当前位置:文档之家› 高中数学复习学案函数的单调性

高中数学复习学案函数的单调性

高中数学复习学案函数的单调性
高中数学复习学案函数的单调性

高中数学复习学案函数的单调性 高考要求 了解函数单调性的概念,把握判定一些简单函数的单调性的方法会用函数单调性解决一些咨询题 知识点归纳 函数的性质是研究初等函数的基石,也是高考考查的重点内容在复习中要肯于在对定义的深入明白得上下功夫

复习函数的性质,能够从〝数〞和〝形〞两个方面,从明白得函数的单调性定义入手,在判定和证明函数的性质的咨询题中得以巩固,在求复合函数的单调区间、函数的最值及应用咨询题的过程中得以深化 函数的单调性只能在函数的定义域内来讨论函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质函数的单调性是对某个区间而言的,因此要受到区间的限制 1函数单调性的定义: 2 证明函数单调性的一样方法:

①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -〔一样结果要分解为假设干个因式的乘积,且每一个因式的正或负号能清晰地判定出〕;判定正负号

②用导数证明: 假设)(x f 在某个区间A 内有导数,那么()0f x ≥’

,)x A ∈( ?)(x f 在A 内为增函数;?∈≤)0)(A x x f ,(’

)(x f 在A 内为减函数 3 求单调区间的方法:定义法、导数法、图象法 4复合函数[])(x g f y =在公共定义域上的单调性:

①假设f 与g 的单调性相同,那么[])(x g f 为增函数;

②假设f 与g 的单调性相反,那么[])(x g f 为减函数 注意:先求定义域,单调区间是定义域的子集 5一些有用的结论:

①奇函数在其对称区间上的单调性相同;

②偶函数在其对称区间上的单调性相反;

③在公共定义域内:

增函数+)(x f 增函数)(x g 是增函数;

减函数+)(x f 减函数)(x g 是减函数;

增函数-)(x f 减函数)(x g 是增函数;

减函数-)(x f 增函数)(x g 是减函数 ④函数)0,0(>>+=b a x b ax y 在(][)

+∞-∞-,,ab ab 或上单调递增;在[)(]

ab ab ,或00,-上是单调递减 题型讲解

例1假设y=log a (2-ax)在[0,1]上是x 的减函数,那么a 的取值范畴是

A (0,1)

B (1,2)

C (0,2)

D [2,+∞)

分析:此题存在多种解法,但不管哪种方法,都必须保证:①使log a (2-ax)有意义,即a >0且a ≠1,2-ax >0②使log a (2-ax)在[0,1]上是x 的减函数由于所给函数可分解为y=log a u ,u=2-ax ,其中u=2-ax 在a >0时为减函数,因此必须a >1;③[0,1]必须是y=log a (2-ax)定义域的子集

解法一:因为f(x)在[0,1]上是x 的减函数,因此f(0)>f(1), 即log a 2>log a (2-a)

解法二:由对数概念明显有a >0且a ≠1,因此u=2-ax 在[0,1]上是减函数,y= log a u 应为增函数,得a >1,排除A ,C ,再令a=3,那么3log (23)y x =-的定义域为2

(,)3

-∞,但[0,1]不是该区间的子集故排除D ,选B 讲明:此题为1995年全国高考试题,综合了多个知识点,不管是用直截了当法,依旧用排除法都需要概念清晰,推理正确

例2〔1〕求函数20.7log (32)y x x =-+的单调区间;

〔2〕2()82,f x x x =+-假设2

()(2)g x f x =-试确定()g x 的单调区间和单调性 解:〔1〕单调增区间为:(2,),+∞单调减区间为(,1)-∞,

〔2〕222

()82(2)(2)g x x x =+---4228x x =-++, 3()44g x x x '=-+,

令 ()0g x '>,得1x <-或01x <<,

令 ()0g x '<,1x >或10x -<<

∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-

例3设0a >,()x x e a f x a e

=+是R 上的偶函数 〔1〕求a 的值;〔2〕证明()f x 在(0,)+∞上为增函数

解:〔1〕依题意,对一切x R ∈,有()()f x f x -=,即1x x x x

e a ae ae a e +=+ ∴11()()x x a e a e --

0=对一切x R ∈成立,那么10a a

-=,∴1a =±, ∵0a >,∴1a =

〔2〕(定义法)设120x x <<,那么12121211()()x x x x f x f x e e e e -=-+- 212112112211

1()(1)(1)x x x x x x x x x x x e e e e e e e

+-++-=--=-, 由12210,0,0x x x x >>->,得21120,10x x x x e

-+>->,2110x x e +-<,

∴12()()0f x f x -<,

即12()()f x f x <,∴()f x 在(0,)+∞上为增函数

〔导数法〕∵1a =,(0,)x ∈+∞ ∴211()1()()0x x

x x x x e f x e e e e e -''=+=-=> ∴()f x 在(0,)+∞上为增函数

例4〔1〕假设()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,那么()0x f x ?<的解集为___________

解:由()0x f x ?<得0()0x f x ?或0()0

x f x >??

∵()f x 为奇函数,在(,0)-∞上是减函数, (2)0f -=

∴由02()0x x f x ?;由02()0x x f x >??>?

∴()0x f x ?<的解集为(,2)(2,-∞-+∞

例5 函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ?=+,且当1x >时()0,(2)1f x f >=, 〔1〕求证:()f x 是偶函数;

〔2〕()f x 在(0,)+∞上是增函数;

〔3〕解不等式2

(21)2f x -< 解:〔1〕令121x x ==,得(1)2(1)f f =,∴(1)0f =,

令121x x ==-,得(1)0f -=,

∴()(1)(1)()()f x f x f f x f x -=-?=-+=,

∴()f x 是偶函数

〔2〕设210x x >>,那么

221111()()()()x f x f x f x f x x -=?-221111()()()()x x f x f f x f x x =+-= ∵210x x >>,∴21

1x x >,∴21()x f x 0>, 即21()()0f x f x ->,∴21()()f x f x >

∴()f x 在(0,)+∞上是增函数

〔3〕(2)1f =,∴(4)(2)(2)2f f f =+=,

∵()f x 是偶函数

∴不等式2(21)2f x -<可化为2

(|21|)(4)f x f -<,

又∵函数在(0,)+∞上是增函数,

∴2|21|4x -<,解得:x <<

即不等式的解集为( 例6函数9()log (8)a

f x x x

=+-在[1,)+∞上是增函数,求a 的取值范畴 分析:由函数9()log (8)a f x x x =+-在[1,)+∞上是增函数能够得到两个信息:①对任意的121,x x ≤<总有12()()f x f x <;②当1x ≥时,80a x x

+->恒成立

解:∵函数9()log (8)a f x x x =+-在[1,)+∞上是增函数,

∴对任意的121,x x ≤<有12()()f x f x <, 即919212

log (8)log (8)a a x x x x +-<+-,得 121288a a x x x x +-<+-,即1212

()(1)0a x x x x -+<, ∵120x x -<,∴1210,a x x +

> 121,a x x >- 12a x x >-, ∵211x x >≥,∴要使12a x x >-恒成立,只要1a ≥; 又∵函数9()log (8)a f x x x

=+-在[1,)+∞上是增函数,∴180a +->, 即9a <,综上a 的取值范畴为[- 另解:〔用导数求解〕

令()8a g x x x =+-,函数9()log (8)a f x x x

=+-在[1,)+∞上是增函数, ∴()8a g x x x =+-在[1,)+∞上是增函数,2()1a g x x

'=+, ∴180a +->,且210a x +≥在[1,)+∞上恒成立,得1a -≤< 学生练习

1判定函数f(x)=ax/(x 2-1) (a≠0)在区间(-1,1)上的单调性

2函数f(x)=a(a x -a -x )/(a -2) (a>0,且a≠1)是R 上的增函数,求a 的取值范畴 3设函数f(x)=ax x -+12 (a>0),求a 的取值范畴,使函数f(x)在区间[0,+∞)上是单调函数 4函数y=322-+x x 的递减区间是 5求y=log 07(x 2-3x+2)的单调区间及单调性

6求y=8+2log 05x -log 052x 的单调区间及单调性

7函数y=lncos(x/3+π/4)的递减区间是

8函数y=log a (2-ax)在[0,1]上是减函数,那么a 的取值范畴是

9奇函数f(x)在定义域[-2,2]上递减,求满足f(1-m)+f(1-m 2)<0的实数m 的取值范畴 10a>0,a≠1,有f(log a x)=x

a x a )1()1(22-- (1)求f(x)的表达式,并证明f(x)在(-∞,+∞)上是增函数;

(2)求证:关于任意大于1的自然数n,f(n)>n 成立 11写出函数f(x)=log 05|x 2-x -12|的单调区间 12比较下面三个数的大小:43

16.0-, 23

16.0-, 23

5.0- f(x)在[0,+∞〕上是增函数,假设关于任意实数x ,不等式f(kx)+f(x -x 2-2)<0恒成立,求实数k 的取值范畴 14q>0,且q≠1,数列{a n }是首项和公比都为q 的等比数列,设b n =a n log 5a n (n ∈N),

(1)当q=5时,求数列{b n }的前n 项和S n ;

(2) 在(1)的条件下,求n

n n na S ∞→lim ; (3)在数列{b n }中,关于任意自然数n ,当m>n 时,都有b m >b n ,求q 的取值范畴 15甲乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/小时,汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(单位:千米/小时)的平方成正比,比例系数为b,固定部分为a 元

(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出那个函数的定义域;

(2)为了使全程运输成本最小,汽车应以多大速度行驶? 16函数f(x)=log 05|sinx -cosx|的单调递增区间是 单调递减区间是

参考答案:

1 a>0,f(x)递减;a<0,f(x)递增

2 a ∈(0,1)?(2,+∞)

3 a ≥1时,f(x)递减; 0

4〔(-∞,-3)])

5在(-∞,1)上递增;在(2,+∞)上递减

6在(0,1/2]上递增;在[1/2,+∞)上递减 7 [6k π-3π/4,6k π+3π/4] k ∈Z

8 (1,2) 9 -1≤m<1 10 (1)f(x)=a(a x -a -x )/(a 2-1);

(2)用数学归纳法:f(n)>n ?f(n)+1>n+1,证明f(n+1)>f(n)+1>n+1 11作图,在(-3,1/2]和(4,+∞)上递减,在(-∞,-3)和[1/2,4)上递增〕 12 43

16.0->23

16.0-> 23

5.0- 13 -22-1

14511--?++n n n ;(2)5/4; (3)q>1或q<1/2 15 (1)y=S(a/v+bv) v ∈(0,c];

(2)假设b a ≤c,那么当v=b

a 时,全程运输成本最小; 假设

b a >c,那么y 在(0,c]上为减函数,从而当v=

c 时,全程运输成本最小 16 [k π+3π/4,k π+5π/4) (k ∈Z);(k π+π/4,k π+3π/4] (k ∈Z) 课前后备注

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

高中数学《函数的单调性》教案

《函数的单调性》说课稿 各位评委老师,上午好,我是号考生叶新颖。今天我的说课题目是函数的单调性。首先我们来进行教材分析。 一、教材分析 本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。 函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。 学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。 二、教学目标: 根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: 1、知识目标: (1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。 (2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;2、能力目标: (1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3、情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

《函数的单调性与导数》教学设计(最新整理)

《函数的单调性与导数》教学设计 教材分析 1、内容分析 导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础. 由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性. 2、学情分析 在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识. 用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣. 教学目标 依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标: 1、知识与技能目标: 借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识. 2、过程与方法目标:

习引入 则 =因为x 1x 2,, 当时; 当时 所以函数在区间上单调递减,在区 间 上单调递增 解法二:图像法 (2)“图象法” 探求新知形成概念 问题:如何确定函数f(x)=2x 3-6x 2+7的单调区间? 导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么能否用导数来研究函数的单调性呢? 前面我们用定义和图像已经知道 二次函数的单调性及单调区间,下面我用几何画板来展示曲线上任何一点的导数的变化。切线的方程.rar 一般的,函数的单调性与其导函数的正负有如下的关系:让学生在短时间内尝试完成,结果发现用 “定义法”作差后判断正负很麻烦,而用“图象法”时,图象又很难画出. 教师对具体例子进行动态演示,学生对一般情况进行实验验 证。由观察、猜想到归纳、总结,

高中数学复习学案函数的单调性

高中数学复习学案函数的单调性 高考要求 了解函数单调性的概念,把握判定一些简单函数的单调性的方法会用函数单调性解决一些咨询题 知识点归纳 函数的性质是研究初等函数的基石,也是高考考查的重点内容在复习中要肯于在对定义的深入明白得上下功夫 复习函数的性质,能够从〝数〞和〝形〞两个方面,从明白得函数的单调性定义入手,在判定和证明函数的性质的咨询题中得以巩固,在求复合函数的单调区间、函数的最值及应用咨询题的过程中得以深化 函数的单调性只能在函数的定义域内来讨论函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质函数的单调性是对某个区间而言的,因此要受到区间的限制 1函数单调性的定义: 2 证明函数单调性的一样方法: ①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -〔一样结果要分解为假设干个因式的乘积,且每一个因式的正或负号能清晰地判定出〕;判定正负号 ②用导数证明: 假设)(x f 在某个区间A 内有导数,那么()0f x ≥’ ,)x A ∈( ?)(x f 在A 内为增函数;?∈≤)0)(A x x f ,(’ )(x f 在A 内为减函数 3 求单调区间的方法:定义法、导数法、图象法 4复合函数[])(x g f y =在公共定义域上的单调性: ①假设f 与g 的单调性相同,那么[])(x g f 为增函数; ②假设f 与g 的单调性相反,那么[])(x g f 为减函数 注意:先求定义域,单调区间是定义域的子集 5一些有用的结论: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

03 函数的单调性与最值学案学生版

函数的单调性与最值 导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值. 自主梳理 1.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是______________. (2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0?f x 1-f x 2 x 1-x 2 >0?f (x ) 在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0?f x 1-f x 2 x 1-x 2 <0?f (x )在[a ,b ]上是________. (3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________. (4)函数y =x +a x (a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x (a <0)在______________上单调递增. 2.最值 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________. 自我检测 1.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2 +bx 在(0,+∞)上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增 2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( ) A .f (a )f (a ) 3.下列函数在(0,1)上是增函数的是 ( ) A .y =1-2x B .y =x -1 C .y =-x 2 +2x D .y =5 4.(2011·合肥月考)设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1f (x 2) C .f (x 1)=f (x 2) D .不能确定 5.当x ∈[0,5]时,函数f (x )=3x 2 -4x +c 的值域为 ( ) A .[c,55+c ] B .[-43+c ,c ] C .[-4 3 +c,55+c ] D .[c,20+c ] 探究点一 函数单调性的判定及证明 例1 设函数f (x )=x +a x +b (a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性. 变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+) (1 x f ,讨论F (x )的单调性,并证明你的结论.

高中数学函数的单调性

一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有( ) A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为( ) A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间)2,0(上递增的是( ) A .x y 1= B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-= x a x f 在()0,∞-上单调递增,则a 的取值范围是( ) A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有( ) A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 如果函数2)1(2)(2+-+=x a x x f 在区间(]2,∞-上是减函数,那么实数a 的取值范围是( ) A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.已知函数)(x f 在()+∞,0是增函数,则)2(f a =,)2(π f b =,)2 3 (f c =的大小关系是__________________________. 9.函数32)(2 +--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞- 上是增函数,则=)1(f ________. 三、解答题 11. 证明函数x x f 11)(-=在 )0,(-∞ 上是增函数. 12.判断函数x x y 1+ =在区间),1[+∞上的单调性,并给出证明.

人教新课标版数学高二-数学选修2-2导学案 1.3.1利用导数判断函数的单调性

1.3.1利用导数判断函数的单调性学案编号:GEXX1-1T3-3-1 【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数一般不超过三次). 【学法指导】结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想. 一般地,在区间(a,b)内函数的单调性与导数有如下关系: 导数函数的单调性 f′(x)>0单调递 f′(x)<0单调递 f′(x)=0常函数 探究点一函数的单调性与导函数正负的关系 问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系? 问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗? 问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1中(4)的单调区间. (2)函数的单调区间与其定义域满足什么关系? 例1已知导函数f′(x)的下列信息: 当10;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0. 试画出函数f(x)图象的大致形状. 跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状. 例2求下列函数的单调区间:

(1)f (x )=2x (e x -1)-x 2; (2)f (x )=3x 2-2ln x . 跟踪训练2 求下列函数的单调区间: (1)f (x )=x 2 -ln x ; (2)f (x )=e x x -2 ; (3)f (x )=sin x (1+cos x )(0≤x <2π). 探究点二 函数的变化快慢与导数的关系 问题 我们知道导数的符号反映函数y =f (x )的增减情况,怎样反映函数y =f (x )增减的快慢呢?能否从导数的角度解释变化的快慢呢? 例3 如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象. 跟踪训练3 已知f ′(x )是f (x )的导函数,f ′(x )的图象如图所示,则f (x )的图象只可能是 ( ) 【达标检测】 1.函数f (x )=x +ln x 在(0,6)上是 ( ) A.单调增函数 B.单调减函数 C.在????0,1e 上是减函数,在????1e ,6上是增函数 D.在????0,1e 上是增函数,在????1 e ,6上是减函数 2. f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是 ( )

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

数学必修一函数的单调性学案

数学必修一函数的单调性学案 学习目标要求: 1.理解函数单调性的概念; 2.掌握判断函数单调性的一般方法; 3.体验数形结合思想在函数性质研究中的价值,掌握其应用。 一、函数单调性的概念 1:增函数 (1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数,区间D称为函数f(x)的单调递减区间。 (2)几何意义:函数f(x)的图象在区间D上是下降的,如图所示: 3:单调性与单调区间 定义:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 思考:

(1)单调性是函数在定义域上的“整体”性质吗? 不是,由定义中“定义域I内某个区间D”知函数的单调递增区间或单调递减区间是其定义域的子集,这说明单调性是与“区间”紧密相关的,一个函数在定义域的不同区间可以有不同的单调性。 (2)定义中的“x1、x2”具备什么特征? 定义中的x1、x2有以下几个特征:一是任意性,即任意取x1,x2,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x10,减函数有错误!未找到引用源。<0 二、判断函数单调性的一般方法 (1)定义法:利用定义严格判断。一般步骤如下: ①取值:任选定义域中同一单调区间D上的自变量值x1,x2,且设x1

高中数学函数单调性教案

课题:§1.3.1函数的单调性 教学目的: (1)通过已学过的函数,学会运用函数图象理解和研究函数的性质; (2)理解函数的单调性的定义及单调函数的图象特征; (3)能够熟练应用定义判断函数在某一区间上的的单调性; (4)通过本节知识的学习,培养学生严密的逻辑思维能力,用运动变化、数形结合、分类讨论的思想方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看待问题. 教学重点:函数单调性的定义及单调函数的图象特征. 教学难点:利用函数的单调性的定义判断或证明函数的单调性. 教法与学法:启发式教学,充分发挥学生的主体作用. 教学用具:黑板、计算机多媒体、投影仪 教学过程: 一.情景引入: 1.在第23届奥运会上中国首次参加就获得15枚金牌,第24届奥运会中国获得5枚金牌,第25届和第26届奥运会中国都获得了16枚金牌,第27届奥运会中国获得了28枚金牌,第28届奥运会中国获得了32枚金牌,第29届北京奥运会中国获得51枚金牌的好成绩. 画出散点图,由图象很清晰的可以看到,从1996年第26届奥运会开始,中国所获得的金牌数不断增加,这充分说明了我们祖国的繁荣富强也大大的促进了体育事业的飞速发展. 2.德国著名心理学家艾宾浩斯的研究数据: 将表中数据绘制在坐标系中连出草图,这就是著名的艾宾浩斯记忆遗忘曲线. 观察这条曲线,你能得出什么规律呢?(学生回答) 这是一条衰减曲线,随着时间的推移,记忆的保持量逐渐减小. 第一天遗忘的速度最快,一天之后遗忘的速度趋于缓慢. 这一规律就提醒我们:在学习新知识的时候,一定要及时进行复习和巩固,以便加深理解和记忆. 象这样,在生活中,我们关心很多数据的变化,了解这些数据的变化规律,对我们的生活是很有帮助的. 观察数据的方法往往是看:随着自变量的变化,函数值是如何变化的. 这就是我们今天要研究的函数的单调性.

《1.3.1 函数的单调性与导数》教学案3

《1.3.1 函数的单调性与导数》教学案3 一、教材分析 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。根据课程标准,本节分为四课时,此为第一课时。 二、教学目标 1,知识目标: 1)正确理解利用导数判断函数的单调性的原理; 2)掌握利用导数判断函数单调性的步骤。 2,能力目标: 学生经历发现问题、提出问题、分析问题、解决问题的过程,提高创新能力。 3,情感、态度与价值观目标: 在愉悦的学习氛围中,学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。 三、教学重点难点 教学重点:利用导数判断函数单调性。 教学难点:利用导数判断函数单调性。. 四、教学方法:探究法 五、课时安排:1课时 六、教学过程 【引 例】 1.确定函数2 43=-+y x x 在哪个区间内是增函数?在哪个区间内是减函数? 解:2243(2)1y x x x =-+=--,在(,2)-∞上是减函数,在(2,)+∞上是增函数。 问:1)、为什么243=-+y x x 在(,2)-∞上是减函数,在(2,)+∞上是增函数?

2)、研究函数的单调区间你有哪些方法? (1)观察图象的变化趋势;(函数的图象必须能画出的) (2)利用函数单调性的定义。(复习一下函数单调性的定义) 2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数?哪个区间内是减函数? (1)能画出函数的图象吗? (2)能用单调性的定义吗?试一试,提问一个学生:解决了吗?到哪一步解决不了?(产生认知冲突) 【发现问题】定义是解决单调性最根本的工具,但有时很麻烦,甚至解决不了。尤其是在不知道函数的图象的时候,如函数f (x )=2x 3-6x 2+7,这就需要我们寻求一个新的方法来解决。(研究的必要性)事实上用定义研究函数2 43=-+y x x 的单调区间也不容易。 【探 究】 我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。 问:如何入手?(图象) 从函数f (x )=2x 3-6x 2+7的图象吗? 1、研究二次函数243=-+y x x 的图象; (1) 学生自己画图研究探索。 (2) 提问:以前我们是通过二次函数图象的哪些特征来研究它的单调性的? (3) (开口方向,对称轴)既然要寻求一个新的办法,显然要换个角度分析。 (4) 提示:我们最近研究的哪个知识(通过图象的哪个量)能反映函数的变化 规律? (5) 学生继续探索,得出初步规律。几何画板演示,共同探究。 得到这个二次函数图象的切线斜率的变化与单调性的关系。(学生总结): ①该函数在区间(,2)-∞上单调递减,切线斜率小于0,即其导数为负; 在区间(2,)+∞上单调递增,切线斜率大于0,即其导数为正; 注:切线斜率等于0,即其导数为0;如何理解? ②就此函数而言这种规律是否一致?是否其它函数也有这样的规律呢? 2、先看一次函数图象; 3、再看两个我们熟悉的函数图象。(验证) (1) 观察三次函数3y x =的图象;(几何画板演示) }都是反映函数随自 变量的变化情况。

1.3.1函数的单调性与导数教案

§1.3.1函数的单调性与导数 【教学目标】 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 【教学重点】利用导数判断函数单调性。 【教学难点】利用导数判断函数单调性。 【内容分析】 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。 【教学过程】 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=. 2.法则1 )()()]()([' ' ' x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数求导的基本步骤是:分解——求导——相乘——回代. 5.对数函数的导数: x x )'(ln = e x x a a log 1 )'(log =. 6.指数函数的导数:x x e e =)'(; a a a x x ln )'(=. 二、讲解新课 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 342+-=x x y 的图像 可以看到: 在区间(2,∞+)内,切线的斜率为正,函数y=f(x) 的 y =f (x )=x 2-4x +3 切线的斜率 f ′(x ) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 3 2 1 f x () = x 2-4?x ()+3 x O y B A

函数的单调性学案+练习(精华)

第四讲:函数的单调性 【 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2)(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2 )(x x f =的图象在y 轴左侧是______的, )(x x f =的图象在y 轴右侧是_______的. (2). x x f =)( 在),(+∞-∞上,f (x )随着x 的增大而___________;2)(x x f =在]0,(-∞ 上, f (x )随着x 的增大而_______;2)(x x f =在),0(+∞上,f (x )随着 x 的增大而________. 讲授新课 函数的单调性 ※ 增函数、减函数的定义 【经典范例】 例1 下图是定义在区间[-5,5]上的函数(x f y =根据图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数? 思维点拔: x )()(21x f x < )()(21x f x >

例2 证明:函数x x f 1)(=在),0(+∞上是减函数. 证明: 例3 物理学中的玻意耳定律V k p = (k 为正常数)告诉我们,对于一定量的气体,当其体积 V 减小时,压强p 将增大,试用函数的单调性证明之. 思维点拔: 只需证明函数V k p =在区间()+∞,0上是减函数即可. 归纳:用定义法证明函数单调性的一般步骤: ( ) ( ) ( ) ( ) ( ) 【拓展训练】 1.下列函数中,在)0,(-∞上为减函数的是( ) A.y=3x B.y=-x 2 C.y=︱x ︱ D.y=2x+1 2.函数3)1()(-+=x k x f 在),(+∞-∞上单调递减,则k 的取值范围是( ) A.k>0 B.k<0 C.k>-1 D.k<-1 3.函数1062 +-=x x y 在区间(1,4)上为( )函数. A.单调递增 B.单调递减 C.先增后减 D.先减后增 4.已知函数)(x f 在(-2,3)上是减函数,则有( ) A.f(-1)

相关主题
文本预览
相关文档 最新文档