当前位置:文档之家› 生化简答题大全及答案教学文稿

生化简答题大全及答案教学文稿

生化简答题大全及答案教学文稿
生化简答题大全及答案教学文稿

1.脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。

2.何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、β-羟丁酸和丙酮。酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰CoA并进入三羧酯循环而被氧化利用。

3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖→丙酮酸→乙酰CoA→合成脂肪酸→酯酰CoA葡萄糖→磷酸二羧丙酮→3-磷酸甘油脂酰CoA+3-磷酸甘油→脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。

4.简述脂肪肝的成因。肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。

5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。

7.写出甘油的代谢途径?甘油→3-磷酸甘油→(氧化供能,异生为糖,合成脂肪再利用)

8.简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒

9.试比较生物氧化与体外物质氧化的异同。生物氧化与体外氧化的相同点:物质在体内外氧化时所消耗的氧量、最终产物和释放的能量是相同的。生物氧化与体外氧化的不同点:生物氧化是在细胞内温和的环境中在一系列酶的催化下逐步进行的,能量逐步释放并伴有ATP的生成,将部分能量储存于ATP分子中,可通过加水脱氢反应间接获得氧并增加脱氢机会,二氧化碳是通过有机酸的脱羧产生的。生物氧化有加氧、脱氢、脱电子三种方式,体外氧化常是较剧烈的过程,其产生的二氧化碳和水是由物质的碳和氢直接与氧结合生成的,能量是突然释放的。

10.试述影响氧化磷酸化的诸因素及其作用机制。影响氧化磷酸化的因素及机制:(1)呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体Ⅰ中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、硫化氢抑制复合体Ⅳ。(2) 解偶联剂:二硝基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。(3)氧化磷酸化抑制剂:寡霉素可与寡霉素敏感蛋白结合,阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。(5) 甲状腺素:诱导细胞膜Na+-K+-ATP酶生成,加速ATP分解为ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。(6)线粒体DNA突变:呼吸链中的部分蛋白质肽链由线粒体DNA编码,线粒体DNA因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。11.试述体内的能量生成、贮存和利用。糖、脂、蛋白质等各种能源物质经生物氧化释放大量能量,其中约40% 的能量以化学能的形式储存于一些高能化合物中,主要是ATP。ATP的生成主要有氧化磷酸化和底物水平磷酸化两种方式。ATP是机体生命活动的能量直接供应者,每日要生成和消耗大量的ATP。在骨骼肌和心肌还可将ATP的高能磷酸键转移给肌酸生成磷酸肌酸,作为机体高能磷酸键的储存形式,当机体消耗ATP过多时磷酸肌酸可与ADP反应生成ATP,供生命活动之用。

12.试从蛋白质营养价值角度分析小儿偏食的害处。食物蛋白质的营养价值高低决定于所含必需氨基酸的种类和数量以及各种氨基酸的比例与人体蛋白质的接近程度。单一食物易出现某些必需氨基酸的缺乏,营养价值较低,如果将几种营养价值较低的蛋白质混合使用,则必需氨基酸可相互补充从而提高营养价值,此称蛋白质的互补作用。小儿偏食易导致体内某些必需氨基酸的不足,食物蛋白质使用效率低,影响小儿的生长发育。

13.参与蛋白质消化的酶有哪些?各自作用?参与食物蛋白质消化的酶主要有来自胃粘膜的胃蛋白酶和来自胰腺的胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧基肽酶A、B以及来自肠道的氨基肽酶、二肽酶、肠激酶。胃蛋白酶和来自胰腺的消化酶初分泌时均为酶原,胃中盐酸可激活胃蛋白酶原,肠激酶可激活胰蛋白酶原,胰蛋白酶又可激活糜蛋白酶原、弹性蛋白酶原和羧基蛋白酶原A、B。胃蛋白酶、胰蛋白酶、弹性蛋白酶、糜蛋白酶均为内肽酶,可水解蛋白质内部肽键,将食物蛋白质消化为小分子多肽。羧基蛋白酶A、B和氨基肽酶为外肽酶,可分别水解肽链C端和N端的肽键,产生大量的氨基酸和二肽,二肽酶水解二肽为两分子氨基酸。通过诸消化酶的共同作用,食物蛋白质可消化为大量的氨基酸,然后吸收。

16.简述体内氨基酸代谢状况。分布于体内各处的氨基酸共同构成氨基酸代谢库。氨基酸有三个来源:(1)食物蛋白质消化吸收的氨基酸。(2)体内组织蛋白质分解产生的氨基酸。(3)体内合成的非必需氨基酸。氨基酸有四个代谢去路:(1)脱氨基作用生成α-酮酸和氨,氨主要在肝脏生成尿素排泄,α-酮酸可在体内生成糖、酮体或氧化供能,此是氨基酸分解代谢的主要去路。(2)脱羧基作用生成CO2和胺,许多胺类是生物活性物质如γ-氨基丁酸、组织胺等。(3)生成其他含氮物如嘌呤、嘧啶等。(4)合成蛋白质,以20种氨基酸为基本组成单位,在基因遗传信息的指导下合成组织蛋白质,发挥各种生理功能。

17.1分子天冬氨酸在肝脏彻底氧化分解生成水、二氧化碳和尿素可净生成多少分子ATP?简述代谢过程。1分子天冬氨酸在肝脏彻底氧化分解生成水和二氧化碳、尿素可净生成16分子ATP,其代谢过程:天冬氨酸在肝细胞线粒体中经联合脱氨基生成1分子氨和1分子草酰乙酸并产生1分子NADH + H+。1分子氨进入鸟氨酸循环与来自另1分子天冬氨酸的氨基形成1分子尿素,此步相当于消耗2分子ATP。产生的1分子NADH + H+ 经呼吸链氧化生成3分子ATP。草酰乙酸在线粒体中需1分子NADH + H+ 还原为苹果酸,苹果酸穿出线粒体在胞液中生成草酰乙酸和1分子NADH + H+ (NADH + H+ 在肝细胞中主要通过苹果酸-天冬氨酸穿梭进入线粒体补充消耗的1分子NADH + H+ ),草酰乙酸→磷酸烯醇式丙酮酸→丙酮酸,分别消耗1分GTP和产生1分子ATP,可抵消。丙酮酸进入线粒体经丙酮酸脱氢酶催化生成1分子乙酰CoA和1分子NADH + H+ ,经三羧酸循环及氧化呼吸链可产生15分子ATP,1分子天冬氨酸彻底分解合计可净产生15+3-2=16分子ATP。

22.讨论核苷酸在体内的主要生理功能核苷酸具有多种生物学功用,表现在(1)作为核酸DNA和RNA合成的基本原料;(2)体内的主要能源物质,如ATP、GTP等;(3)参与代谢和生理性调节作用,如cAMP是细胞内第二信号分子,参与细胞内信息传递;(4)作为许多辅酶的组成部分,如腺苷酸是构成辅酶Ⅰ、辅酶Ⅱ、FAD.辅酶A等的重要部分;(5)活化中间代谢物的载体,如UDP-葡萄糖是合成糖原等的活性原料,GDP-二酰基甘油是合成磷脂的活性原料,PAPS是活性硫酸的形式,SAM是活性甲基的载体等。

24.试述丙氨酸转变为脂肪的主要途径?丙氨酸径联合脱氨基作用转化为丙酮酸丙酮酸氧化脱羧生成乙酰CoA,乙酰CoA进一步合成脂肪酸。丙酮酸经丙酮酸羧化支路生成磷酸烯醇式丙酮酸,并进一步转化为磷酸二羧丙酮,磷酸二羟丙酮还原为З-磷酸甘油。脂肪酸经活化为脂酰CoA后,与З-磷酸甘油经转酰基作用合成脂肪。

25.核苷、核苷酸、核酸三者在分子结构上的关系是怎样的?核苷是碱基与核糖通过糖苷键连接成的糖苷(苷或称甙)化合物。核苷酸是核苷的磷酸酯,是组成核酸(DNA,RNA)的基本单元,正如由氨基酸(基本单元)组成蛋白质(生物大分子)一样道理。所以核酸也叫多聚核苷酸。

26.参与DNA复制的酶在原核生物和真核生物有何异同?原核生物有DNA-pol Ⅰ,Ⅱ,Ⅲ;真核生物为DNA-pol α、β、γ、δ、ε;而且每种都各有其自身的功能。这是最主要的必需掌握的差别。相同之处在于底物(dNTP)相同,催化方向(5ˊ→5ˊ)相同,催化方式(生成磷酸二酯键)、放出PPi相同等等;又如:解螺旋酶,原核生物是dnaB基因的表达产物(DnaB),真核生物就不可能是这个基因和这种产物。

27.复制的起始过程如何解链?引发体是怎样生成的?E.coli oriC位点上有规律的结构可被DnaA四聚体蛋白结合而使双链打开,DnaB,C蛋白的进一步结合使双链更为展开,DnaB蛋白就是解螺旋酶。在此基础上,引物酶及其辅助蛋白结合在开链DNA上,形成引发体。

30.简述遗传密码的基本特点。⑴连续性密码的三联体不间断,需三个一组连续阅读的现象。⑵简并行几个密码共同编码一个氨基酸的现象。⑶摆动性密码子第三个碱基与反密码子的第一个碱基不严格的配对现象。⑷通用性所有生物共用同一套密码合成蛋白质的现象。

31.蛋白质生物合成体系包括哪些物质,各起什么作用。⑴mRNA 合成蛋白质的模板⑵tRNA携带转运氨基酸⑶rRNA与蛋白质结合成的核蛋白体是合成蛋白质的场所⑷原料二十种氨基酸⑸酶氨基酸-tRNA合成酶(氨基酸的活化),转肽酶(肽链的延长)等。⑹蛋白质因子起始因子,延长因子,终止因子,分别促进蛋白质合成的起始、延长和终止。

32.简述原核生物基因转录调节的特点。阻遏蛋白与阻遏机制的普遍性。(1)σ因子决定RNA聚合酶识别特异性;(2)操纵子模型的普遍性;(3)阻遏蛋白与阻遏机制的普遍性。

35.简述重组DNA技术中目的基因的获取来源和途径。基因的获取:主要有以下几种途径:①.化学合成法:已知某种基因的核苷酸序列或根据某种基因产物的aa序列推导出该多肽链编码的核苷酸序列,再利用DNA合成仪合成。②.基因组DNA:一个细胞或病毒所携带的全部遗传信息,或整套基因的全部DNA片段。从基因组DNA文库中获得。③.cDNA文库。④.聚合酶链反应------PCR 36.作为基因工程的载体必须具备哪些条件?作为基因工程的载体必须具备的条件是:能独立自主复制。易转化。易检测(含有抗药性基因等)。

38.简述类固醇激素的信息传递过程。类固醇激素的受体位于胞液或胞核内,当类固醇激素进入细胞与受体结合后,受体与热休克蛋白分离,而与激素结合为激素受体复合物,该复合物与激素反应元件(HRE)结合,从而促进或抑制某些特异基因的转录,引起生物学效应。

50.糖有氧氧化中涉及的维生素及相关的酶及辅酶糖有氧氧化中3-磷酸甘油醛脱氢酶、异柠檬酸脱氢酶和苹果酸脱氢酶的辅酶为NAD+,NAD+是维生素PP的活性形式;琥珀酸脱氢酶的辅酶为FAD,FAD 是维生素B2的活性形式;丙酮酸脱氢酶复合体及α-酮戊二酸脱氢酶复合体都有五种辅酶,分别是NAD+ FAD、硫辛酸、焦磷酸硫胺素(TPP,维生素B1的活性形式)、CoA(泛醌的活性形式)。51.脂肪酸合成中涉及的维生素及相关的辅酶。脂肪酸合成原料乙酰CoA含有CoA,CoA是泛酸的活性形式;乙酰CoA羧化酶的辅酶为生物素;脂肪酸合成酶系的核心为ACP,它也是泛酸的活性形式;脂肪酸合成中的两次还原均以NADPH为供氢体,NADPH是维生素PP的活性形式。

57、简述遗传信息传递工程中,复制.转录.翻录过程的特点。将亲代DNA的遗传信息准确地传递到子代DNA分子中,这一过程称为DNA复制。DNA本身并不能直接指导蛋白质的合成,而是首先以DNA 分子为模板,在细胞内合成与其结构相应的RNA,将DNA的遗传信息抄录到mRNA(信使RNA)分子中,这种将DNA遗传信息传递给RNA的过程,称为转录。通过转录,DNA的碱基序列按互补配对的原则转变成RNA分子中的相应碱基序列。然后,再以mRNA为模板,按照其碱基(A、G、C、U)的排列顺序,以三个相邻碱基序列为一种氨基酸的密码子形式,来决定蛋白质合成时氨基酸的序列。这一过程称为翻译。每个子代DNA分子的双链,一条链来自亲代DNA,而另一条链则是新合成的。这种复制方式称为半保留复制。DNA的复制过程极为复杂,这是由于许多酶和蛋白质因子参与了复制过程。

在原有DNA模板链存在情况下,DNA聚合酶催化四种脱氧核苷酸(dATP、dTTP、dGTP、dCTP),通过与模板链的碱基互补配对,合成新的对应DNA链,故此酶又称为DNA指导的DNA聚合酶.DNA聚合酶的特点是不能自行从头合成DNA链,而必须有一个多核苷酸链作为引物,DNA聚合酶只能在此引物的端催化dNTP与末端作用,形成,-磷酸二酯键,从而逐步合成DNA链。因此,DNA链的合成是有方向性的1.起始与引物的合成2.DNA片段的合成3.RNA引物的水解4.完整子代DNA分子的形成与DNA复制不同,转录是不对称的(即只有一条链转录,而不是象复制中两条链均可以用做模板)。这是转录的重要特点。转录是在DNA模板上的特定部位开始的。转录起始点之前有一段核苷酸序列组成的启动子,是RNA聚合酶的识别和结合部位。转录过程大体分为三个阶段,即起始、RNA链的延长和终止。与DNA复制不同的是:转录不需要引物;转录时碱基配对的规律是U代替T。转录时RNA链的合成也有方向性,mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸,称为密码子由rRNA组成的核蛋白体是蛋白质多肽链合成的场所,即“装配机”。在蛋白质合成过程中,上述三类RNA缺一不可。tRNA在蛋白质合成中的作用是特异性转运氨基酸,并通过

tRNA的反密码子与mRNA的密码子配对结合,使氨基酸准确地在mRNA密码子上“对号入座”,保证了遗传信息的传递。

58、糖酵解(一)糖的无氧氧化过程:又称糖酵解,葡萄糖在缺氧情况下,生成乳酸的过程基本反应过程:分为两个反应阶段,全程在胞浆中进行(1)第一阶段:糖酵解途径,由一分子葡萄糖分解分成两分子丙酮酸的过程①一次脱氢:3-磷酸甘油醛←→1,3-二磷酸甘油酸+ NADH+H+的氧化过程②二次底物水平磷酸化过程:各生成1分子ATP②二次ATP消耗的反应:②二个磷酸丙糖的生成:1,6-二磷酸果糖裂解为磷酸二羟丙酮和3-磷酸甘油醛②二个ATP的净生成:2(底物水平磷酸化)×2(磷酸丙糖)-2(ATP消耗)= 2 ATP③三次不可逆性反应,三个关键酶的参与:(2)第二阶段:丙酮酸还原生成乳酸,所需的氢原子由前述‘一次脱氢’过程提供,反应由乳酸脱氢酶催化,辅酶是NAD(二)糖酵解的调节:主要是在6-磷酸果糖激酶-1这个关键酶上的调节AMP、ADP等缺乏能量的表现会促进生成能量即生成ATP的代谢反应加强,促进6-磷酸果糖激酶-1活性增高;此外,1,6-二磷酸果糖是该酶的正反馈激活剂,这是生物化学知识点中,唯一的一个正反馈机制。其它正反馈主要集中在生理学知识中:包括排尿反射、排便反射、分娩过程、动作电位产生时Na通道的开放,血液凝固过程、胰蛋白酶原的激活过程,以及排卵前期成熟的卵泡分泌大量雌激素对腺垂体分泌黄体生成素的影响。2,6-二磷酸果糖是该酶最强的变构激活剂,重点是6-磷酸果糖激酶-1的调控掌握(三)糖酵解的生理意义:(1)迅速提供能量,对肌收缩更为重要(2)成熟红细胞的供能(3)神经组织、白细胞、骨髓等代谢活跃的组织,即使不缺氧也多由糖酵解提供能量

59、三羧酸循环(1)三羧酸循环的反应过程:①乙酰辅酶A与草酰乙酸缩合成柠檬酸。乙酰辅酸A 在柠檬酸合成酶催化下,与草酰乙酸缩合成柠檬酰辅酶A,后水解成柠檬酸和CoA。此反应在生理条件下是不可逆的。②柠檬酸转变成异柠檬酸。柠檬酸在顺乌头酸酶催化下,先脱水转变为顺乌头酸,再加水、异构成异柠檬酸。此反应都是可逆反应。③异柠檬酸氧化脱羧成α-酮戊二酸。④α-酮戊二酸氧化脱羧生成琥珀酰辅酶A。这一酶系是由α-酮戊二酸脱氢酶、硫辛酸琥珀酰转移酶及二氢硫辛酸脱氢酶组成的复合体,其辅酶及催化方式与丙酮酸脱氢酶系相似,属不可逆的α-氧化脱羧反应,是三羧酸循环的第三个调节点。⑤琥珀酰辅酶A转变成琥珀酸。琥珀酸硫激酶催化此反应。这是三羧酸循环中唯一直接生成高能磷酸键化合物的反应。所生成的GTP经核苷二磷酸激酶催化,可转变为ATP。⑥-⑧三羧酸循环的最后阶段是四个碳的化合物的反应,即琥珀酸转变为草酰乙酸,共有三步:脱氢、加水、再脱氢。琥珀酸脱氢酶(辅基为FAD)催化琥珀酸脱氢生成延胡索酸;延胡索酸酶催化延胡索酸加水生成苹果酸;苹果酸经苹果酸脱氢酶脱氢生成草酰乙酸60、有氧氧化过程。1. 葡萄糖或糖原氧化分解成丙酮酸,这个阶段也是在胞液中进行的,与无氧酵解过程基本相同。2. 丙酮酸氧化脱羧生成乙酰辅酶A胞液中的丙酮酸透过线粒体膜进入线粒体后,经丙酮酸脱氢酶系催化,进行氧化脱羧,并与辅酶A结合而生成乙酰辅酶A。丙酮酸脱氢酶系是一个很复杂的多酶体系。包括丙酮酸脱氢酶(辅酶是TPP)、硫辛酸乙酰转移酶(辅酶是硫辛酸和CoA-SH)、二氢硫辛酸脱氢酶(辅基是FAD),并需要线粒体基质中的NAD+。现已了解,此多酶复合体形成了紧密相连的连锁反应机构,故催化效率较高。

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

简爱中考试题及答案

简爱中考试题及答案 一、填空题(40分) 1.《简.爱》的作者是(国家)的女作家。作者的两个妹妹也是著名作家,她们分别是和,其代表作分别为和。 2.《简·爱》是一部具有浓厚色彩的小说。作者以诗意与哲理的的笔触描写了、、追求与的资产阶级知识女性简.爱的成长经历及情感历程。 3.《简.爱》一书中女主人公简.爱是一个出身贫寒的,她从小寄养在,遭到虐待,后来被送进慈善机关举办的寄宿学校——。毕业后,应聘来到庄园当 ,与主人相互产生爱情,历经曲折,最终和他结了婚。4.小说按照顺序写了主人公在四个主要地方的生活这四个主要地方是:、、、。其中最主要的地点是。 5.简.爱找到第一份工作的方式是,工作是做的。简.爱最擅长的的技能是。 6.简.爱在学校最喜欢的老师是,简.爱在学校最好的朋友是,简﹒爱最好的朋友死 7.年幼的简.爱有一次被(谁)关入是因为。 8.简.爱在做期间,意外地获得了的遗产。简·爱最终把两万英镑的遗产与分了。 9.在桑菲尔德庄园,简?爱勇敢地宣布了对的爱。 10.圣约翰致力于成为一名。他深爱着。他想要简.爱成为他的妻子是因为 。 二、判断题(10分) 1.对人间自由幸福的渴念和对更高精神境界的追求是女主人公简.爱的两个基本动机。

() 2.《简.爱》以第一人称叙述,感情真挚,语言优美,气氛灵异,悬念迭起。 () 3.简.爱是通过谭波尔小姐介绍到桑菲尔德府做家庭教师的。( ) 4.简.爱答应了圣约翰的求婚,却在第二天回去见罗切斯特。( ) 5.红房子事件后,简.爱从晕厥中醒来,坐在育儿室中的她请求贝贝茜去拿《小人国游记》。 ( ) 6.在罗沃德学校,老师们都不喜欢海伦.彭斯,是因为她不仅没有聪明才智,而且还是个邋遢的姑娘。()7.简.爱第一次见罗切斯特先生时,他的腿受了伤。() 8.在罗切斯特的房间放火并且撕裂简.爱的婚纱的是:格雷斯.尔。( ) 9.罗切斯特太太死于一场大火。() 10.简.爱选择离开桑菲尔德,流浪的原因是想维护个人尊严。() 三、选择题(20分) 1.下列作者的亲身经历中与简.爱不相似的是()。 A.出生于英国北部约克郡的豪渥斯的一个贫困乡村牧师家庭 B.母亲早逝,孩子们被送进女子寄宿学校,她的两个姐姐因染上肺病而先后死去。C.于是,简.爱和妹妹艾米莉被穷困的父亲接回到家乡抚养长大。 2.下列对简.爱父母的描述不正确的是:()。 A.简.爱的父亲生前是个穷牧师,出身富有的母亲违背了朋友们的意愿嫁给了他。B.简.爱的舅舅里德一气之下同她的母亲断绝了关系,并且没留给她一个子儿。 C.父母亲结婚才一年,父亲为穷人奔走传教时染上了斑疹伤寒。 3.下列有关于里德舅舅的描述不正确的是:()。 A.里德舅舅是简.爱母亲的弟弟。 B.他在简.爱父母双亡后收养了简爱这个襁褓中的孤儿。 C.他弥留之际,要里德太太答应,把简爱当作她自己的孩子来抚养。 4.盖兹黑德府是什么地方?() A.简.爱被收养的地方 B.简.爱读书的地方 C.罗切斯特的庄园 5.下面哪个人物不是《简.爱》中的人物?()

生化简答题(附答案)

1.简述脂类的消化与吸收。 2.何谓酮体?酮体是如何生成及氧化利用的? 3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么? 4.简述脂肪肝的成因。 5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质? 6.脂蛋白分为几类?各种脂蛋白的主要功用? 7.写出甘油的代谢途径? 8.简述饥饿或糖尿病患者,出现酮症的原因? 9.试比较生物氧化与体外物质氧化的异同。 10.试述影响氧化磷酸化的诸因素及其作用机制。 11.试述体内的能量生成、贮存和利用 12.试从蛋白质营养价值角度分析小儿偏食的害处。 13.参与蛋白质消化的酶有哪些?各自作用? 14.从蛋白质、氨基酸代谢角度分析严重肝功能障碍时肝昏迷的成因。 15.食物蛋白质消化产物是如何吸收的? 16.简述体内氨基酸代谢状况。 17.1分子天冬氨酸在肝脏彻底氧化分解生成水、二氧化碳和尿素可净生成多少分子ATP?简述代谢过程。 18.简述苯丙氨酸和酪氨酸在体内的分解代谢过程及常见的代谢疾病。 19.简述甲硫氨酸的主要代谢过程及意义。 20.简述谷胱甘肽在体内的生理功用。 21.简述维生素B6在氨基酸代谢中的作用。 22.讨论核苷酸在体内的主要生理功能

23.简述物质代谢的特点? 24.试述丙氨酸转变为脂肪的主要途径? 25.核苷、核苷酸、核酸三者在分子结构上的关系是怎样的? 26.参与DNA复制的酶在原核生物和真核生物有何异同? 27.复制的起始过程如何解链?引发体是怎样生成的? 28.解释遗传相对保守性及其变异性的生物学意义和分子基础。 29.什么是点突变、框移突变,其后果如何? 30.简述遗传密码的基本特点。 31.蛋白质生物合成体系包括哪些物质,各起什么作用。 32.简述原核生物基因转录调节的特点。阻遏蛋白与阻遏机制的普遍性。33.简述真核生物基因组结构特点。 34.同一生物体不同的组织细胞的基因组成和表达是否相同?为什么?35.简述重组DNA技术中目的基因的获取来源和途径。 36.作为基因工程的载体必须具备哪些条件? 37.什么叫基因重组?简述沙门氏菌是怎样逃避宿主免疫监视的?38.简述类固醇激素的信息传递过程。 39.简述血浆蛋白质的功能。 40.凝血因子有几种?简述其部分特点? 41.简述红细胞糖代谢的生理意义。 42.试述维生素A缺乏时,为什么会患夜盲症。 43.简述佝偻病的发病机理。 44.维生素K促进凝血的机理是什么?

专升本生物化学问答题答案(A4)..

温医成教专升本《生物化学》思考题参考答案 下列打“*”号的为作业题,请按要求做好后在考试时上交 问答题部分:(答案供参考) 1、蛋白质的基本组成单位是什么?其结构特征是什么? 答:组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)。 *2、什么是蛋白质的二级结构?它主要形式有哪两种?各有何结构特征? 答:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 α-螺旋、β-折叠。 α-螺旋:多肽链的主链围绕中心轴做有规律的螺旋上升,为右手螺旋,肽链中的全部肽键 都可形成氢键,以稳固α-螺旋结构。 β-折叠:多肽链充分伸展,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,肽链间形成氢键以稳固β-折叠结构。 *3、什么是蛋白质变性?变性的本质是什么?临床上的应用?(变性与沉淀的关系如何?)(考过的年份:2006 答:某些理化因素作用下,使蛋白质的空间构象遭到破坏,导致其理化性质改变和生物活性的丢失,称为蛋白质变性。 变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 变性的应用:临床医学上,变性因素常被应用来消毒及灭菌。此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。 (变性与沉淀的关系:变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。) 4、简述细胞内主要的RNA及其主要功能。(同26题) 答:信使RNA(mRNA):蛋白质合成的直接模板; 转运RNA(tRNA):氨基酸的运载工具及蛋白质物质合成的适配器; 核蛋白体RNA(rRNA):组成蛋白质合成场所的主要组分。 *5、简述真核生物mRNA的结构特点。 答:1. 大多数真核mRNA的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C ′2也是甲基化,形成帽子结构:m7GpppNm-。 2. 大多数真核mRNA的3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。 6、简述tRNA的结构特点。 答:tRNA的一级结构特点:含10~20% 稀有碱基,如DHU;3′末端为—CCA-OH;5′末端大多数为G;具有TψC 。 tRNA的二级结构特点:三叶草形,有氨基酸臂、DHU环、反密码环、额外环、TΨC环组

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

简爱(阅读试题)

简爱》阅读试题 1. 英国文学史上著名的作家三姐妹“勃朗特三姐妹”不包括下列的:() A. 艾米莉.勃朗特 B.安妮.勃朗特 C.劳希里?勃朗特 D.夏洛 蒂.勃朗特 2. 《简.爱》的作者是() A.艾米莉.勃朗特 B.安妮.勃朗特 C.劳希里?勃朗特 D.夏洛蒂.勃朗特 3. 下列作者的亲身经历中与简爱不相似的是() A. 出生于英国北部约克郡的豪渥斯的一个贫困乡村牧师家庭 B .母亲早逝,孩子们被送进女子寄宿学校,她的两个姐姐因染上肺病而先后死去 C.勃朗特和妹妹艾米莉被穷困的父亲接回到家乡抚养长大 D .成年后的她曾做过有钱人家的家庭教师 4. 下列对简爱父母的描述不正确的是:() A. 简爱的父亲生前是个穷牧师,出身富有的母亲违背了朋友的意愿嫁给了他 B. 简爱的舅舅里德一气之下同她的母亲断绝了关系,并且没留给她一 个子儿 C. 父母亲结婚才一年,父亲为穷人奔走传教时染上了斑疹伤寒

D. 母亲从父亲那儿染上了同一疾病,结果父母双双故去,前后相距不到一个月 5. 下列有关于里德舅舅的描述不正确的是:() A.里德舅舅是简爱母亲的弟弟 B .他在简爱父母双亡后收养了简爱这个襁褓中的孤儿 C. 在他弥留之际,要里德太太答应,把简爱当作她自己的孩子来抚养 D. 里德舅舅死于一个富丽堂皇,有着众多深红色摆设的“红房子”中 6. 盖兹海德府是什么地方?() A.简爱被收养的地方 B.简爱读书的地方 C.罗切斯特的庄园 D.简爱出生的地方 7. “我不知道他看出了我的心思没有,反正他二话没说,猛然间狠命揍我。我一个踉跄,从他椅子前倒退了一两步才站稳身子。”句中的 “他”是谁?性格特征是什么?() A.盖兹海德府的仆人粗野 B.约翰?里德骄纵霸道 C.简爱的表哥正义有力 8. “你没有资格动我们的书。妈妈说的,你靠别人养活你,你没有钱, 你爸爸什么也没留给你,你应当去讨饭,而不该同像我们这样体面人家的孩子一起过日子。”句中的妈妈是谁?她对简爱是什么态度?() A.简爱舅妈歧视 B.里德太太残忍 C.简爱舅妈冤枉 D. 里德太太厌恶 9. “你是个恶毒残暴的孩子!”我说。“你像个杀人犯——你是个奴隶监工——你像罗马皇帝!”简爱的这番话发生于什么事件中?体现了她什么性

生化名词解释、简答

试卷一 五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分) DNS-C1 DNFB DEAE —纤维素 BOC 基 1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。 2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。 3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。 4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。 六、解释下列名词(共12分) 1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。 2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。 3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。 4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。 5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。 6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。 七、问答与计算(共30分) 1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。此八肽与FDNB 反应并酸水解后。释放出FDNB-Ala 。将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。请写出这个八肽的氨基酸序列。(10分)Ala-Ser-Lys-phe-Gly-Lys-Tyr-Asp 2、试求谷胱甘肽在生理pH 时带的净电荷,并计算它的等电点。已知pK (COOH )=2.12 pK (COOH )=3.53 pK (N +H 3)=8.66 pK(SH)=9.62 净电荷为-1,83 .22 53 .312.2=+= PI 3、若有一球状蛋白质,分子中有一段肽链为Ala-Gln-Pro-Trp-Phe-Glu-Tyr-Met… 在生理条件下,哪些氨基酸可能定位在分子内部?(5分) 球状蛋白质形成亲水面,疏水核,所以Ala,Pro,Trp,phe,Met 可能定位在分子内部。

生化简答题与答案

生化简答题 ●肿瘤抑制因子p53在调控磷酸戊糖途径(pentose phosphate pathway, PPP)中的作用机制 6-磷酸葡糖脱氢酶此酶为磷酸戊糖途径的关键酶,其活性的高低决定6-磷酸葡糖进入磷酸戊糖途径的流量。此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。 p53可以与磷酸戊糖途径上的第一步反应的关键酶葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PD)相结合,并且抑制它的活性。 在正常情况下,p53参与阻止这一途径的进行,细胞中的葡萄糖因此被主要用于进行酵解和三羧酸循环;在p53发生突变或缺失的肿瘤细胞中,由于p53的突变使它失去与G6PD 结合的能力和对G6PD的抑制,细胞中利用葡萄糖的另一代谢途径即磷酸戊糖途径因此加速进行,大量消耗葡萄糖,这一发现部分解释了自19世纪20年代末科学家所提出的Warburg 现象(Warburg effect)。另外,由于PPP的加速,产生大量NAPDH及戊糖(DNA的组份原料),可以满足肿瘤细胞快速生长所需要的大量的DNA复制。 这一研究还第一次提出:p53除了具有转录活性外,还具有催化功能,它通过与底物瞬时结合,以”hit-and-run”的模式使G6PD酶的活性降低。 ● 结合所学糖代谢所学知识,分析临床上使用果糖2,6二磷酸辅助治疗心肌缺血的机制. F-2,6-2P是磷酸果糖激酶-1(PFK-1)的别构激活剂,能够促进葡萄糖的分解,产生ATP,为心肌提供能量,弥补了因缺血造成的能量不足。 【二磷酸果糖(FDP)属于心血管类正性肌力药物,是机体葡萄糖代谢中的一个重要中间产物,二磷酸果糖在代谢过程中通过刺激果糖激酶和丙酮酸激酶的活性,增加细胞内三磷酸腺苷(ATP)和磷酸肌酸的浓度,具有调节细胞代谢,增加细胞能量,维持细胞骨架,提高红细胞韧性和释氧等功能。因此,在抗缺血,缺氧,提高机体功能方面显示出一定的作用,由于二磷酸果糖静脉给药后可较好地改善心肌代谢,保护心肌,改善心肌缺血,常作为心肌缺血的辅助治疗用药(2,6二磷酸果糖】 心绞痛、心衰、心肌梗塞的辅助治疗药物,在临床治疗中适用症较广,副作用轻微,在心血管急慢性病症中发挥了一定的作用。 ● 二甲双胍(Metformin)是临床上重要的降血糖药物,据研究其机制与metformin促进糖 的无氧分解和抑制糖异生有关,请试结合糖的无氧酵解生化知识分析,metformin有何副作用? 糖无氧氧化反应终产物为乳酸,而二甲双胍促进糖的无氧分解,故在使用二甲双胍的病人中,由于二甲双胍的累积有可能发生乳酸性酸中毒。 (大概这个意思吧~其他的自己看着办) ● 病例分析 某对夫妻,喜得一子,无比喜悦!可第三天,医生检查发现小宝宝出现黄疸、贫血、面色苍白。初步诊断为新生儿黄疸,给予光照治疗以去黄疸,患儿3天后因多器官衰竭死亡。 1、请问医生的处理正确吗?错误在哪里? 2、新生儿有哪些病会引起黄疸呢? 1、错,宝宝贫血、面色苍白为病理性性黄疸(溶血性黄疸),而医生误诊为生理性黄疸,耽误治疗。

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

《简爱》名著试题

《简爱》名着试题 一、填空题 1:在简爱发疯似的与约翰对打起来之时,约翰口中不停的骂着 2:简爱在学校的第一顿早餐是____________ 3:《简?爱》的作者是 _国的__________________ 。 4:文章是以第_____ 人称来进行叙述的。 5:简爱的叔父留给她的遗产是_________ 英镑,她又分给_______ 、玛丽和_______ 各____ 英镑。 6:在三年前,简爱的叔父_________ 给里德太太一封信? 7:简爱在____________ 当了家庭教师? &费尔法克斯太太职业是:_______________ ? 9、简爱逃出桑菲尔德府被__________ 所救? 10:简?爱是找到第一份工作的方式是_________ ,工作是做_________ 11:简爱与罗切斯特先生的第一次谈话中,在最后,罗切斯特提到了阿黛勒给他看的____________ ? 12:简爱出门与费尔法克斯太太谈论了___________ ? 13:梅森先生被________ 咬伤? 14:简?爱在做__________ 期间,意外地获得了 ________ 的遗产。 15:罗切斯特太太是________ 死的? 16:简?爱最擅长的的技能是_____________ ? 17:《简?爱》一书中________ 和 _______ 曾要与简爱结婚。 18:简?爱在学校认识的第一个朋友是___________ o 19:罗切斯特先生去丝绸店带了__________ 和 __________ ? 20:.圣约翰与简爱是_________ 关系? 21:圣约翰喜欢________________ ?

生物化学简答题

1.比较三种可逆性抑制作用的特点。 (1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用的大小与抑制剂与底物的浓度以及酶对它们的亲和力有关。Km值升高,Vm不变。 (2)非竞争性抑制:抑制剂的结构与底物结构不相似或不同,只与酶活性中心外的必需基因结合。不影响酶与底物的结合。抑制作用的强弱只与抑制剂的浓度有关。Km值不变,Vm 下降。 (3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离为产物。Km,Vm均下降。 DNA复制与转录过程的异同点。 DNA的复制与转录的相同点:复制和转录都是酶促的核苷酸聚合的过程,有以下相似之处,都以DNA为模板;都需依赖DNA的聚合酶;聚合过程都是核苷酸之间生成磷酸二酯键;都从5′至3′方向延伸成新链多聚核苷酸;都遵从碱基配对规律。 复制与转录的不同点: 1 转录以DNA单链为模版而复制以双链为模板 2 转录用的无引物而复制以一段特异的RNA为引物 3 转录和复制体系中所用的酶体系不同 4转录和复制的配对的碱基不完全一样,转录中A对U,而复制中A对T,而且转录体系中有次黄嘌呤碱基的引入 (1)三羧酸循环 在线粒体基质中进行,反应过程的酶,除了琥珀酸脱氢酶是定位于线粒体内膜外,其余均位于线粒体基质中主要事件顺序为: 1)乙酰CoA与草酰乙酸结合,生成柠檬酸,放出CoA。柠檬酸合成酶。 2)柠檬酸先失去一个H2O而成顺乌头酸,再结合一个H2O转化为异柠檬酸。顺乌头酸酶 3)异柠檬酸发生脱氢、脱羧反应,生成a-酮戊二酸,放出一个CO2,生成一个NADH+H+。异柠檬酸脱氢酶 4)a-酮戊二酸氧化脱羧生成琥珀酰CoA,放出一个CO2,生成一个NADH+H+。酮戊二酸脱氢酶 5)琥珀酰辅酶A合成酶催化底物水平磷酸化反应 6)琥珀酸脱氢生成延胡索酸,生成1分子FADH2,琥珀酸脱氢酶 7)延胡索酸和水化合而成苹果酸。延胡索酸酶 8)苹果酸氧化脱氢,生成草酸乙酸,生成1分子NADH+H+。苹果酸脱氢酶

生化简答题大全及答案教学文稿

1.脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。 2.何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、β-羟丁酸和丙酮。酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰CoA并进入三羧酯循环而被氧化利用。 3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖→丙酮酸→乙酰CoA→合成脂肪酸→酯酰CoA葡萄糖→磷酸二羧丙酮→3-磷酸甘油脂酰CoA+3-磷酸甘油→脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。 4.简述脂肪肝的成因。肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。 5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。 7.写出甘油的代谢途径?甘油→3-磷酸甘油→(氧化供能,异生为糖,合成脂肪再利用) 8.简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒 9.试比较生物氧化与体外物质氧化的异同。生物氧化与体外氧化的相同点:物质在体内外氧化时所消耗的氧量、最终产物和释放的能量是相同的。生物氧化与体外氧化的不同点:生物氧化是在细胞内温和的环境中在一系列酶的催化下逐步进行的,能量逐步释放并伴有ATP的生成,将部分能量储存于ATP分子中,可通过加水脱氢反应间接获得氧并增加脱氢机会,二氧化碳是通过有机酸的脱羧产生的。生物氧化有加氧、脱氢、脱电子三种方式,体外氧化常是较剧烈的过程,其产生的二氧化碳和水是由物质的碳和氢直接与氧结合生成的,能量是突然释放的。 10.试述影响氧化磷酸化的诸因素及其作用机制。影响氧化磷酸化的因素及机制:(1)呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体Ⅰ中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、硫化氢抑制复合体Ⅳ。(2) 解偶联剂:二硝基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。(3)氧化磷酸化抑制剂:寡霉素可与寡霉素敏感蛋白结合,阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。(5) 甲状腺素:诱导细胞膜Na+-K+-ATP酶生成,加速ATP分解为ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。(6)线粒体DNA突变:呼吸链中的部分蛋白质肽链由线粒体DNA编码,线粒体DNA因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。11.试述体内的能量生成、贮存和利用。糖、脂、蛋白质等各种能源物质经生物氧化释放大量能量,其中约40% 的能量以化学能的形式储存于一些高能化合物中,主要是ATP。ATP的生成主要有氧化磷酸化和底物水平磷酸化两种方式。ATP是机体生命活动的能量直接供应者,每日要生成和消耗大量的ATP。在骨骼肌和心肌还可将ATP的高能磷酸键转移给肌酸生成磷酸肌酸,作为机体高能磷酸键的储存形式,当机体消耗ATP过多时磷酸肌酸可与ADP反应生成ATP,供生命活动之用。 12.试从蛋白质营养价值角度分析小儿偏食的害处。食物蛋白质的营养价值高低决定于所含必需氨基酸的种类和数量以及各种氨基酸的比例与人体蛋白质的接近程度。单一食物易出现某些必需氨基酸的缺乏,营养价值较低,如果将几种营养价值较低的蛋白质混合使用,则必需氨基酸可相互补充从而提高营养价值,此称蛋白质的互补作用。小儿偏食易导致体内某些必需氨基酸的不足,食物蛋白质使用效率低,影响小儿的生长发育。

简爱试题及答案

简爱试题及答案 【篇一:简爱练习题含答案】 《简爱》 2、简爱因婚事受阻而离开了自己所爱的人远走他乡,你能说说是 什么阻碍了他们的婚姻吗? 3、罗切斯特先生为什么瞎了? 5.简爱在舅妈里德太太家的地位,连使女都不如,受尽了表兄表 姊妹的欺侮。但她不甘受欺侮,哪件事 最能表现她的反抗精神? 7、罗切斯特为什么说自己要和英格兰小姐结婚,并且要简离开? 8、简爱为什么离开孤儿院,从这里可以看出她的什么个性? 9、婚礼前夜,简做了一个什么梦? 10.简爱虽然相貌平平,但她身上有强烈的魅力和美感,你认为是 什么? 11、简?爱离开新义塾去寻找其他工作的原因是: 12、从《简?爱》这本书中我们学到了什么? 13什么,简的态度是怎样的? 二、填空题。 14、《简爱》的女主人公简爱是一个出身贫寒的,她从小寄养在家 进慈善机关举办的寄宿学校—— .毕业后,应聘来到桑菲尔德庄园当,与主人相互产生爱情,历经曲折,最终和他结了婚。 15、简爱从小就表现出强烈的精神,与表哥、舅妈以及学校校长 对抗,长大后又以其人格和 勇敢个性赢得了罗切斯特的爱情。 16、《简.爱》是英国作家纪四十年代。 17、《简.爱》是一本充满了诗情画意的小说。作者以诗意与哲理的 的笔触,描写了:::。 答案 1.(因为罗切斯特还有一个活着的妻子。) 2.(因为在婚礼上被人指控罗切斯特早有妻室,就是一直被囚禁在 庄园一间阁楼里的疯女人。) 3.(他的妻子放火烧了庄园,他为了救人,一只眼睛发炎,另一只 眼睛被砸伤。) (阿黛勒罗切斯特)

4.(一天表兄又打她了,她回手反抗,却被舅母关进红房子里,受惊吓大病一场。) 6.(她受不了那里的孤寂、冷漠,她追求自由,幸福,勇于反抗) 7.(看到一个身材高大、面目可憎的女人正在戴她的婚纱,然后把婚纱撕成碎片)、 8.(独立自主、自强不息的精神品格,丰富、明确、坚定的个性,追求平等和尊严等。) 9.(谭波儿老师出嫁旅行了,简?爱失去了精神支柱) 10.(一个小人物,依靠自己正直品质和聪明才智,还有坚忍不拔地艰苦奋斗、勇往直前的精神最终冲破重重险阻,达到自己的目的地。) 11.(他需要一个很有教养的助手。简觉得应该报答他的恩情,但迟迟不肯答应他)。 12.孤儿舅母雷沃德学校家庭教师罗切斯特 13.反抗独立 14.夏洛蒂。勃朗特 15.自尊、自爱、追求平等自由与人格独立的资产阶级知识女性简.爱的成长经历及情感历程。 【篇二:中考名著《简爱》试题及答案】 >一、填空。 2、罗切斯特太太是怎样死的?(跳楼) 二、按要求回答下列问题。 14、罗切斯特先生为什么瞎了? (他的妻子放火烧了庄园,他为了救人,一只眼睛发炎,另一只眼睛被砸伤。) 20、罗切斯特为什么说自己要和英格兰小姐结婚,并且要简离开?(想试探简的心意。) 21、《简爱》的女主人公简机关举办的寄宿学校——雷沃德学校。毕业后,应聘来到桑菲尔德庄园当家庭教师,与主人罗切斯特相互产生爱情,历经曲折,最终和他结了婚。 22、简敢个性赢得了罗切斯特的爱情。 23、简爱因婚事受阻而离开了自己所爱的人远走他乡,你能说说是什么阻碍了他们的婚姻吗? 答:因为在婚礼上被人指控罗切斯特早有妻室,就是一直被囚禁在庄园一间阁楼里的疯女人。

生物化学简答题答案

生物化学简答题 1. 产生ATP的途径有哪些试举例说明。 答:产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。 氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反应,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有个ADP磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。 底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的过程。例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反应中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动ADP磷酸化生成ATP,这就是通过底物水平磷酸化产生了ATP。 2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。 (1)共性:用量少而催化效率高;仅能改变化学反应速度,不能改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的 活化能。 (2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。 3.什么是乙醛酸循环,有何生物学意义 乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组

织中尚未发现。乙醛酸循环反应分为五步(略)。总反应说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或者转变为葡萄糖。 乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。 4. 简述氨基酸代谢的途径。 答:氨基酸代谢的途径主要有三条,一是合成组织蛋白质进行补充和更新;二是经过脱羧后转变为胺类物质和转变为其他一些非蛋白含氮物,以及参与一碳单位代谢等;三是氨基酸脱氨基后生成相应的α-酮酸和氨。其中α-酮酸可以走合成代谢途径,转变为糖和脂肪,也可以走分解代谢途径,氧化为CO2和H2O,并产生能量;氨能进入尿素循环生成尿素排出体外或生成其他一些含氮物和Gln。 5. 简述尿素循环的反应场所、基本过程、原料、产物、能量情况和限速酶、生理意义。 答:尿素循环是在人体肝脏细胞的线粒体和胞液中进行的一条重要的代谢途径。在消耗ATP的情况下,在线粒体中利用CO2和游离NH3先缩合形成氨甲酰磷酸,再与鸟氨酸缩合形成瓜氨酸,瓜氨酸从线粒体中转移到胞液,与另一分子氨(贮存在天冬氨酸内)结合生成精氨酸,精氨酸再在精氨酸酶的催化下水解生成尿素和鸟氨酸,鸟氨酸又能再重复上述反应,组成一个循环途径。因此原料主要为氨(一分子游离氨和一分子结合氨)和二氧化碳;产物为尿素;每生成一分子尿素需要消耗4个ATP,限速酶为精氨酸代琥珀酸合成酶。尿素循环的生理意义是将有毒的氨转变为无毒的尿素,是机体对氨的一种解毒方式。

生物化学期末考试试题及答案-2

《生物化学》期末考试题A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生物化学题库(含答案).

蛋白质 一、填空R (1)氨基酸的结构通式为H2N-C-COOH 。 (2)组成蛋白质分子的碱性氨基酸有赖氨酸、组氨酸、精氨酸,酸性氨基酸有天冬氨酸、谷氨酸。 (3)氨基酸的等电点pI是指氨基酸所带净电荷为零时溶液的pH值。 (4)蛋白质的常见结构有α-螺旋β-折叠β-转角和无规卷曲。 (5)SDS-PAGE纯化分离蛋白质是根据各种蛋白质分子量大小不同。 (6)氨基酸在等电点时主要以两性离子形式存在,在pH>pI时的溶液中,大部分以__阴_离子形式存在,在pH

简爱练习试题及答案解析

《简·爱》习题与答案 夏洛蒂·勃朗特(英国)蔡岳嵩 Presents. 一、内容简要 简·爱是个孤女,出生于一个穷牧师家庭。父母由于染上伤寒,在一个月之中相继去世。幼小的简寄养在舅父母家里。舅父里德先生去世后,简过了10年受尽歧视和虐待的生活。一次,由于反抗表哥的殴打,简被关进了红房子。肉体上的痛苦和心灵上的屈辱和恐惧,使她大病了一场。 舅母把她视作眼中钉,并把她和自己的孩子隔离开来,从此,她与舅母的对抗更加公开和坚决了。以后,简被送进了罗沃德孤儿院。 孤儿院教规严厉,生活艰苦,院长是个冷酷的伪君子。简在孤儿院继续受到精神和肉体上的摧残。由于恶劣的生活条件,孤儿院经常有孩子病死。简毕业后留校任教两年,这时,她的好友海伦患肺病去世。简厌倦了孤儿院里的生活,登广告谋求家庭教师的职业。 桑恩费尔德庄园的女管家聘用了她。庄园的男主人罗契斯特经常在外旅行,偌大的宅第只有一个不到10岁的女孩阿戴列·瓦朗,罗契斯特是她的保护人,她就是简的学生。 一天黄昏,简外出散步,邂逅刚从国外归来的主人,这是他们第一次见面。以后她发现她的主人是个性格忧郁、喜怒无常的人,对她的态度时好时坏。整幢房子沉郁空旷,有时还会听到一种令人毛骨悚然的奇怪笑声。 一天,简在睡梦中被这种笑声惊醒,发现罗契斯待的房间着了火,简叫醒他并帮助他扑灭了火。 罗契斯特回来后经常举行家宴。在一次家宴上向一位名叫布兰契的漂亮小姐大献殷勤,简被召进客厅,却受到布兰契母女的冷遇,她忍受屈辱,离开客厅。此时,她已经爱上了罗契斯特。其实罗契斯特也已爱上简,他只是想试探简对自己的爱情。当他向简求婚时,简答应了他。 婚礼前夜,简在朦胧中看到一个面目可憎的女人在镜前披戴她的婚纱。 第二天,当婚礼在教堂悄然进行时,突然有人出证:罗契斯特先生15年前已经结婚。他的妻子原来就是那个被关在三楼密室里的疯女人。法律阻碍了他们的爱情,使两人陷入深深的痛苦之中。在一个凄风苦雨之夜,简离开了罗契斯特。在寻找新的生活出路的途中,简风餐露宿,沿途乞讨,历尽唇难,最后在泽地房被牧师圣·约翰收留,并在当地一所小学校任教。 不久,简得知叔父去世并给她留下一笔遗产,同时还发现圣·约翰是她的表兄,简决定将财产平分。圣·约翰是个狂热的教徒,打算去印度传教。他请求简嫁给他并和他同去印度。简拒绝了他,决定回到罗契斯特身边。 她回到桑恩费尔德庄园,那座宅子已成废墟,疯女人放火后坠楼身亡,罗契斯特也受伤致残。简找到他并和他结了婚,得到了自己理想的幸福生活。 二、人物、特征和小说的特色 《简·爱》的独特之处不仅在于小说的真实性和强烈的感染力,还在于小说塑造了一个不屈于世俗压力,独立自主,积极进取的女性形象。小说中简·爱对罗切斯特的爱情故事,生动地展现了的那火一样的热情和赤诚的心灵,强烈地透露出她的爱情观。她蔑视权贵的骄横,嘲笑他们的愚蠢,显示出自强自立的人格和美好的理想。她大胆地爱自己所爱,然而当她发现自己所爱之人还有妻子的时候,又毅然离开她所留恋的人和地方。小说表达出的思想,即妇女不甘于社会指定她们的地位而要求在工作上以至婚姻上独立平等的思想,在当时不同凡响,对英国文坛也是一大震动。小说的虚构结尾,描写简爱获得一笔遗产,回到孤独无助的罗切斯特身边。这一情节虽然值得推敲,但是它显露出作者的理想—女性在经济、社会地位以及家庭中的独立平等以及对爱情的忠贞不移。 在写作风格上,夏洛蒂也独树一帜。她文笔简洁而传神,质朴而生动,加之第一人称的叙述语言,使得小说贴近读者,贴近现实。同时,小说又体现了欧洲浪漫主义文学传统的特点,显示出作者丰富的想象力和诗人的气质。作者在叙述中自然地使用了梦境、幻觉、预感和象征、隐喻等手法,使小说的“自然”境界扑朔朦胧,情节扣人心弦。 名着《简爱》知识点巩固练习 一、填空 1、简·爱在做(小学教员)期间,意外地获得了(她的叔叔)的遗产。 2、罗切斯特太太是怎样死的(跳楼)

相关主题
文本预览
相关文档 最新文档