当前位置:文档之家› AZ31B 镁合金挤压工艺研究

AZ31B 镁合金挤压工艺研究

AZ31B 镁合金挤压工艺研究
AZ31B 镁合金挤压工艺研究

AZ31B 镁合金挤压工艺研究

黄光胜, 汪凌云, 范永革金属成形工艺Vol. 20 №. 5 2002:11-14

镁及镁合金是所有金属结构材料中最轻的,其密度只有1. 74g/ cm3 ,是铝的2/ 3 ,比钢轻78.

1 %。与其它金属材料以及工程塑料相比,镁合金具有很高的比强度和比钢度。镁合金已被誉为21 世纪的金属,近年来在汽车、航空航天、电子工业领域获得了迅速的发展,而且发展前景越来越好[1 ,

2 ] 。作为一种新兴金属材料,镁的现有使用状况远没有充分发挥镁合金材料的潜在优势,

镁合金在实际工业应用方面的发展远不及铝合金和钢铁工业,其规模只有铝业的1/ 50 ,钢铁工业的1/ 160[3 ] 。其主要原因是: (1) 作为工程材料,大多数的镁结构件都来自压铸这一种加工方式,限制了产品品种和类型; (2) 应用范围小,镁压铸件的80 %来自汽车工业,而且90 %又是室温使用的结构件,且主要局限于小体积零件。

由于镁的晶体结构为密排六方,塑性不及面心立方结构的铝,塑性成形能力差[4 ] ,因而镁合金在压铸成形领域优先得到重视和发展。变形镁合金与铸造镁合金相比,有更优良的综合力学性能,因此为了推动镁合金在航空、航天、汽车、摩托车等领域内的大量应用,发展我国的镁工业,必须大力开发变形镁合金及其生产工艺。对镁合金的挤压工艺进行了生产性试验研究。

1 实验方法及挤压参数的确定

1. 1 实验方法

试验合金为AZ31B ,其成分为表1。在油炉中熔炼,所用原料为Mg(1 级) ,Al (1 级) ,Zn (1

级) ,Al-10 %Mn 中间合金。熔炼过程中采用熔剂保护,石墨模铸造。棒材与型材铸锭尺寸为

<108mm ×250mm ,管材铸锭的尺寸为( <117mm/ <35mm) ×260mm。铸锭均匀化处理温度为400 ℃,保温时间为12h。铸锭均匀化处理后,车外皮,再挤压。

棒材与型材在1250t 卧式挤压机上成形,管材在600t 的立式挤压机上成形。挤压温度定为400 ℃,挤压筒和模具温度比挤压温度低,取380 ℃。为满足组织和力学性能要求,一般挤压比λ≥8 ,棒材的λ为10 ~25 ,管材、型材的λ为10 ~45。选择挤压速度为1 ~2. 5 m/ min。对铸锭和挤压出的棒材、管材、型材取样,在OLYMPUS 金相显微镜上进行微观组织观察。在WE2100 万能材料试验机上对棒材、管材、型材进行室温力学性能测试。

1. 2 挤压参数的确定

(1)挤压温度的确定。

挤压温度是挤压参数中最活跃的因素,它不但影响挤压过程的进行,还影响收得率、产品的质量以及力学性能等。从理论上考虑,应根据合金的相图、塑性图、和再结晶图[5 ] ,即挤压温度应低于合金的固相线高于再结晶温度,并且是塑性较好的温度,但实际上远比此复杂,尤其对镁合金而言,它易烧、易爆,需要格外注意。根据以上因素综合考虑,将镁合金的挤压温度定为300~450 ℃

[6 ] ,挤压筒、垫片、模具的温度一般比挤压温度低25 ℃,以补偿由于摩擦热、变形热而引起的温升。考虑到以上情况, 对AZ31B 而言, 取挤压温度为400 ℃。

(2)挤压速度的确定。

选择挤压速度的原则是,在保证制品不产生表面裂纹毛刺和扭拧、弯曲、波浪、间隙、扩(并) 口以及尺寸等重量问题的前提下,当挤压机能力允许时,速度越快越好。但挤压速度的确定同挤压温度一样,也十分复杂。挤压速度的大小受合金、状态、毛料、尺寸、挤压方法、挤压力、工具、制品复杂程度、挤压温度、模孔数量、润滑条件等的影响[7 ,8 ] 。因此综合考虑,AZ31B 的挤压速度定为1~2. 5m/ min。

(3)挤压比的确定。

为使镁合金在挤压过程中达到正常的加工效果,必须使断面减缩率保持在一定的范围内[6 ] 。试验的挤压比确定为:棒材的λ为10~25 ,管材、型材的λ为10~45 。

2 试验结果

2. 1 铸锭组织

铸锭的铸态组织如图1 ,基体为α固溶体,在基体上存在大量粗大枝晶, 少量的第二相

Mg17Al12呈骨骼状分布于枝晶间和晶界处。均匀化处理后的组织如图2 ,在基体上的枝晶数量大大减少,在枝晶之间以及基体上还存在着少量的Mg17Al12 第二相,Mg17Al12 相是在均匀化处理冷却过程中析出。枝晶数目的减少,说明在均匀化过程中,凝固期间产生的枝晶偏析减少,枝晶与基体的成分分布更均匀。

图1 AZ31B 铸锭显微组织

图2 AZ31B 铸锭均匀化后显微组织

2. 2 挤压材的组织与性能

表2 AZ31B 棒材、管材、型材的室温力学性能

试验中共挤出了11 种规格的棒材、管材和型材,其力学性能见表2。加工态纵向面的组织如图3所示,该组织为等轴晶,是典型的再结晶组织。由于加工温度高,在加工过程中已发生了动态再结晶。

图3 挤压材纵向显微组织

3 分析与讨论

镁合金在凝固过程中,当熔融的金属凝固成铸锭时,其化学成分与组织是不均匀的。在铸造过程中,由于快速冷却和非平衡结晶的结果,常在铸锭中造成晶内偏析及区域偏析,并在铸锭内形成很大的内应力[8 ] 。由于偏析和在晶界以及枝晶间存在Mg17Al12 第二相,使镁合金的热塑性降低,

加工性能变坏。在400 ℃×15h 的均匀化处理过程中,通过原子扩散,可在很大程度上消除晶内偏析和内应力。改善了铸锭化学成分与组织的不均匀性,提高其工艺塑性。

滑移沿原子密度最大的面和此面上原子密度最大的方向进行滑移时,所需能量最小,因此只有原子排列最密或较密的面以及这些面上原子排列最密或较密的方向才能发生滑移[9 ] 。室温下,镁的塑性变形限于基面{0001} < 112 -0 > 滑移及锥面{101 -2} <1 > 孪生[4 ,5 ] ;高温下,纯镁可沿{101 -1} < 112 -0 >滑移[5 ] 。因此与铝晶体的12 个几何滑移系及5个独立滑移系相比,镁塑性比铝差。所以为使镁合金能实现塑性变形,笔者采用了热挤压,通过提高温度来激活{101 -1} < 112 -0 > 滑移系,增加镁合金的塑性。

金属在挤压变形区中处于强烈的三向压应力状态可以充分发挥其塑性,提高其变形能力,获得大变形量,因此,对于镁合金这类塑性较差的金属,挤压成形是最容易实现的塑性变形[10 ] 。挤压时的应力状态为三向压缩,应变状态为两向缩短一向伸长。在一般冷挤压以及温挤压时,沿挤压方向的晶粒应该是拉长。但实际情况是沿挤压方向的晶粒是等轴状晶粒(图3) ,这说明在挤压过程中发生了动态再结晶。

在塑性变形过程中总存在一定的加工硬化,因此金属变形的流变应力会随应变的增加而增加。当变形温度很低时应力基本上随应变呈线性增长。当较高温度(0. 5 T m) 变形时,材料处于高塑性状态,这样就会同时进行着加工硬化和动态软化两个矛盾的过程。加工硬化是由于在外加应力作用下增大了位错密度和由于位错之间的交互作用而形成各种稳定、非稳定的位错组态,动态软化包括位错密度的降低和位错重新排列成低能量状态组织[11 ] 。在热变形过程中,主要的软化过程为动态回复和动态再结晶。镁合金的层错能低[4 ] ,因此400 ℃下挤压时,其回复过程并不很强,主要是动态再结晶。加工温度较高,在加工过程中发生了动态再结晶,从图3 中可知,加工态的组织为细小的等轴晶,因此挤压材呈现出良好的力学性能。

4 结论

(1) 铸锭经400 ℃×12h 的均匀化处理后,进行热挤压,其挤压温度为400 ℃,挤压速度为1~

2.5m/ min ,挤压比为10~45 。共挤出了11 种规格的棒材、管材、型材(工字型、槽型、角形、方形、T 形等) 。

(2) 压出的棒材、管材、型材有较好的力学性能,抗拉强度σb 在275~285MPa 之间,屈服强度σ0. 2 在220~225MPa 之间,延伸率δ在15 %~17 %之间。

(3) Z31B 镁合金在400 ℃挤压时,发生了动态再结晶,其挤压材的显微组织为细小的等轴晶。参考文献

[1 ] Kojima Y. Platform Science and Technology for Advanced Magnesium Alloy[J ] . Material Science Forum , 2000 , (350~351) : 3 - 18.

[2 ] E Aghion , B Bronfin. Magnesium alloys Development towards the 21’st Century[J ] . Material Science Forum , 2000 , (350-351) : 19 - 28.

[3 ] Robert E , Bob Brown. MagCon 2000 , 2’nd Australasian Magnesium Conference[J ] . Light metal age , 2000 , 58(9/10) : 44 - 46.

[4 ] Cahn RW. 非铁合金的结构与性能[M] . 丁道云等译. 北京: 科学出版社, 1999 :109 - 115.

[5 ] John Wiley. Magnesium and its alloys [M] . USA: Sons ,Inc. , 1960 :108 - 125.

[6 ] M M Avedesian , H Baker , etc. . ASM Speicalty Handbook Magnesium and Magnesium Alloys[M] . ASM International , 1999 :165 - 166.

[7 ]王祝堂, 田荣璋. 铝合金及其加工手册[M] . 湖南: 中南工业大学出版社, 1989 :4692479.

[8 ]《轻金属材料加工手册》编写组. 轻金属材料加工手册(上册) [M] . 北京: 冶金工业出版社, 1980 :200 - 203.

[9 ]汪凌云. 实用金属塑性成形物理冶金学[M] . 重庆: 科学技术文献出版社重庆分社, 1990 :4 - 19.

[10 ]谢建新, 刘静安. 金属挤压理论与技术[M] . 北京:冶金工业出版社, 2001 :1 - 7.

[11 ]毛卫民, 赵新兵. 金属的再结晶与晶粒长大[M] . 北京:冶金工业出版社, 1994 :197 - 213.

镁合金材料工艺

镁合金发展 针对陕北的跨越式发展目标,提出了建设府谷、神木镁产业基地,推进榆林能源基地资源深度转化,拉长产业链条,加大财政引导资金投入力度,组建省级镁业企业集团,集中力量开展技术攻关,重点发展六种镁合金,加强镁业人才建设 镁锂合金材料是当今世界上最轻的金属结构材料,属于国际上列入高度保密的技术。今年年底,中国将在西安阎良国家航空高技术产业基地实现这种金属结构材料的规模化生产,用于航空、航天、能源等多个领域。 据西安交通大学材料专家柴东朗教授介绍,镁锂合金材料具有低密度、高塑性等特点,是当今世界上最轻的金属结构材料,可部分替代目前应用于航空、航天领域的铝材及其他铝合金材料,具有广泛的应用前景。中国对镁锂合金材料研究已有一段时间,但是大多数处于实验室阶段,直到2010年西安交通大学与西安四方超轻材料有限公司合作在西安阎良国家航空高技术产业基地建成了中国第一条镁锂合金生产线。 经过两年来的进一步研发,目前西安四方超轻材料有限公司已在镁锂合金的冶炼工艺、质量控制、表面处理、机械加工等方面取得了突破性成果,为产品的推广应用创造了良好条件。 根据规划,到今年年底,西安四方超轻材料有限公司镁锂合金超轻材料项目将实现规模化生产,预计可年产100吨镁锂合金超轻材料。 我国镁深加工能力很薄弱。虽然早在50年代后期镁压铸业就已经起步,先后有若干厂家生产林业用机械和工具、风动工具等镁合金压铸件。到了90年代初,在汽车工业、电子工业发展的带动下,国内的镁压铸业有了较大的发展。为3C等产品配套的镁合金压铸件厂主要云集在华南和江、浙地区,尤以珠江三角洲一带最为突出。这一地区受到香港、台湾两地资金的投入、技术的支撑、市场的开拓以及管理的介入等全方位的拉动,发展速度令人关注。 积极稳妥地发展镁产业实现镁合金产业化是一项涉及面广、技术集成度高的大型系统工程。近10多年来,在世界范围内相继建立的一大批镁合金压铸工

镁及镁合金板材的生产工艺流程

镁及镁合金板材的生产工艺流程(一) 镁及镁合金板材的生产工艺流程为: 1、熔炼与铸锭 熔炼包括熔化、合金化、精炼、晶粒细化、过滤等冶金和物理化学过程,通常在反射炉或坩埚炉内进行。镁及镁合金的熔点都在650℃左右,它们极易氧化且随温度的升高而加剧。当温度超过约850℃时,熔体的表面立即燃烧,故熔炼时必须用熔剂覆盖或以保护性气体保护。镁及镁合金在熔融和燃烧状态下遇水、含水(包括结晶水)物质和液态防火介质都可能导致剧烈爆炸,因此,在生产的全过程中注意安全是至关重要的。以隔离空气为主的覆盖熔剂和以提高熔体质量为主的精炼熔剂都是碱金属或碱土金属的氯化物和氟化物。除气(主要是氢)随熔剂精炼进行,也可向熔体中通入活性气体(如氯气)。对凝固时的晶粒粗大倾向,据合金的不同可采取控制熔体温度、向熔体加入微量元素进行变质处理等加以抑制,即晶粒细化(见铸锭晶粒的细化处理)。铸锭通常采用半连续铸锭法。除封闭式铸锭外,流槽和结晶器中裸露的金属,必须用s0:或SF。等气体保护。要科学地确定和控制各项铸造参数,以防止铸锭发生热裂,并降低冷隔深度和减少金属间化合物的形成和聚集。除镁一钇系合金外,铸锭的冷裂倾向小。 2、加热与热轧 铸锭在加热前必须铣面(见有色金属合金锭坯铣面),彻底去除冷隔和偏析物等表面缺陷;合金元素含量高和含锆、钇等的合金还要经均匀化处理(见有色金属合金锭坯均匀化)。铸锭加热时应避免直接热辐射和避免火焰同铝接触,以防局部过热、熔化或燃烧。根据合金的不同加热温度控制在370~510℃范围内。除含锂高的超轻合金有晶型转变外,余者皆为密排六方晶型,塑性差,但变形能力随加热温度的提高和晶粒尺寸的减小而提高,并比立方晶型的金属提高得更快。热轧的总变形量可以达到96%。严格控制终轧温度是保证热加工状态成品板材的力学性能并防止板坯及薄板产生裂纹的重要途径。晶粒粗大的铸锭和厚度较小的热轧成品,有的要进行二

AZ80镁合金组织性能及其成型的关键技术

AZ80镁合金组织性能及其成型的关键技术 引言 金属镁始于1808年为人所知,直到1886年德国才开始将其用于工业领域。镁有广泛的用途,主要包括烟火制造、冶金,化学、电化学和结构件的应用。由于镁合金具有重量轻、比强度高、阻尼减振性好等优点,因而将其作为结构件被广泛地应用于航空航天、3C电子产品及交通运输等领域。目前,这些结构件都以铸造件特别是压铸件的应用为主,高性能的变形镁合金材料还处于研发和推广阶段。 在变形镁合金中。AZ80镁合金表现出最为优良的力学性能,通过合理改善其形变及热处理工艺能进一步提高其强度。本文主要介绍镁合金、AZ80镁合金的组织性能和关特征及其成型的关键技术。 1 镁合金及AZ80镁合金的组织性能 1.1 镁合金的特点 镁合金和铝合金的合金化原理几乎相同,都是通过加入合金元素,产生固溶强化、时效强化、细晶强化及过剩强化作用,以提高合金的机械性能、抗腐蚀性能和耐热性能。镁合金中常加入的合金元素有Al、Zn、Mn、Zr及稀土元素等。Al在Mg中即可产生固溶强化作用,又可析出沉淀强化相Mg,Al有助于提高合金强度;Zn在Mg中除固溶强化作用外,也可产生时效强化相MgZn,但效果不如Al显著,一般需与其他合金元素同时加入;Mn加入Mg中主要为提高合金的耐热性和抗蚀性,改善合金的焊接性能;Mg中加入的少量Zr,除细化晶粒外,还从合金的成分来看,目前工业中应用的镁合金主要集中于Mg—Al—Zn、Mg—Zn—Zr、Mg—Re—Zn 和Mg一Re—Zr等几个合金系,其中前两个是发展高强镁合金的基础。从生产工艺和性能的特点,上述镁合金分为变形镁合金和铸造镁合金两大类,其编号采用汉语拼音字母加序号。同一系列的镁合金既有可以作为变形合金,又有可以作为铸造合金:其中既可能含Zr又可能不含Zr。因此,对于不同的镁合金,它的性质特点也会不相同。 金属镁及其合金是迄今在工程上应用的最轻的结构材料,具有其它金属材料不可替代的优越性,镁合金具有以下几个特点: (1)镁合金的比重小,是目前最轻的结构材料,其密度在1.75~1.859/cm3之间,约为铝合合密度的1/3~l/2,约为钛合金的1/3,不到钢密度的1/4。这一特点对于现代一些便携类

镁合金板材各向异性实验研究

本科毕业设计(论文) 镁合金板材各向异性实验研究 刘阳 燕山大学 2014年6月

本科毕业设计(论文) 镁合金板材各向异性实验研究 学院:机械工程学院 专业:轧钢 学生姓名:刘阳 学号:100101010371 指导教师:石宝东 答辩日期:2014/6/20

燕山大学毕业设计(论文)任务书

摘要 摘要 由于具有密度低、比强度和比刚度高等特点,镁合金板日益广泛地应用于交通、家电和通讯领域。由轧制而导致的镁合金晶体的取向特征以及镁合金晶体自身对称性较差的特点,镁合金经常表现出较强的各向异性行为。本论文以此为研究对象,试验确定了三种不同厚度镁合金板材的各向异性行为,通过试验数据研究了AZ31型镁合金板材在室温下的各向异性屈服行为,从而为使用量大、具有良好应用前景的镁合金的各向异性唯象模型提供了大量的实验研究数据。 基于对三种不同厚度AZ31镁合金板材的基本力学性能的研究发现:镁合金板材在不同方向上力学性能不同,所研究的板材的力学性能都表现出了各向异性特征。 进一步研究表明,现有的金属塑性强化模型不能满足工程上的要求,畸变强化理论有利于弥补现有强化模型的缺陷。此外,通过多向单轴拉伸实验,测定了AZ31镁合金板材的初始屈服面和等塑性功面,系统的分析了等塑性功面的演变规律。 关键词AZ31镁合金板;各向异性;拉伸力学性能;屈服面

燕山大学本科生毕业设计(论文) Abstract Due to their good properties,such as low density,high specific strength and high specific stiffness , magnesium alloy sheets are widely applied in transportation , household appliance, communication and many other fields.Because of the orientations of magnesium alloy crystals by rolling and less symmetrical characteristics,magnesium alloys often show strong anisotropy behavior.In this paper, as a research object,Testing to determine the anisotropic behavior of three different thicknesses of magnesium alloy sheet,Through experimental data to study the anisotropic yield behavior of AZ31 magnesium alloy sheet type at room temperature,Anisotropic phenomenological model for the use of magnesium alloy so large,with good prospects of a large number of experimental studies provide data. Based on the basic mechanical properties of three different thicknesses AZ31 magnesium alloy sheet study found: magnesium alloy sheet in different directions different mechanical properties, the mechanical properties of the sheet are studied showed anisotropy. Further study showed that the existing metal plastic hardening model can not meet the requirements for building works,to compensate the distortion in favor of strengthening the existing theoretical models to strengthen the theoretical defects.In addition,multi-directional uniaxial tensile test and biaxial loading experiments,we measured the yield surface systems and functions such as shaping the surface of AZ31 magnesium alloy sheet, which systematically analyzes the evolution of the yield surface. Keywords AZ31 magnesium alloy plate anisotropy ; Anisotropy ;tensile mechanical properties ;yield surface;

镁合金成份分析与市场应用

镁合金环球镁/林来康 一.镁合金的发展 镁合金是实际应用中最轻的金属结构材料,但与铝合金相比,镁合金的研究和发展目前还很不是很成熟,所以镁合金的应用也还很有限。目前,镁合金的产量只有铝合金的1%。镁合金作为结构应用的最大用途是铸件,其中90%以上是压铸件。 限制镁合金广泛应用的主要问题是:由于镁元素极为活泼,镁合金在熔炼和加工过程中极容易受外界环境因素的干扰而影响到生产品质,因此,镁合金的生产难度比较大;在镁合金的生产技术还不是很成熟和完善下,镁合金成形技术与后续制程仍然有待进一步推广与发展。 镁合金的耐酸的腐蚀性比较较差;而现有工业镁合金的高温强度、蠕变性能较低,也限制了镁合金在高温场合的应用;尤其是镁合金的常温力学性能,特别是塑韧性与延展性是还有待进一步提高;所以镁合金的合金系列相对很少,而变形镁合金的研究开发也是严重滞后,不能广泛的适应不同商业的应用场合要求。 我国具有丰富的镁资源,原镁产能、产量和出口均居世界首位。在镁和镁合金的研究和应用领域,我国与欧美等发达国家之间的差距还相当大'一方面,我国的原镁质量差,镁合金锭的质量也不尽如人意,出口缺乏竞争力,作为结构材料应用。 镁合金可分为铸造镁合金和变形镁合金。镁合金按合金组元不同主要有Mg-Al-Zn-Mn系(Az)、Mg-Al -Mn系(AM)和Mg-Al-Si-Mn系(As)、Mg-Al-RE系(AE)、Mg-Zn-Zr n(ZK)、Mg-Zn-RE系(zE)等合金。 ASTM标准 常用铸造镁合金的牌号及性能

二.常见的镁合金压铸用系列: 目前常用的镁铝合金有4个系列:AZ(Mg-Al-Zn-Mn),AM(Mg -Al -Mn),AS(Mg–Al-Si),AE(Mg-Al-RE),其中AE 系列镁合金蠕变强度高。AZ 系和AM 系镁合金是目前应用最广泛的商业化Mg-Al 基铸造镁合金。 以下适应压铸或铸造用的镁合金 镁合金的化学成份( % )按国标准GB/T19078-2003 应用户需要可加入百万分之 5 到 15 的铍。 镁合金的机械性能: 主要用途:适应用户的要求提供具有各种化学成份和机械性能的压铸或铸造用的镁合金 三.镁合金的新进展 镁合金相对比强度(强度与质量之比)最高。比刚度(刚度与质量之比)接近铝合金和钢,远高于工程材料。在弹性范围内,镁合金受到冲击载荷时,吸收的能量比铝合金件大一半,所以镁合金具有良好的抗震减噪性能。镁合金熔点比铝合金熔点低,压铸成型性能好。镁合金铸件抗拉强度与铝合金铸件相当,一般可达250Mpa,最高可达600多Mpa。屈服强度,延伸率与铝合金也相差不大。

镁合金板材制备及零件塑性成形技术

万方数据

中国有色金属学报2004年lO月镁合金板材的制备采用温挤或热挤压成形,也 可以采用挤压圆管的方式进行镁合金板带材挤压成 形,挤压后将圆管沿轴向切开,再对其进行展平或 轧制加工则可获得镁合金板材或镁合金带材。采用 这种方法模具结构简单,挤压效率高,材料性能均 匀、组织晶粒微细,一般适宜于小批量加工镁合金 板带坯料。由于目前大量镁合金板材主要用于制造 电子器件外壳,因此目前市场上需求较多的是宽度 100~200mm的镁合金带材。 1.2轧制镁合金板材 由于镁合金室温低塑性,镁合金板材的生产一般在225℃以上热轧成形,通常在300~450℃之间进行轧制。镁合金板材轧制的关键是制备优质板坯,多采用铸造板坯。由于铸造板坯内部不可避免地含有一些铸造缺陷,轧制之前需消除表面的氧化皮,通过多道次轧制消除铸造缺陷。因此一般要求铸坯较厚,可达60mm厚。 采用挤压板坯进行轧制成形制备的优质镁合金板带材,其性能优越,室温延伸率可达26%b]。由于镁合金轧制时需温热轧制,模具需要加热,否则坯料边缘部位由于温度过低而塑性很差,变形不均匀,容易发生破裂。适宜的轧制方法是交叉轧制或多向轧制。 镁合金板材加工成形需要较高的塑性性能,因而一般在成形前需要对板材进行退火处理。热处理规范一般建议在250~300oC保温30rain,然后空冷。图1所示为轧制镁合金板材。研究表明,通过交叉轧制的镁合金板材.退火后获得均匀的等轴化组织,平均晶粒尺寸在5肚m左右,如图2所示。 图1轧制镁合金AZ31板照片 Fig.1Photoofrolledmagnesiumalloy AZ31sheets 镁合金轧制时,结晶格基面(0001)与板材的平面平行,而基面(1120)的3个对角线之一则位于轧 图2退火后交叉轧制镁合金坯料的显微组织 Fig.2 Microstructureofannealedrolled magnesiumalloy 制方向。这种方位使轧制方向机械性能降低,而使板材的横向机械性能增高。如果轧制时毛坯在每次轧制后转动90℃进行交叉轧制,则轧制材料的各向异性要比横向轧制条料的各向异性小。交叉轧制坯料的各向异性变形行为不明显,即使在较大变形程度时法兰区仍能保持近似圆形。 2镁合金板件热冲压成形工艺 2.1镁合金板材的成形性与温度的关系 镁合金在室温下难于加工成形。通常,当温度达到175℃时,另外两个滑移系受到激励,塑性明显提高;高于225℃时,出现新的滑移面和全部12个滑移方向,塑性显著提高。在最合适的温度下,镁合金塑性变形能力超过其他立方晶格的金属与合金。图3所示为温度较低时的拉深试验破裂件。 由于交叉轧制板材均匀的等轴组织各向异性差别小,板材成形性能提高,在较低温度下就表现出良好的深冲性能。图4所示为不同温度条件下获得的温热拉深制件,在170℃时可获得极限拉深比为2.6的筒形件。 2.2镁合金温热冲压关键技术 由于镁合金导热性好,加热的板坯接触模具时很快降温,尤其边缘部位和变形区金属温度低而塑性降低,成形时还必须对模具进行预热,预热温度一般要在150℃以上,最好与坯料温度相同,接近等温状态成形[4’5]。镁合金热拉深坯料温度范围在200~400℃,最佳范围一般在250~350℃,低于200℃一般塑性不足,高于400℃则坯料易氧化并 且晶粒粗大E6,7]。镁合金热冲压模具可以参考铝合 万方数据

航空航天镁及镁合金应用

“航空航天、交通运输用高强镁合金加工材”类中,关键领域“航空航天”此方向下,具体产品(技术)名称中3类铸件锻件、挤压变形材、板带材,我公司是否有能力按照“产品(技术)要求”进行生产,并按照产品(技术)要求中的指标能生产的具体产品名称或方向各是哪些。 一.镁合金锻件运用领域 在大多数工程应用中,通常要求零件拉伸性能具有各向同性。因此,必须对镁合金铸锭坯进行不同方向的镦粗。使用三轴锻造可以控制镁合金三个方向上的镦粗过程,能有效避免各向异性。采用上述工艺可制备出的镁合金锻件,已成功地应用于航空、汽车等工业领域。比如,直升机及赛车发动机用镁合金锻件、直升机用镁合金锻件、箱罩用镁合金锻件,镁合金轮毂这些部件能承受极高的静态和动态交变载荷,并长期服役高温环境中。 二.锻造用典型镁合金 1.几种常用变形镁合金牌号和机械性能及其在航空领域的应用 锻造常用镁合金是Mg-Al-Zn、Mg-Zn-Zr和Mg-Mn系,其他的还有Mg-Th、Mg -Re -Zn -Zr 和Mg-Al-Li系等。 Mg-Al-Zn系合金一般属于中等强度、塑性较高的变形材料。按照ASTM标准,该系中常用的镁合金有AZ31B、AZ61A、AZ80A,我国与此相当的牌号分别是MB2、MB5、MB7。但是,Mg-A1-Zn系合金铸锭的实际晶粒尺寸不适于铸造后直接锻造,因此锻造前有必要对铸锭进

行预挤压,以获得合乎要求的细晶组织,提高合金的可锻性。早在上世纪90年代李相容基于MB2制订出了镁合金的合理锻造工艺规范,随后国内很少有利用该系镁合金研制或生产镁锻件的报道。据悉俄罗斯已拥有用成套镁合金熔炼锻造生产线专利及专有技术,进行MA2—1(相当于我国牌号的MB3)镁合金锻造汽车轮毂和摩托车轮毂生产。 MB2是Mg-Al-Zn系不可热处理强化的变形镁合金。合金在室温下工艺塑性差,高温时塑性好,因此合金的压力加工工序必须在加热状态下进行。合金的切削加工性能、焊接性能良好,应力腐蚀倾向小,耐蚀性能较好。该合金可加工成形状复杂的锻件和模锻件,制成的零件可在150℃以下长期工作和在200℃下短时工作. Mg-Zn-Zr系一般属于高强度材料,变形能力不如Mg-Al-Zn。按照ASTM标准,Mg-Zn-Zr系常用的牌号有ZK21A和ZK60A,是工业变形镁合金中强度最高、综合性能最好、应用最广泛的结构合金。该系合金由于Zr的存在及细化作用,其镁合金铸锭可以直接进行锻造,改变了传统的采用一次挤压坯料来生产锻件的工艺流程,从而简化制备镁合金锻件的生产工艺,降低消耗。目前,国内Mg-Zn-Zr系镁合金锻件的研制都是基于MBl5合金的。1997年,我国航空工业总公司的研究者尝试了以MB26(由MBl5添加稀土元素钇而成)高强度稀土镁合金铸锭直接锻制装机零件来改变传统挤压棒材的模锻新工艺,结果表明,用该合金铸锭直接锻制飞机零件,无论从工艺角度、力学性能角度和实际应用角度看都是完全可行的,而且效果较佳。

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

镁合金切削加工要点

镁合金切削加工要点 1.引言 自20世纪90年代初开始,国际上主要金属材料的应用发展趋势发生了显著变化,钢铁、铜、铅、锌等传统材料的应用增长缓慢,而以镁合金为代表的轻金属材料异军突起,以每年20%的速度持续增长。镁合金可分为铸造镁合金和变形镁合金。镁合金按合金成分不同主要分为Mg-AI-Zn-Mn系、Mg-AI-Mn系和Mg-AI-Si-Mn系、Mg-AI-RE系、Mg-Zn-Zr系和Mg-Zn-RE系。 表1 镁的物理性能 密度(20℃):1.738g/cm3;熔点:650℃;沸点:1107℃;熔化热:8.71kJ/mol;汽化热:134kJ/mol;比热熔(20℃):102.5J/kg.K;线胀系数:25.2×10-6/K;热导率:155.5W/m.K;电阻率:44.5nΩ.m;电导率:38.6%IACS 2.镁合金的性能特点及应用现状 镁合金具有以下几方面的特点: (1)重量轻:镁合金的比重约1.7,为锌的1/4,钢的1/5,甚至比铝合金(比重约2.7)的比重也轻1/3。 (2)镁合金具有的“高强度、重量轻”特性使其可在钢、铸铁、锌合金甚至铝合金的传统应用中取代上述材料。 (3)优良的导热性、相对于工程塑料极佳的吸震性,较佳的机械强度、抗冲击性及耐磨性。 (4)抗EMI电磁波:镁合金为非磁性金属,电磁遮蔽性能优良。 (5)尺寸稳定性高:不易因环境温度变化及时间而改变。 (6)可回收:镁合金具有100%完全回收的特性,更符合当今环保要求。 (7)机械加工特性:如果设镁切削所需动力为1,则铝是1.8,黄铜是2.3,铸铁是3.5;且比重轻,切削惯性小,可高速切削。 镁合金的主要用途在于轻量化。目前镁合金压铸品的应用产业以汽车零组件为主,约占80%以上,其次为3C产业,其它如自行车、器材工具、运动用品及航天国防也都在其应用范围之内(见表2)。

镁合金

镁合金微弧氧化陶瓷膜的耐蚀性 摘要:AZ31B镁合金在碱性硅酸盐溶液中进行微弧氧化制备出一种陶瓷膜来提高其耐蚀性。利用X射线衍射分析得出陶瓷膜的相结构由Mg2SiO4和MgO组成,扫描电镜图像表明陶瓷膜具有双层结构,即外侧疏松层和内部致密层,在疏松层分布着一些直径在1-3微米的圆孔,但是,这些圆孔并没有穿透致密层。在浓度为3.5%的NaCl溶液中进行的极化曲线和失重实验,结果表明,陶瓷膜能显著提高镁合金的耐腐蚀性能。 关键词:镁合金,微弧氧化,陶瓷,涂层,腐蚀 1.前言 镁及镁合金广泛应用在汽车、航空航天、通讯和电子元件等领域,这得益于镁及镁合金具有优良的物理性能和机械性能,例如密度小、比强度高以及电子屏蔽性能好等优点。但是,镁及镁合金很容易发生电化学腐蚀,在金属表明产生腐蚀坑,从而降低金属的稳定性并且影响金属表明的美观。这大大限制了镁及镁合金的应用,特别市在酸性和海水腐蚀这些环境中得发展。 在镁合金防腐领域有很多表面改性技术,如化学转化膜技术、电镀、阳极氧化等。近年来,出现了一种新的表面处理技术—微弧氧化,这项技术已经在铝合金、钛合金中得到应用并得到一定的发展,微弧氧化技术既能提高金属的耐蚀性,又能增强金属的耐磨性。本次研究通过在碱性硅酸盐溶液中利用微弧氧化技术制备出陶瓷膜,并运用极化曲线和失重法试验研究其耐腐蚀性能。 2.试验步骤 本次试验选用AZ31B压铸镁合金作基体,其化学成分如表1所示,在进行实验之前, 试样需要先用1000#的防水氧化铝砂纸进行打磨,然后用丙酮除油,再用蒸馏水冲洗干净,最后晾干。微弧氧化实验所用的电解液为碱性硅酸盐溶液,其配方和实验条件见表2。 3.结论与讨论 表面和横截面的形貌特征 微弧氧化的实验设备包括一个高能电源装置,一个不锈钢容器,同时容器作

碳纤维增强镁合金层合板及其基本力学性能

碳纤维增强镁合金层合板及其基本力学性能 Investigat ion into the T ension Propert ies of Carbon Fiber Reinforced M agnesium A lloy Lam inates 郑长良1,朱公志1,刘文博2,王荣国2, (1大连海事大学机电与材料工程学院,辽宁大连116026; 2哈尔滨工业大学复合材料研究所,150001) ZH ENG Chang liang1,ZH U Gong zhi1,LIU Wen bo2,WANG Ro ng g uo2 (1Electro mechanics and Mater ials Engineering Co lleg e, Dalian M aritime Univ er sity,DaLian116026,China;2Center fo r Co mposite M aterials,H arbin Institute of T echnolog y,H ar bin150001,China) 摘要:对碳纤维增强镁合金金属层合板FM L(F iber M etal L aminates)进行了初步的探索和研究。在几种不同层数和体分比下,制备了碳环氧/镁合金层合板这种轻型结构材料,通过对这种新材料的初步力学性能的试验测试,给出了碳纤维增强镁合金金属层合板的应力 应变曲线,以及强度极限、弹性模量与纤维/环氧复合材料百分含量的关系。 关键词:碳纤维;层合板;镁合金;拉伸 文献标识码:A 文章编号:1001 4381(2007)Suppl 0148 03 Abstract:T he Fiber reinforced mag nesium alloy laminates are investigated Some laminates w ith dif ferent m unber of layer and different vo lum e ratio of composite are fabricated The basic m echanics pro perties such as limite streng th,mo duls and stress strain curves are tested and discussed Key words:carbon fiber;lam inate;mag nesium alloy;tensio n 近些年来,FM L(Fibre M etal Laminates,纤维增 强金属层合板)因其具有高比强度、高比模量及优良的耐疲劳等良好的特性而越来越受到关注[1],开始应用于航空结构中,并有越来越多的趋势,由于潜力巨大,有望成为 下一代飞机结构材料[3-5]。目前,开发研制纤维增强金属层合板有ARA LL(aramid fiber/alu m inium,芳纶纤维增强铝合金层合板)、GLARE (glass fiber/alum inium玻璃纤维增强铝合金层合板)等。其中GLARE已在空中客车结构中得到应用,表明这种结构材料在性能上具有强大的竞争力和优势。目前我国已将 大飞机研制列入 十一五规划,使得FM L研发的重要性和紧迫性大幅度提高。 目前,纤维增强金属层合板,多数采用铝、锂合金。相比之下,镁合金的密度更低,只有铝合金的三分之二,是当前最轻的金属材料[2]。因此,在重量方面更具有优势,更适于FM L结构材料的开发,有望制造出比强度、比刚度更高的纤维增强金属层合板。而镁合金金属层合板的研究还很少见。 本工作将就碳纤维增强镁合金层合板及其基本力学性能进行初步探索和研究。1 材料及试件制作 图1展示了由两层碳纤维/环氧树脂铺层与三层镁合金板交替铺设的纤维增强镁合金金属层合板的结构形式。本研究制备了三种不同铺层的层合板,碳纤维/环氧复合材料铺层体积百分比变化的实现是通过增加复合材料的厚度和层数来实现的。经测定,三种层板的纤维复合材料的体分比分别为:26%,42%, 55%。文中用v f来表示复合材料占整个试件的体积百分比。试验所用镁板的厚度为0 3m m,是营口银河镁合金有限公司生产的。所用纤维为T800,胶粘剂是环氧树脂。从室温加热至120!,保温4h,再在炉内冷却至室温进行固化。 2 性能测试 每种体分比的金属层合板,我们制备了五个等截面矩形试件,试件的宽度是15mm,长度是300mm。在试件的两端粘接四个垫片,材料为铝板。试件及垫片的结构及尺寸如图2所示。 148 材料工程/2007年增刊1(China SA M P E2007)

镁合金冷加工切削工艺火灾预防及扑救对策(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 镁合金冷加工切削工艺火灾预防及扑救对策(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

镁合金冷加工切削工艺火灾预防及扑救对 策(最新版) 镁的化学性质极为活泼,切削过程中又往往产生高温,因此合金进行切削加工过程中容易镁切屑火灾,若救过程中因方式不当,还会造成镁屑爆燃。因此必须了解镁合金切削工艺的火灾危险性,并能作出一定的预防措施,掌握火灾若发生后的扑救方法 1镁合金切削工艺的火灾危险性 1.1镁屑性质活泼,高温下极易燃烧。镁合金切削过程中,镁屑切口处大部分是未氧化的镁和镁合金。由于金属镁属一级遇湿易燃品,着火点及最小引燃能量低,加之切屑薄而小,比表面积大,因此高温环境下在空气中极易燃烧。 1.2高速切削时会产生高温,引燃镁屑。机械加工时,为充分发挥刀具的切削性能,提高生产效率和工件质量,一般要求较高的切削速

度。而高速度的切削往往会使金属切屑的温度高达700°C~1000°C,当缺乏冷却液的有效供应时,高温将足以引燃镁屑起火。 1.3镁屑燃烧温度高,火灾蔓延速度快,扑救难度大。镁一旦发生火灾,其燃烧温度可达3000°C,燃烧热值高达25121kJ/kg。当镁屑呈粉状时与空气混合遇火能发生爆炸。此外,由于镁高温时遇水可发生化学反应放出氢气,故金属镁火灾中,水、泡沫、四氯化碳等灭火剂都受到限制,干粉、卤代烷灭火剂的灭火效果亦不明显,扑救难度大。 2金属切削加工过程中影响切削温度的因素 金属切削过程中,99%的切削变形与摩擦所消耗的功转化为热能,可用(1)式表示: Q总=Q1+Q2+Q3(1) 式中:Q总——切削过程产生的总热量,又称切削热; Q1——变形消耗的功转变的热量; Q2——前刀面与切屑表面摩擦所消耗的热量; Q3——后刀面与切屑表面摩擦所消耗的热量。

镁及镁合金板、带材 编制说明

《镁及镁合金板、带材》国家标准 (讨论稿)编制说明 一、任务来源 现用GB/T5154-2010《镁及镁合金板、带材》标准是我单位2010年起草修订的,历经1985、2003、2010三个版本,均为我单位起草修订,现行标准已发布运行九年。在这九年的发展过程中,随着镁及镁合金应用领域的日益扩展,镁及镁合金生产设备的不断改造,市场对镁及镁合金板材的品种、状态需求越来越多。镁及镁合金工业进入一个新的发展阶段,镁合金应用持续增量。近年来镁合金在诸多领域的研究也取得了相应成果,如高强的航天、航空用镁材料,高性能的高铁用镁材料等,镁合金生产设备及技术也在相应的进步,有必要提升相应的产品标准。 本标准属于国内、国际标准同步标准,由我国承担为国际标准项目ISO NP 23700《变形镁及镁合金板材》与本项目《镁及镁合金板、带材》是同步推进的标准项目,为了保证ISO NP 23700《变形镁及镁合金板材》标准项目能够真实反映我国标准质量,有必要对国标进行同步修订; 根据国标委发[2020]6号和有色标委[2020]8号《关于转发2020年第一批有色金属国家、行业、协会标准制(修)订项目计划的通知》,其中附件1的序号30(项目编号“20200724-T-610”)《镁及镁合金板、带材》国家标准由中铝洛阳铜加工有限公司、中铝郑州轻金属研究院负责起草,完成年限为2021年8月。 二、工作简况 标准制订计划任务正式下达后,立即成立了标准编制组,并落实起草任务,确定标准的主要起草人,拟定该标准的工作计划。编制组分工明确,紧密合作,共同完成标准的修订工作。 本规范主编单位为中铝洛阳铜加工有限公司,负责完成标准征求意见稿、预审稿、送审稿、报批稿及编制说明、标准报批书等各种文件的编制,并负责征求意见的汇总处理。副主编单位为中铝郑州轻金属研究院,负责配合起草,资料收集、协助产品试验、技术参数的确定以及标准条款等。 镁合金具有密度低,比强度和比刚度高,电磁屏蔽效果好,导热性能号,抗震减震能力强,易于机加工成形和易于回收再利用等优点,是目前最轻的金属结构材料,在航空、航天、汽车以及JG 等领域都具有巨大的应用潜力。随着当今世界对结构材料轻量化、减重节能、环保以及可持续发展的要求日益提高,镁合金产品展现出广阔的应用前景。在国家新材料产业规划中,镁合金以其自身的优点更是作重点推广和应用的金属材料。 经过标准编制组及有关人员的共同努力,通过对国内外现状及发展趋势的分析,结合国内的实际情况,在GB/T 5154-2010《镁及镁合金板、带材》的基础上,参考了ASTM B 90M 《镁合金板带》,形成本标准讨论稿及其编制说明。 三、编制原则 通过对国内外现状及发展趋势的分析,情况,在GB/T 5154-2010《镁及镁合金板、带材》的基础上,参考了ASTM B 90M 《镁合金板带》,结合我国镁及镁合金板带材的实际生产情况,收集生产、

镁合金成形技术现状及展望

镁合金成形技术现状及展望 近年来对轻质材料的需求越来越大,镁合金作为结构材料由于具有比重小、比强度和比刚度高、导热和导电性好、切削加工性好、优良的阻尼性和电磁屏蔽性、易于加工成形和回收等优点,因此广泛应用于汽车、电子、通讯等行业,被誉为“21世纪的绿色工程材料”。 根据成形工艺的不同,镁合金材料主要分为铸造镁合金和变形镁合金两大类。前者主要通过铸造获得镁合金产品。包括砂型铸造、永久型铸造、熔模铸造、消失模铸造、压铸等。其中压铸是最成熟、应用最广的技术。而后者则是通过变形生产尺寸多样的板、棒、管、型材及锻件产品。并且可以通过材料组织的控制和热处理工艺的应用,获得更高的强度、更好的延展性、更好的力学性能,从而满足更多结构件的需要。另外,镁合金的半固态成形作为一种新型铸造技术也得到了广泛的研究与应用。 1.铸造镁合金 铸造是镁合金的主要成形方法,包括砂型铸造、金属型铸造、熔模铸造、消失模铸造和压铸等在内的多种铸造方法均可用于镁合金成形。目前,90%以上的镁合金产品是压铸成形的。 1.1压铸 压铸是镁合金最主要、应用最广泛的成形工艺。镁合金有优良的压铸工艺性能:镁合金液粘度低,流动性好,易于充满复杂型腔。用镁合金可以很容易地生产壁厚1.0mm~2.0mm 的压铸件,现在最小壁厚可达0.6mm。镁压铸件的铸造斜度为1.5,而铝合金是2~3度。镁压铸件的尺寸精度比铝压铸件高50%。镁合金的熔点和结晶潜热都低于铝合金,压铸过程中对模具冲蚀比铝合金小,且不易粘型,其模具寿命可比铝合金件长2—4倍。镁合金件压铸周期比铝件短,因而生产效率可比铝合金提高25%。镁合金铸件的加工性能优于铝合金铸件,镁合金件的切削速度可比铝合金件提高50%,加工耗能比铝合金件低50%。生产经验表明由于生产效率高,热室压铸的镁合金小件的总成本低于冷室压铸的铝合金同样件。 压铸镁合金可按其成分分为四个系列:AZ(Mg—AL—Zn)系列(AZ91)、AM (Mg—AL—Mn)系列(AM60、AM50)、AS(Mg-A1-Si系列(AS41、AS21)、AE(Mg-AL-RE)系列(AEA2)。 AZ系列合金AZ91具有良好的铸造性能和最高的屈服强度,其压铸件广泛应用于汽车座椅、变速箱外壳等多种形式部件。AM系列合金AM50、AM60具有较高的延伸率和韧性,用于抗冲击载荷、安全性高的场合如车轮、车门等。AS系列的镁合金AS41、AS21和AE 系列的AFA2是20世纪70年代开发的耐热压铸镁合金。 镁合金压铸中广泛采用冷、热室压铸方法。一般薄壁铸件采用热室压铸机,厚壁铸件采用冷室压铸机。镁合金热室压铸机是目前国外使用数量最多的镁合金压铸专用设备,具有生产效率高,浇注温度低,注型寿命长,易实现熔体保护等特点。主要缺点是设备成本和维修费用较高。 镁合金压铸时,合金液冲填压型时的高速湍流运动,使腔内气体无法排出,会导致组织疏松,甚至铸件表面鼓包或变形。压铸工艺参数如压力、速度、熔体温度、模具温度等对铸件性能都有显着影响。许多新压铸方法,包括真空压铸、充氧压铸和挤压铸造等一定程度上克服了以上缺点,减少了铸件组织疏松和气孔等缺陷,提高了铸件致密度。美国俄亥俄州精

镁合金表面处理工艺的研究【详情】

镁合金表面处理工艺的研究 内容来源网络,由深圳机械展收集整理! 镁及其合金是有色金属材料中最具有开发和应用发展前途的金属材料。 镁是一种轻质结构材料,质量为铝的2/3,钢铁的1/4。与钢、铝、塑料等工程材料相比,镁合金具有比强度和比钢度高,电磁屏蔽性能好,无磁性;无毒、可回收;极好的切削加工性能,极高的压铸生产率,尺寸收缩小,并且具有优良脱模性能,且加工成本低,尺寸稳定性高;具有超导和储氢性能;耐印痕性;良好的低温性能和导热率高等优点;镁还具有良好的导热、导电性、尺寸稳定性、电磁屏蔽性、机加工性能以及再循环利用的性能;镁弹性模量低,约45 GPa,减震性能好,适合于做承受剧烈振动的零件;镁合金压铸件比重小,比刚度大,铸造性能,机械加工性能和阻尼性能好。这些特性可使其成为汽车工业、航空工业及电子工业中首选的结构材料,因此具有良好的社会效益和经济效益。虽然镁合金具有以上诸多优点,并在许多领域具有广泛的应用前景,但也存在一些限制其进一步应用的因素, 主要包括以下三个方面: (1)镁及其合金晶体结构为密排六方结构,决定了镁及其合金的塑性低,物理性能和力学性能均有明显的方向性,在室温下变形只能沿晶格底面进行滑移,单一的滑移系导致其压力加工变形能力低。

(2) 常用的AZ, AM系列镁合金通常的使用温度为95°C ~120°C,超过这一温度范围,合金的蠕变强度随着温度的增加而大幅度下降,限制了它在耐热部件、如汽车发动机部件和传动机构等零部件方面的应用。 (3)限制镁合金广泛应用的最大障碍是镁合金的耐腐蚀性能较差。镁的平衡电位为一2.37 V,很容易发生氧化反应。镁在海水中的稳定电位为一1.6一一1.5 V。镁在空气中与氧能够形成一层很薄的氧化膜,但氧化膜疏松、多孔,PB比为O.991],不能形成有效稳定的保护膜,导致镁合金的腐蚀反应可以持续发展下去。镁合金的耐蚀性差,是限制镁合金应用的主要因素。 镁合金作为一种发展迅猛的绿色环保合金材料,在世界各国对能源和环境保护日益重视的背景下,成为目前国内外重新认识并积极开发的一种新型环保材料,被认为是21世纪最具开发和应用潜力的“绿色材料”。长期以来,由于镁的价格偏高、镁合金熔液易于氧化燃烧和镁合金材料的耐蚀性差等限制了其在民用工业的大规模应用。进入20世纪90年代后,随着镁冶炼技术的不断提高,镁及镁合金的价格迅速下降,镁合金熔液保护技术更加成熟,高纯镁合金材料耐蚀性的大幅度提高,以及人们对能源和环境保护的高度重视,镁合金成为迅速崛起的一种工程材料,用量每年以15%的速率保持快速增长,远远高于铝、铜、锌、镍和钢铁的增长速度,这在近代工程金属材料的应用中是前所未有的。

镁合金热处理工艺及研究现状

镁合金热处理工艺及研究现状 摘要:镁合金具有较高的比刚度、比强度、良好的电磁屏蔽性、减振性能和散热性能,是最轻的结构金属材料之一,在航空航天领域具有广泛的应用前景。本文综述了镁合金热处理工艺及其研究现状。 关键词:镁合金热处理研究现状 多数镁合金都可通过热处理来改善或调整材料的力学性能和加工性能。镁合金能否通过热处理强化完全取决于合金元素的固溶度是否随温度变化。当合金元素的固溶度随温度变化时,镁合金可以进行热处理强化。镁合金的常规热处理工艺分为退火和固溶时效两大类。 镁合金热处理强化的特点是:合金元素的扩散和合金相的分解过程极其缓慢,因此固溶和时效处理时需要保持较长的时间。另外,镁合金在加热炉中应保持中性气氛或通入保护气体以防燃烧。 一、退火 退火可以显著降低镁合金制品的抗拉强度并增加其塑性,对某些后续加工有利。变形镁合金根据使用要求和合金性质,可采用高温完全退火(O)和低温去应力退火(T2)。 完全退火可以消除镁合金在塑性变形过程中产生的加工硬化效应,恢复和提高其塑性,以便进行后续变形加工。完全退火时一般会发生再结晶和晶粒长大,所以温度不能过高,时间不能太长。当镁合金含稀土时,其再结晶温度升高。AM60、AZ31、AZ61、AZ60 合金经热轧或热挤压退火后组织得到改善。去应力退火既可以减小或消除变形镁合金制品在冷热加工、成形、校正和焊接过程中产生的残余应力,也可以消除铸件或铸锭中的残余应力。 二、固溶和时效 1、固溶处理 要获得时效强化的有利条件,前提是有一个过饱和固溶体。先加热到单相固溶体相区内的适当温度,保温适当时间,使原组织中的合金元素完全溶入基体金属中,形成过饱和固溶体,这个过程就称为固溶热处理。由于合金元素和基体元素的原子半径和弹性模量的差异,使基体产生点阵畸变。由此产生的应力场将阻碍位错运动,从而使基体得到强化。固溶后屈服强度的增加将与加入溶质元素的浓度成二分之一次方比。 根据Hmue-Rothery规则,如果溶剂与溶质原子的半径之差超过14%~15%,该种溶剂在此种溶质中的固溶度不会很大。而Mg的原子直径为3.2nm,则Li,Al,Ti,Cr,Zn,Ge,Yt,Zr,Nb,Mo,Pd,Ti,Pb,Bi等元素可能在Mg中会有显著的固溶度。另外,若给定元素与Mg的负电性相差很大,例如当Gordy定义的负电性值相差0.4以上(即∣xMg-x∣>0.4)时,也不可能有显著的固溶度。因为此时Mg和该元素易形成稳定的化合物,而非固溶体。 2、人工时效 沉淀强化是镁合金强化(尤指室温强度)的一个重要机制。在合金中,当合金元素的固溶度随着温度的下降而减少时,便可能产生时效强化。将具有这种特征的合金在高温下进行固溶处理,得到不稳定的过饱和固溶体,然后在较低的温度下进行时效处理,即可产生弥散的沉淀相。滑动位错与沉淀相相互作用,使屈服强度提高,镁合金得到强化: Tyield=(2aGb)/L+τ a (1) 式中Tyield为沉淀强化合金的屈服强度;τa为没有沉淀的基体的屈服强度;(2aGb/L)为在沉淀之间弯出位错所需的应力。 由于具有较低的扩散激活能,绝大多数镁合金对自然时效不敏感,淬火后能在室温下长期保持淬火状态。部分镁合金经过铸造或加工成形后不进行固溶处理而是直接进行人工时效。这种工艺很简单,可以消除工件的应力,略微提高其抗拉强度。对Mg-Zn系合金就常在热变

相关主题
文本预览
相关文档 最新文档