当前位置:文档之家› 第七章离散时间信号与系统的Z域分析总结

第七章离散时间信号与系统的Z域分析总结

信号与系统重点概念公式总结

信号与系统重点概念公式 总结 Last updated on the afternoon of January 3, 2021

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jba 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121 **==?≠=??? 其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统实验报告总结

信号与系统实验 实验一常用信号的观察 方波: 正弦波: 三角波: 在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成 方波DC信号: DC信号几乎没有,与理论相符合,原信号没有添加偏移。 方波基波信号: 基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。 方波二次谐波信号: 二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号: 三次谐波信号频率为150Hz为原方波信号的三倍。幅值较一二次谐波大为减少。方波四次谐波信号: 四次谐波信号的频率为200Hz为原方波信号的四倍。幅值较三次谐波再次减小。方波五次谐波信号: 五次谐波频率为250Hz为原方波信号的五倍。幅值减少到0.3以内,几乎可以忽略。 综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号: 基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。 方波基波加三次谐波信号加五次谐波信号: 基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。 综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。说明,方波信号可有多个谐波合成。

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统实验总结1

实验总结 班级:10电子班学号:1039035 姓名:田金龙这学期的实验都有:信号的时域分析、线性时不变系统的时域分析、连续时间信号系统的频域分析、连续时间在连续时间信号的频域LTI系统的复频域分析、连续时间LTI系统的频域分析。在这学期的学习中学习了解到很多关于信号方面的处理方法加上硬件动手的实践能力,让我对课堂上所学到的知识有了更深层次的理解也加深了所学知识的印象。下面则是对每次实验的分析和总结: 实验一:信号的时域分析 在第一次试验中进行信号的时域分析还有的就是学会使用MATLAB软件来利用它实现一些相关的运算并且绘制出相关的信号图。在时域分析中掌握连续时间信号和离散时间信号的描述方法,并能够实现各种信号的时域变化和运算。了解单位阶跃信号和单位冲激信号的拓展函数,以便于熟悉这两种函数在之后的程序中的应用。在能够对简单信号的描述的前提下,通过一些简单的程序,实现信号的分析,时域反相,时域尺度变换和周期信号的描述。 clear, close all dt=0.01; t=-2:dt:2; x=u(t); plot(t,x) title('u signal u(t)') grid on 连续时间信号的时域分析后,则是离散时间信号的仿真。通过对连续时间信号的描述和对离散时间信号的描述,发现它们的不同之处在于对时间的定义和对函数的图形描述。在离散时间信号的图形窗口描述时,使用的是stem(n,x)函数。 在硬件实验中,使用一些信号运算单元,加法器,减法器,倍乘器,反相器,积分器和微分器。输入相应的简单信号,观察通过不同运算单元输出的信号。 实验二:线性时不变系统的时域分析 在线性时不变系统的时域分析中主要研究的就是信号的卷积运算,学会进行信号的卷积

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

离散时间系统的z域分析

第7章 离散时间系统的z 域分析 1.z 变换是如何提出的?它的作用是什么? z 变换是为分析离散时间系统而提出的一种工程分析方法,它在离散时间系统分析中的地位和作用等价于连续时间系统分析中的拉氏变换。它可以看作为拉氏变换的推广。 z 变换定义为:()[]n n X z x n z ∞ -=-∞ = ∑ ---- 双边z 变换 (1) ()[]n n X z x n z ∞ -==∑---- 单边z 变换 (2) 其中z 是复变量,Re Im j z z j z re Ω=+=。 而对于取样信号的拉氏变换为 ()()()() ()() ()st st s s n st n snT n X s x t e dt x nT t nT e dt x nT e t nT dt x nT e δδ∞∞ ∞ ---∞-∞ =-∞∞ ∞ --∞=-∞ ∞ -=-∞ ?? ==-???? ??=-????= ∑??∑?∑ (3) 如果 [](),x n x nT =令sT z e =,可以发现式(1)和式(3)相同。 2.双边z 变换和单边z 变换时如何定义的?它们的定义域是如何确定的?收敛域的意义是什么? z 变换定义为:()[]n n X z x n z ∞ -=-∞ = ∑ ---- 双边z 变换 (1) ()[]n n X z x n z ∞-==∑---- 单边z 变换 (2) z 变换收敛域就是使上述级数收敛的所有z 的取值的集合。根据级数收敛理论,一般我们用根值判别法或比值判别法来确定z 变换收敛域, 其作用是建立序列和z 变换之间的一一对应关系。 根据序列的不同性质,序列z 变换的收敛域各不相同,具体参阅教材Page 297-298 表7-1。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

实验6离散时间系统的z域分析

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z =

由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性: ①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。 ②系统的频率响应取决于系统的零极点,根据系统的零极点分布情况,可以通过向量分析系统的频率响应。 ③因果的离散时间系统稳定的充要条件是H(z)的全部极点都位于单位圆内。 三、实验内容 (1)已知因果离散时间系统的系统函数分别为: ①23221()0.50.0050.3 z z H z z z z ++=--+

信号与系统课程总结

信号与系统课程总结 The final edition was revised on December 14th, 2020.

信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是否能够由确定的数学函数表达 ②周期信号与非周期信号 取决于该信号是否按某一固定周期重复出现 ③连续信号与离散信号 取决于该信号是否在所有连续的时间值上都有定义 ④因果信号与非因果信号 取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义) 3系统的概念 即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类 无记忆系统:即输出只与同时刻的激励有关 记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系 相互依存,缺一不可 二连续系统的时域分析 1零输入响应与零状态响应 零输入响应:仅有该时刻系统本身具有的起始状态引起的响应 零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应 注:系统的全响应等于系统的零输入响应加上零状态响应 2冲激响应与阶跃响应 单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应

单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应 三傅里叶变换的性质与应用 1线性性质 2脉冲展缩与频带变化 时域压缩,则频域扩展 时域扩展,则频域压缩 3信号的延时与相位移动 当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后 四拉普拉斯变换 1傅里叶变换存在的条件:满足绝对可积条件 注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理 表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积 五系统函数与零、极点分析 1系统稳定性相关结论 ①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的; ②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的; ③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。 六离散系统的时域分析 1常用的离散信号 ①单位序列②单位阶跃序列③矩阵序列④正弦序列⑤指数序列 七离散系统的Z域分析 1典型Z变换 ①单位序列②阶跃序列③指数序列④单边正弦和余弦序列 2Z变化的主要性质 ①线性性质②移位性质③尺度变换④卷和定理 八连续和离散系统的状态变量分析 1状态方程

信号与系统实习报告

信号与线性系统上机实习报告 学生姓名: 班号: 学号: 指导老师: 中国地质大学(武汉)机械与电子信息学院 2014 年4月

实验一波形发生 一、实验目的: 了解一些常见的波形的程序产生,及函数特性。 二、设计方法: 利用matlab给定的一些自带函数产生。 三、实验内容: 1、矩形波:产生宽度为1的矩形波; 源程序: x=-2:0.01:2; y=rectpuls(x); plot(x,y); title(‘方波’); 波形图: 2、锯齿和三角波发生 源程序: x=-4*pi:0.03:4*pi; y=sawtooth(x,0.1); plot(x,y); xlabel(‘幅值’); ylabel(‘时间’); title(‘三角波’);

波形图: 3、产生一个30HZ方波信号,幅度为1 源程序: x=0:0.0003:0.2; y=square(2*pi*30*x); plot(x,y); xlabel(‘幅值’); ylabel(‘时间’); title(‘周期方波信号’); 波形图:

4、产生一频率为10kHz的周期高斯脉冲信号,其带宽为50%。脉冲重复的 频率为1kHz,采样率为50kHz,脉冲序列的长度为10ms。重复时幅度每次衰减为原来的0.8倍; 源程序: x=0:0.00002:0.01; d=[0:0.001:0.01;0.8.^(0:10)]'; y=pulstran(x,d,'gauspuls',10000,0.5); plot(x,y) 波形图: 实验二信号的卷积 一、实验目的: 对卷积有一定的认识,了解卷积的波形图。 二、算法概要: 表示卷积计 求两个信号卷积的公式:y(n)=x(n) h(n)= 三、实验内容: (t)=ε (t-1)- ε(t-2) 1. 已知两个信号:? 1 (t)=ε (t-2)- ε(t-3) ? 2

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

实验三、 离散系统的Z域分析

实验三、 离散系统的Z 域分析 (一)实验要求 1)学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义; 2)深入理解离散系统频率特性的对称性和周期性; 3)认识离散系统频率特性与系统参数之间的关系; 4)通过阅读、修改并调试本实验系统所给源程序,加强计算机编程能力; (二)实验内容 1、计算差分方程 (1)用MATLAB 计算差分方程 当输入序列为 时的输出结果 。 MATLAB 程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; h=filter(a,b,x); stem(k,h) xlabel('n');ylabel('h(n)') 请给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 (说明:y=filter(a,b,x),计算系统对输入信号向量x 的零状态响应输出信号向量y,x 与y 长度相等,其中a 和b 是∑∑-=-M i i N i i i n x b i n y a )()(所给差分方程的相量。详见教材P20-21) 2、 用MATLAB 计算差分方程 所对应的系统函数的FT 。 差分方程所对应的系统函数为:

123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其FT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2); plot(w/pi,imag(h));grid title('虚部') xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3); plot(w/pi,abs(h));grid title('幅度谱') xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4); plot(w/pi,angle(h));grid title('相位谱') xlabel('\omega/\pi');ylabel('弧度') (说明:freqz 为计算数字滤波器H(z)的频率响应函数。h=freqz(num,den,w)为计算由向量w 指定的数字频率点上数字滤波器H(z)的频率响应)(ωj e H ,结果存于h 向量中。Num 和den 为H(z)分子和分母多项式向量。详见教材P65) 3、求解

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

离散系统的Z域分析

实验名:离散系统的Z 域分析 一、实验目的 1、掌握离散序列z 变换的计算方法。 2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。 3、掌握利用MATLAB 进行z 反变换的计算方法。 二、实验原理与计算方法 1、z 变换 离散序列x (n )的z 变换定义为:∑∞ -∞ =-= n n z n x Z X )()(。 在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。其命令格式为: syms n; f=(1/2)^n+(1/3)^n; ztrans(f) 2、离散系统的系统函数及因果稳定的系统应满足的条件 一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即 y (n )= x (n )* h (n ) 对该式两边取z 变换,得: Y (z )= X (z )· H (z ) 则: ) () ()(z X z Y z H = 将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即 ∑∞ -∞ =-= =n n z n h n h Z z H )()]([)( 对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若 ∞<∑∞ -∞ =n n h |)(|,则 系统稳定。由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。因为∑∞ -∞ =-= n n z n h z H )()(,若z =1时H (z )收敛,即 ∞<= ∑∞ -∞ ==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。 因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。 3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法 MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。其中A 为待求根多项式的系数构成的行向量,返回向量p 是包含该多项式所有根位置的列向量。 如:求多项式8 1 43)(2++=z z z A 的根的MA TLAB 命令为: A=[1 3/4 1/8]; p=roots(A) 运行结果为: p= -0.5000 -0.2500 也可以用[z,p,k]=tf2zp(B,A)函数求得。其中z 为由系统的零点构成的向量,p 为由系统的极点构成的向量,k 表示系统的增益;B 、A 分别为系统函数中分子分母多项式的系数向

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号与系统_——需记忆资料2014.5.11总结(内部资料)

第一章信号与系统 教学目的: 熟悉信号的概念和分类,掌握信号的基本运算。 掌握阶跃函数和冲激函数的特点和性质,掌握LTI系统的描述和特性。 教学重点与难点: 掌握信号的加法、乘法,反转、平移,尺度变换等基本运算。 冲激函数的特点和性质,LTI系统的特性。 §1.2 信号的描述和分类 一、信号的描述 ●信号是信息的一种物理体现。它一般是随时间或位置变化的物理量。 ●信号按物理属性分:电信号和非电信号。它们可以相互转换。 电信号容易产生,便于控制,易于处理。本课程讨论电信号---简称“信号”。 ●电信号的基本形式:随时间变化的电压或电流。 ●描述信号的常用方法 (1)表示为时间的函数 (2)信号的图形表示--波形“信号”与“函数”两 词常相互通用。 二、信号的分类 信号的分类方法很多,可以从不同的角度对信号进行分类。 ●按实际用途划分: 电视信号,雷达信号,控制信号,通信信号,广播信号,…… ●按所具有的时间特性划分: 确定信号和随机信号;连续信号和离散信号; 周期信号和非周期信号;能量信号与功率信号; 一维信号与多维信号;因果信号与反因果信号; 实信号与复信号;左边信号与右边信号;等等。 3. 周期信号和非周期信号 如何判断? 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt 分析 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k) 三.几种典型确定性信号

张宇-信号与系统各章内容整理48学时

第一章 信号与系统 主要内容 重点 难点 1.信号的描述x[n]、x (t ),两者不同之处 2.【了解】 信号的功率和能量 3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化 4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、) 5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。 6.【了解】系统互联 7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。对已知系统进行性质判断(掌握) 1.3、5、7 1.0 0cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期: 2.00cos j t t e w w 、的周期: 自变量变换的量值 确定 0cos j n n e w w 、的周期 性和频率逆转性。 系统的时不变性与线性等性质的证明 2T ωπ = 2N m ωπ =

第二章 线性时不变系统 第三章 周期信号的傅里叶级数表示FS 本章内容安排基本思路: 主要内容 难点 ? 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位 冲激响应() h t ; ? 将任意信号分解为冲激信号()[]t n d d 、的线性组合 [][][]; ()()()k x n x k n k x t x t d d t d t t ¥ ¥ - =- = -= -? ò ? 利用LTI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、 已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应: [][][]y n =x n * h n ; y(t)=x(t)* h(t) ? 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、 ,判断ITI 系统的性质 1.【掌握】卷积和 2.【掌握】卷积积分 3.【掌握】用[]() h t h n 、 判断LTI 的性质 4.【理解】 初始松弛 5. 【掌握】任意信号与冲 激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用) 卷积运算中,求和或者求 积时,上下限的确定 本章内容安排基本思路: 主要内容 难点

相关主题
文本预览
相关文档 最新文档