当前位置:文档之家› 机器人学得一个正运动学举例说明

机器人学得一个正运动学举例说明

机器人学得一个正运动学举例说明
机器人学得一个正运动学举例说明

PUMA 560 运动分析(表示)
1 正解
PUMA 560 是属于关节式机器人,6 个关节都是转动关节。前 3 个关节确定手腕参 考点的位置,后 3 个关节确定手腕的方位。
各连杆坐标系如图 1 所示。相应的连杆参数列于表 1。
图 1 机器人模型
PUMA560 每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机 器人机体绕 z0 轴的回转(角1 ),它由固定底座和回转工作台组成。安装在轴中心的驱 动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置 控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂 的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角 2 )。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3 ),以 及小臂的回转(4 )。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5 )和转动(6 )。 下图为简化模型:
T i1 6
Ai Ai1 A6
图 2 机器人简化模型
表1
机械手的末端装置即为连杆
6
的坐标系,它与连杆坐标系的关系可由
T i1 6
表示:
T i 1 6
Ai Ai1 A6
(1)
可得连杆变换通式为 :
ci
si
0
ai1
T i1 i

si
c
i
1
si si1
cici1 ci si1
si1 ci1
di
si1

dici1
(2)
0
0
0
1
据连杆变换通式式(2)和表 1 所示连杆参数,可求得各连杆变换矩阵如下:

c1 s1 0 0
0T1

s1
0
c1 0
0 0 1 0
0 0 0 1
c2 s2 0 0
1T2

0
s2
0 c2
1 0
d
2

0
0 0 0 1
c3 s3 0 a2
2T3

s3
0
c3 0
0
0

1 0
0 0 0 1
c4 s4 0 a3
3T4

0
s4
0 c4
1 0
d4

0
0 0 0 1
c5 s5 0 0
4T5

0
s5
0 c5
1 0 0 0
0 0 0 1
c6 s6 0 0
5T6

0
s6
0 c6
1 0
0 0
0 0 0 1
各连杆变换矩阵相乘,得 PUMA 560 的机械手变换的 T 矩阵:
0T6 0T1(1)1T2 (2 ) 2T3 (3 ) 3T4 (4 ) 4T5 (5 ) 5T6 (6 )
(3)
即为关节变量1,2,3,,6 的函数。 该矩阵描述了末端连杆坐标系{6}相对
基坐标系{0}的位姿。
于是,可求得机械手的 T 变换矩阵:
nx ox ax px
0T6
0T1 1T6

ny
nz
oy oz
ay az
py

pz
(4)
0 0 0 1
nx c1 c23 (c4c5c6 s4s6 ) s23s5c6 s1(s4c5c6 c4s6 ),
ny s1 c23 (c4c5c6 s4s6 ) s23s5c6 c1(s4c5c6 c4s6 ),
nz s23 (c4c5c6 s4s6 ) c23s5c6;
ox c1[c23 (c4c5s6 s4c6 ) s23s5s6 ] s1(c4c6 s4c5s6 ),
oy s1[c23 (c4c5s6 s4c6 ) s23s5s6 ] c1(c4c6 s4c5c6 ),
oz s23 (c4c5s6 s4c6 ) c23s5s6 ,
(5)
ax c1(c23c4s5 s23c5 ) s1s4s5 ,
ay s1(c23c4s5 s23c5 ) c1s4s5 ,
az s23c4s5 c23c5;
px c1[a2c2 a3c23 d4s23 ] d2s1,
py s1[a2c2 a3c23 d4s23 ] d2c1
pz a3s23 a2s2 d4c23.

2 逆解
由上面可得:
nx ox ax px
0T6

ny
nz
oy oz
ay az
py pz

0T1(1)1T2 (2 ) 2T3 (3 ) 3T4 (4 ) 4T5 (5 ) 5T6 (6 )
(6)
0 0 0 1
若末端连杆的位姿已经给定,即为已知,则求关节变量1,2,3,,6 的值称
为运动反解。用未知的连杆逆变换左乘方程(6)两边,把关节变量分离出来,从而求得
1,2,3,,6 的解。
2.1 求1
用逆变换
T0 1 1
1
左乘式(6)两边:
T0 1 1
1
0T6 1T2 (2 ) 2T3 (3 ) 3T4 (4 ) 4T5 (5 ) 5T6 (6 )
c1 s1 0 0 nx ox ax px
1nx 1ox 1ax 1 px

s1
c1
0
0 ny
0 0 1 0 nz
oy oz
ay az
py pz

1T6

1ny
1nz
1oy 1oz
1ay 1az
1
p
y

1 pz
(7)
0 0 0 1 0 0 0 1
0 0 0 1
两边(2,4)项元素对应相等:
s1 px c1 py 1 py d2
(8)
利用三角代换:
px cos; py sin
(9)
其中
px2
p
2 y
;
atan2
py , px
,(9)代入(8),得:
sin(
1 )
d2
/
;
cos( 1) 1 (d2 / )2

1
atan2

d2
,
1

d2
2


1 atan2( py , px ) atan2(d2 ,
px2
p
2 y
d
2 2
)
式中,正、负号对应于1 的两个可能解。

2.2 求3
(7)式两边(1,4)项和(3,4)项元素对应相等,可得:
c1 px s1 py 1 px a3c23 d4s23 a2c2

pz 1 pz a3s23 d4c23 a2s2
(10)
式(8)和式(10)的平方和为:
a3c3 d4s3 k
(11)
其中 k
px2
p
2 y
pz2 a22 a32
d
2 2
d42
2a2
式(11)中已经消去了2 ,且方程(11)和(8)有相同的形式,因而可用三角代
换求解3
3 atan2(a3, d4 ) atan2(k,
a32
d
2 4
k2
)
(12)
式中,正负号对应3 有两种可能解。
2.3 求2
T0 1 3
1,2 ,3
0T6 3T4 (4 ) 4T5 (5 ) 5T6 (6 )
c1c23 s1c23 s23 a2c3 nx ox ax px

c1s23
s1s23
c23
s1 c1 0
a2 s3


ny
d2 nz
oy oz
ay az
py pz

3T6
(13)
0 0 0 1 0 0 0 1
两边(1,4)项和(2,4)项元素对应相等:
c1c23 px s1c23 py s23 pz a2c3 a3
c1s23 px s1s23 py c23 pz a2s3 d4
(14)

a3 a2c3 pz c1 px s1 py a2s3 d4
s23
pz2 c1 px s1 py 2

d4 a2c3 pz c1 px s1 py a2c3 a3
c23
pz2 c1 px s1 py 2
23 2 3 atan2 a3 a2c3 pz c1 px s1 py a2s3 d4 ,
(15)
d4 a2c3 pz
c1 px s1 py
a2c3
a3

根据1和3 解的四种可能组合可以得到相应的四种可能值23 ,于是可得到的四种可 能解:
2 23 3
式中,2 取与3 相对应的值。
2.4 求4
式(13)两边(1,3)项和(3,3)项元素对应相等:
c1c23ax s1c23ay s23az c4s5

s1ax c1ay
s4s5
4 atan2(axs1 ayc1, axc1c23 ay s1c23 az s23 )
2.5 求5
T0 1 4
1,2 ,3,4
0T6 4T5 (5 ) 5T6 (6 )
c1c23c4 s1s4 s1c23c4 c1s4
T0 1 4
1,2 ,3,4
c1c23s4 s1c4 s1c23s4 c1c4
c1s23
s1s23
0
0
s23c4 s23s4 c23 0
a2c3c4 d2s4 a3c4
a2c3s4
d2c4
a3s4

a2s3 d4
1
两边(1,3)项和(3,3)项元素对应相等:
ax c1c23c4 s1s4 ay s1c23c4 c1s4 az s23c4 s5

ax c1s23
ay s1s23
az c23 c5
5 atan2(s5, c5 )
(16)

2.6 求6
T0 1 5
1,2 ,3,4 ,5
0T6 5T6 (6 )
两边(3,1)项和(1,1)项元素对应相等:
nx c1c23s4 s1c4 ny s1c23s4 c1c4 nz s23s4 s6

nx c1c23c4 s1s4 c5 c1s23s5 ny s1c23c4 c1s4 c5 s1s23s5
nz s23c4c5 c23s5 c6
6 atan2(s6 , c6 )
(17)
PUMA560 的运动反解可能存在 8 种解,但是,由于结构的限制,例如各关节变量
不能在全部的 360 范围内运动,有些解不能实现。在机器人存在多种解的情况下,应选
取其中最满意的一组解,以满足机器人的工作要求。

puma250机器人运动学分析

焊接机器人运动分析 摘要:针对puma250焊接机器人,分析了它的正运动学、逆运动学的问题。采用D-H坐标系对机器人puma250 建立6个关节的坐标系并获取D-H 参数,并对其运动建立数学模型用MATLAB编程,同时仿真正运动学、逆运动学求解和轨迹规划利用pro-e对puma250建模三维模型。 关键词:puma250焊接机器人;正逆解;pro-e;Matlab;仿真 一、建立机器手三维图 Puma250机器人,具有6各自由度,即6个关节,其构成示意图如图1。各连杆包括腰部、两个臀部、腕部和手抓。设腰部为1连杆,两个臀部分别为2、3连杆,腰部为4连杆,手抓为5、6连杆,基座不包含在连杆范围之内,但看作0连杆,其中关节2、3、4使机械手工作空间可达空间成为灵活空间。1关节连接1连杆与基座0,2关节连接2连杆与1连杆,3关节连接3连杆与2连按,4关节连接4连杆与3连杆,5关节连接5连杆与4连杆。各连杆坐标系如图 2 所示。

图1 puma250 机器人二、建立连杆直角坐标系。

三、根据坐标系确定D-H表。 四、利用MATLAB 编程求机械手仿真图。>>L1=Link([pi/2 0 0 0 0],'standard'); L2=Link([0 0 0 -pi/2 0],'standard'); L3=Link([0 -4 8 0 0],'standard'); L4=Link([-pi/2 0 8 0 0],'standard'); L5=Link([-pi/2 0 0 -pi/2 0],'standard'); L6=Link([0 2 0 -pi/2 0],'standard'); bot=SerialLink([L1 L2 L3 L4 L5 L6],'name','ROBOT'); ([0 0 0 0 0 0])

机器人运动学(培训教材)

第2章机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。

图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。 1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2) 可见,如果连杆AB 偏移,连杆2O B 也会相应地移动,式(2.1)的两边随连杆的变化而 改变。而另一方面,如果机器人的连杆AB 偏移,所有的后续连杆也会移动,除非1O C 有其他方法测量,否则这种变化是未知的。 为了弥补开环机器人的这一缺陷,机器人手的位置可由类似摄像机的装置来进行不断测 量,于是机器人需借助外部手段(比如辅助手臂或激光束)来构成闭环系统。或者按照常规做法,也可通过增加机器人连杆和关节强度来减少偏移,采用这种方法将导致机器人重量重、

机器人学得一个正运动学举例说明

PUMA 560 运动分析(表示)
1 正解
PUMA 560 是属于关节式机器人,6 个关节都是转动关节。前 3 个关节确定手腕参 考点的位置,后 3 个关节确定手腕的方位。
各连杆坐标系如图 1 所示。相应的连杆参数列于表 1。
图 1 机器人模型
PUMA560 每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机 器人机体绕 z0 轴的回转(角1 ),它由固定底座和回转工作台组成。安装在轴中心的驱 动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置 控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂 的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角 2 )。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3 ),以 及小臂的回转(4 )。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5 )和转动(6 )。 下图为简化模型:
T i1 6
Ai Ai1 A6
图 2 机器人简化模型
表1
机械手的末端装置即为连杆
6
的坐标系,它与连杆坐标系的关系可由
T i1 6
表示:
T i 1 6
Ai Ai1 A6
(1)
可得连杆变换通式为 :
ci
si
0
ai1
T i1 i

si
c
i
1
si si1
cici1 ci si1
si1 ci1
di
si1

dici1
(2)
0
0
0
1
据连杆变换通式式(2)和表 1 所示连杆参数,可求得各连杆变换矩阵如下:

焊接机器人逆运动学位姿分析

1.1连杆的坐标系 应用D-H 法来建立机器人杆件的坐标系。在这种坐标系中,可以把机械手的任一连杆i (i=1,2,3···,n )看作是一个刚体,与它相邻的两个关节i 、i-1的轴线i 和i-1 之间的关系也由它确定,如图1,可以用以下四个参数描 式中,cθi =cosθi ,sθi =sinθi ,i=1,2,3,···,n 图1连杆坐标系{i}到{i-1}的变换 i αi-1/(rad )a i-1/(cm )d i /(cm 12340 90°090°042.5410014.520011.895.3表1机器人连杆参数表

定义了连杆坐标系和相应得连杆参数,就能建立运动学方程,焊接机器人末端关节的坐标系{n}相对于基础坐标系{0}中的齐次变换公式为: 对于6自由度的焊接机器人公式可以写为 (2 变换矩阵0 n T是关于n个关节变量的函数,这些变量 可以通过放置在关节上的传感器测得,则机器人末端连杆再基坐标系中的位置和姿态就能描述出来。 E n表示焊接机器人末端关节的姿态, 器人在世界坐标系中的位置。[3] 2机器人的逆运动学分析 逆运动学求解是已知机器人末端的位置和姿态即 求解机器人对应于该位置和姿态的关节角 只要0 n T表示的末端连杆坐标系的位置和姿态位于机 械手的可达空间内,则运动学方程至少有一个解, 达空间内,机械手具有任意姿态,导致运动学方程可能出现重解。 机器人的运动学方程是一组非线性方程式, 求解过程中,我们逐次在公式(4)的两端同时左乘一 即为 在上式两边的矩阵中寻找简单的表达式或常数, 对应相等,计算过程如下: ( ( ( ( ( (3求取各关节的解集 依靠D-H法求解关节角的过程是和焊接机器人本身的结构相关的,换句话说,也就是特定配置的机器人需要特定的解决方案。通过公式(6)-(16)可以看出每个关节角的结果是不唯一的,如果采用已有的求解方法,显而易见该过程是缓慢的,复杂的。本文提出了一种计算最终执行器位置的所有精确值的算法。该算法是在MATLAB 程实现的。通过该算法得到各节点的解是更快速、有效的。 用变换矩阵 6T定义一条具有两个端点A和B 轨迹,如公式(17)和(19)。从而θ能够被求出,如公式20)

焊接机器人离线编程应用技术经验

精心整理 焊接机器人离线编程应用技术 一、引述 随着国内外机械装备制造事业飞速发展,对各种机械设备的生产周期、产品质量、制造成本,提出了更高的要求。为了适应这种形势,设法提高及保证焊接接头质量的稳定性,机器人的柔性优势正是解决这一问题的的良好方案。 二、机器人系统简介 通用工业机器人,按其功能划分,一般由3个相互关连的部分组成:机械手总成、控制器、 教者的经验目测决定,对于复杂路径难以保证示教点的精确结果。而离线编程是将机器人所有编程的工作内容在计算机软件在完成,过程一般包括:机器人及设备的作业任务描述、建立变换方程、求解未知矩阵及编制任务程序等。在进行图形仿真以后,根据动态仿真的结果,对程序做适当的修正,以达到满意效果,最后在线控制机器人运动以完成作业。节省了在机器人上编程的时间、离线编程的程序易于修改、通过仿真模拟后,防止昂贵的设备发生碰撞而损坏、结合CAD 软件系统和其它人工智能技术与机器人系统一体化,来提高工作效率和焊接质量。由此看来当焊缝是直线或者简单曲线,焊缝上方没有干涉物且焊缝的精度要求不太高的情况下,采用在线示教的编程方式是非常理想的,但在许多复杂的作业应用中不是那么令人满意了。

因此,机器人离线编程及仿真是提高机器人焊接系统柔性化的一项关键技术,是现代机器人焊接制造业的一个重要方法。一般工业机器人焊接时,机器人对焊接过程动态变化、焊件变形和随机因素干扰等不具有自适应能力。随着焊接产品的高质量、多品种、小批量等要求增加,又对机器人焊接技术提出了更高要求。这就需要对本体机器人焊接系统进行二次开发,包括给焊接机器人配置适当的传感器,柔性周边设备以及相应软件功能,如焊缝跟踪传感、焊接过程传感与实时控制、焊接变位机构。这些功能大大扩展了基本的焊接机器人的功能,这样的焊接机器人系统智能程度的高低由所配置的传感器、控制系统以及软硬件所决定。根据目前的整体技术还不太容易满足机器人焊接的所有智能要求,但这是个重要的发展趋势。 其它 发那科公司的Roboguide以及日本OTC公司使用的离线模拟仿真软件就叫OTC。国内机器人厂家暂时还没有完全自主知识产权的模拟仿真软件。因为这些机器人公司业务主体是机器人与控制系统,而并非专业的软件公司,这些机器人厂家为了使自己的机器人更加适应市场需求,同时出于对机器人系统技术保护的考虑,而开发了只可用于自己公司机器人系统的离线模拟示教软件。这些软件虽然没有三维建模功能,但可以导入其它CAD软件设计的模型文件,通过虚拟示教方式离线编程,对于简单焊缝的作业倒也实用。

焊接机器人的运动控制系统

焊接机器人的运动控制系统 作为焊接机器人的用户,为正确选择、合理使用并做到能常规维护焊接机器人,必须对焊接机器人的运动控制系统有一定层次的了解。 焊接机器人是装上了焊钳或各种焊枪的工业机器人。工业机器人的运动控制系统涉及数学、自动控制理论等,内容很多。要在较短的篇幅中,全面而系统地介绍工业机器人的运动控制系统,实在是非工业机器人控制专业人员所能及的事情,因此,本章内容是从焊接机器人的用户角度出发,尽量以图代解、简明地阐述有关机器人运动控制系统的一般性问题。 焊接机器人运动轴的定义 点焊与弧焊两种机器人都是由典型6关节型(也称6轴)工业机器人装上焊钳或焊枪而构成,因此,讨论焊接机器人运动系统构成,亦即讨论典型6关节工业机器人的运动系统构成。顾名思义,典型6关节工业机器人有6个可活动的关节,每个关节的运动名称都有定义,在图2中,给出了典型6关节工业机器人各关节的编号与动作状态(编号后面的英文大写字母就是规定动作英文名称的第一个字母),每个关节的运动都由一个伺服电(动)机驱动,每个电机都有各自的伺服控制系统。机器人最后“手”关节上所安装的工具中心点(TCP)(对点焊钳与电焊枪的TCP点,在相应的机器人结构中都作了规定)的运动轨迹是多个关节伺服系统协同动作的结果。而机器人运动控制系统(器)的作用就是如何根据编程指令来指挥控制6个伺服电(动)机协同动作,以完成工具中心点所要求实现的运动轨迹。 焊接机器人的运动轴参数 焊接机器人的运动轴参数主要包括:各轴最大运动范围、最大速度、相关轴的容许转距、相关轴的容许惯性力矩等 焊接机器人运动控制系统的组成 对机器人运动控制系统的一般要求 机器人控制系统是机器人的重要组成部分,主要用于对机器人运动的控制,以完成特定的工作任务,其基本功能如下: 记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

六自由度机器人运动分析及优化

本 科 毕 业 论 文(设 计) 题目(中文 学学 完 成 日 期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要 ...................................................................................................................... I Abstract ............................................................................... 错误!未定义书签。 1 绪论 (1) 1.1课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (3) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (5) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3 3.3.1动量矩定理---------------------------------------------------------------6 3.3.2能量守恒定理--------------------------------------6 3.3.3牛顿—欧拉方程------------------------------------7 3.3.4达朗贝尔原理--------------------------------------8 3.3.5拉格朗日方程--------------------------------------9 4 六自由度机器人运动分析 (8) 4.1运动分析的软件背景---------------------------------------3 4.2运用solidworks建立六度机器人机械臂三维模型--------------9 4.3运用Solidworks对进行运动学分析-------------------------4 5 结论 (14)

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.doczj.com/doc/0616236514.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

机器人学得一个正运动学的例子

PUMA 560 运动分析(表示) 1 正解 PUMA 560是属于关节式机器人,6个关节都是转动关节。前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。 各连杆坐标系如图1所示。相应的连杆参数列于表1。 图1机器人模型 PUMA560每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机器人机体绕0z 轴的回转(角1θ),它由固定底座和回转工作台组成。安装在轴中心的驱动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角2θ) 。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3θ),以及小臂的回转(4θ)。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5θ)和转动(6θ)。 下图为简化模型: 图2机器人简化模型 表1 机械手的末端装置即为连杆6的坐标系,它与连杆坐标系的关系可由16i T -表示: 1 616i i i T A A A -+= (1) 可得连杆变换通式为: 111111111100001i i i i i i i i i i i i i i i i i i i c s a s c c c s d s T s s c s c d c θθθαθαααθαθααα-----------????--? ?=???? ?? (2) 据连杆变换通式式(2)和表1所示连杆参数,可求得各连杆变换矩阵如下: 1 616 i i i T A A A -+=

机器人运动学

第2章 机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF ),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。 图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自 由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。 1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2)

相关主题
文本预览
相关文档 最新文档