当前位置:文档之家› 偏微分课后习题答案终极版

偏微分课后习题答案终极版

偏微分课后习题答案终极版
偏微分课后习题答案终极版

微分几何练习题库及参考答案(已修改)

《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 2 12 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+. 23.已知{}r(,)cos cos , cos sin ,sin a a a ?θ?θ?θ?=,其中t =?,2t =θ,则

微分几何第四版习题答案解析梅向明

§1曲面的概念 1.求正螺面r r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r ρ =}cos ,sin sin ,cos sin {?????a a a -- ,?r ρ=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -=ρ , }1,0,0{=t r ρ 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

微分几何试题库

微分几何 一、判断题 1 、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22 u v du u v dudv u v dv ++=总表示曲面上两族曲A(,)2B(,)B(,)0 线. (?) 3、若() s t均在[a,b]连续,则他们的和也在该区间连续(√)r t和() 4、向量函数() s t具有固定长的充要条件是对于t的每一个值, s t平行(×) s t的微商与() () 5、等距变换一定是保角变换.(√) 6、连接曲面上两点的所有曲线段中,测地线一定是最短的.(?) 7、常向量的微商不等于零(×) 8、螺旋线x=cost,y=sint,z=t在点(1,0,0)的切线为X=Y=Z(×) 9、对于曲线s=() s t上一点(t=t0),若其微商是零,则这一点为曲线的正常点(×) 10、曲线上的正常点的切向量是存在的(√) 11、曲线的法面垂直于过切点的切线(√) 12、单位切向量的模是1(√) 13、每一个保角变换一定是等距变换(×) 14、空间曲线的形状由曲率与挠率唯一确定.(√) F=,这里F是第一基本量.(√)15、坐标曲线网是正交网的充要条件是0

二、填空题 16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___ y+z=0, . 18.设给出1 c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --, β= {sin ,cos ,0}x x ,γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.任何两个向量q p ,的数量积=?q p )cos(~ pq q p 24、保持曲面上任意曲线的长度不便的变称为____等距(保长)变换__. 25、圆柱螺线的曲率和挠率都是_____常数____数(填“常数”或“非常数”). 26.若曲线(c)用自然参数表示)(t r r =,则曲线(c)在)(0s P 点的密切平面的方程是 0))(),(),((000=-s r s r s r R 27.曲线的基本三棱形由三个基本向量和密切平面、法平面、从切平面 28.杜邦指标线的方程为1222±=++Ny Mxy Lx 29、已知曲面{cos ,sin ,6}r u v u v v =,0u >,02 v π ≤<,则它的第一基本形式 为 222(36)du u dv ++ ,第二基本形式为 dv ,高斯曲率

微分几何第四版习题答案梅向明

微分几何第四版习题答 案梅向明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个 切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

微分几何习题及答案解析

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意 方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因 为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固 定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,' 'r 垂直于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、

微分几何第四版习题答案梅向明

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只 有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

微分几何试题库

微分几何 一、判断题 1、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.(?) 3、若4 ()s t 的微商与()s t 平行(5、等距变换一定是保角变换678910、曲线上的正常点的切向量是存在的(1112131415二、16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___y+z=0,. 18.设给出1c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --,β={sin ,cos ,0}x x ,

γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.242526.27.28.29第二基本形式为 21236 u -+:du 30同或对称。3132.一个曲面为可展曲面的充分必要条件为此曲面为单参数平面族的包络 三、综合题 33.求曲线t te z t t y t t x ===,cos ,sin 在原点的密切平面,法平面,切线方程。 解:},,cos ,sin {t te t t t t r = 在原点处0=t 在原点处切平面的方程为:

微分几何彭家贵课后题答案

习题一(P13) 2.设()a t 是向量值函数,证明: (1)a =常数当且仅当(),()0a t a t '=; (2)()a t 的方向不变当且仅当()()0a t a t '∧=。 (1)证明:a =常数?2 a =常数?(),()a t a t <>=常数 ?(),()(),()0a t a t a t a t ''<>+<>= ?2(),()0a t a t '<>=?(),()0a t a t '<>=。 (2)注意到:()0a t ≠,所以 ()a t 的方向不变?单位向量() ()() a t e t a t = =常向量。 若单位向量() ()() a t e t a t = =常向量,则()0()()0e t e t e t ''=?∧=。 反之,设()e t 为单位向量,若()()0e t e t '∧=,则()//()e t e t '。 由()e t 为单位向量?(),()1(),()0e t e t e t e t '<>=?<>=?()()e t e t '⊥。 从而,由()//()()0()()()e t e t e t e t e t e t '? '?=?=?'⊥? 常向量。 所以,()a t 的方向不变?单位向量() ()() a t e t a t = =常向量 ?()()1 ()()0()()0()()()a t a t d e t e t a t a t a t dt a t ??''∧=?∧+= ? ??? ( )()2111()()()()()0()() () d a t a t a t a t dt a t a t a t '? ∧+∧= ()()0a t a t '?∧=。即 ()a t 的方向不变当且仅当()()0a t a t '∧=。 补充:

微分方程练习题基础篇答案.docx

常微分方程基础练习题答案 求下列方程的通解 dy dy x 2 Ce 2 , C 为任意常 数 1.xy 分离变量 xdx , y dx y dy x dx , y Ce 1 x 2 2.xydx 1 x 2 dy 0 分离变量 1 , C 任意常数 y x 2 dy 1 3.xy y ln y 0 分离变量 dx , y Ce x y ln y x 4.( xy 2 2 y y)dy 0 分离变量 ydy xdx 2 )(1 2 ) C x)dx ( x y 2 1 x 2,(1 y x 1 5. dy (2 x y 5) 2 令 u 2x y 5 则 du 2 dy , du 2 dx , 1 arctan u x C 1 dx dx dx u 2 2 2 dy x y dy 1 y y , dy u x du ,代入得 2 x ,令 u 1 u du 1 dx 6. x ,原方程变为 dx dx y 1 y x dx dx 1 u 2 x x 2arctan u u ln x C , u y x 回代得通解 2arctan y x ln x y x C dy y y 2 y du dx 7.xy y x 2 y 2 0 方程变形为 dx x x x 1 u 2 x 1 ,令 u ,代入得 arctanu ln x C , u y 回代得通解 arctan y ln x y C x x x 8.x dy y ln y ,方程变形为 dy y ln y ,令 u y du dx e Cx 1 , yxe Cx 1 , , u dx x dx x x x u(ln u 1) x

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

微分方程习题及解答

第十二章 微分方程 §12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .

2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5.'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2 sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解: 3*.设连续函数20()d ln 22x t f x f t ?? =+ ????,求()f x 的非积分表达式. 答:()ln 2x f x e =?.

微分几何二四五章_课后习题答案_

微分几何参考答案: P51页 1. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线。 解 原点对应t=0 , 'r (0)={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1}, =)0(''r {2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} , 所以切线方程是 1 10z y x == ,法面方程是 y + z = 0 ; 密切平面方程是2 02110z y x =0 ,即x+y-z=0 , 主法线的方程是???=+=-+00z y z y x 即112z y x =-= ; 从切面方程是2x-y+z=0 ,副法线方程式1 11-= =z y x 。 2.求以下曲面的曲率和挠率 ⑴ },sinh ,cosh {at t a t a r = , ⑵ )0)}(3(,3),3({323 a t t a at t t a r +-=。 解 ⑴},cosh ,sinh {'a t a t a r = ,}0,sinh ,cosh {''t a t a r = ,}0,cosh ,{sinh '''t t a r = , }1,cosh ,sinh {'''--=?t t a r r ,所以t a t a t a r r r k 23 23cosh 21) cosh 2(cosh 2|'||'''|==?= t a t a a r r r r r 2 2422cosh 21 cosh 2)'''()''','','(==?= τ 。 ⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r , 'r ×''r =}1,2,1{182 22+--t t t a ,2 23 22223) 1(31 ) 1(2227)1(218| '||'''|+=++=?=t a t a t a r r r k

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

相关主题
文本预览
相关文档 最新文档