氧化剂的不同, 通常分为空气氧化法和臭氧氧化法。采用空气氧化时, 氧化温度对处理效果有显著影响。臭氧氧化法由于具有时间短、设备工艺简单、氧化缓和等特点, 也得到了广泛的应用。近年来, 利用惰性气体氧化法进行表面处理,也得到了研究人员的关注。 2. 液相氧化法 液相氧化法是采用液相介质对碳纤维表面进行氧化的方法。常用的液相介质有浓硝酸、混合酸和强氧化剂等。液相氧化法相比气相氧化法较为温和, 一般不使纤维产生过多的起坑和裂解。但是其处理时间较长, 与碳纤维生产线匹配难, 多用于间歇表面处理 3. 阳极氧化法 阳极氧化法, 又称电化学氧化表面处理, 是把碳纤维作为电解池的阳极、石墨作为阴极, 在电解水的过程中利用阳极生成的“氧”, 氧化碳纤维表面的碳及其含氧官能团, 将其先氧化成羟基, 之后逐步氧化成酮基、羧基和CO2的过程4等离子体氧化法 等离子体法主要是通过等离子体撞击碳纤维表面,从而刻蚀碳纤维表层,使其表面的粗糙度增加,表面积也相应增加。由于等离子体粒子一般具有几个到几十个电子伏特的能量,使得碳纤维表面发生自由基反应,并引入含氧极性基团。等离子体法还有可能使碳纤维表面微晶晶格遭到破坏,从而减小其微晶尺寸。 非氧化法 1. 表面涂层改性法 表面涂层改性法的原理是将某种聚合物涂覆在碳纤维表面, 改变复合材料 界面层的结构与性能, 使界面极性等相适应以提高界面粘结强度, 同时提供一个可消除界面内应力的可塑界面层。活性涂层可显著改善复合材料的剪切性能, 而

国内外碳纤维企业大汇总

国内外碳纤维企业大汇总 分享到:0分享到微信朋友圈打开微信。点击“发现”, 使用“扫一扫”即可将网页分享至朋友圈。 发布日期:2016-08-09 17:59 来源:碳纤维资讯世界碳纤维的生产主要集中在日本、英国、美国等少数发达国家和我国的台湾省。 碳纤维原丝原料主要有三种:粘胶丝、聚丙烯腈、沥青。 其中,以聚丙烯腈为原料的碳纤维占市场份额75%,技术主要集中在日本的东丽、东邦人造丝、三菱人造丝,美国的ZOLTEK、阿克苏、ALDILI 等手中。 国际上,碳纤维最大生产商东丽、东邦人造丝、三菱人造丝的产量合计占全球产量的一半。 今天为大家盘点一下国内外的碳纤维企业。 1. 日本东丽工业株式会社 日本东丽株式会社设立在日本东京中央区日本桥,创立于1926年1月,是一家以合成纤维,合成树脂起家,现设计涵盖各种化学制品,信息相关素材的大型化学企业。 公司主要生产尼龙、聚氨酯、长丝纱丙烯酸纤维、短纤维、聚酯纤维、丙烯酸纤维、人造纤维与塑料产品原材料、碳纤维、碳纤维合成材料以及注塑产品等。 2. 日本东邦人造丝公司 东邦人造丝公司成立于1950年7月,本部位于东京都中央区日本桥3-3-9西川大厦,主产丙烯酸、人造丝,PAN系碳纤维等。 3. 日本三菱丽阳株式会社 三菱丽阳株式会社是日本最大的腈纶纤维生产商,该公司主要生产化学品,塑料和纤维。除了主要acryrilic纤维外,三菱人造丝也是一种高尔夫球杆顶部材料。 4. 美国卓尔泰克公司 美国卓尔泰克公司(Zoltek)是世界领先的碳纤维生产厂家,年产13000吨碳纤维,及4000吨予氧丝。 碳纤维广泛应用于风力发电,基础设施等。公司还生产碳纤维予浸料,多轴布,符合各种工程塑料用的短切碳纤维,预氧丝。 5. 台湾塑料工业股份有限公司 公司成立于1954年,在纤维制品方面,包括亚克力棉、碳素纤维,其中亚克力棉年产能

相关主题
文本预览
相关文档 最新文档