当前位置:文档之家› 第四版传热学第四章习题解答

第四版传热学第四章习题解答

第四版传热学第四章习题解答
第四版传热学第四章习题解答

第四章

复习题

1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。

2、 试说明用热平衡法建立节点温度离散方程的基本思想。

3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似,

为什么前者得到的是精确描述,而后者解出的确实近似解。

4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数

用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。

5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之.

6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题?

7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成?

8.有人对一阶导数

()()()

2

21,253x t t t x t i n i n i n i

n ?-+-≈??++

你能否判断这一表达式是否正确,为什么?

一般性数值计算

4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ

3,2,1,tan ==

n Bi

n

n μμ

并用计算机查明,当2

.02≥=δτ

a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计

算中用前六项之和来替代)可能引起的误差。

Bi n n =μμtan

Fo=0.2及0.24时计算结果的对比列于下表:

δ=x

比值 1.002 1.01525 1.01163 Bi=0.1 Bi=1 Bi=10 第一项的值 0.94513 0.61108 0.10935 前六项的值 0.94688 0.6198 0.11117 比值 0.99814 0.98694 0.98364

Bi=0.1 Bi=1 Bi=10 第一项的值 0.99277 0.93698 0.77311 前六项和的值

0.99101 0.92791 0.76851 比值

1.00177

1.00978

1.00598

4-2、试用数值计算证实,对方程组

?

?????????=++=++=-+5223122321321321x x x x x x x x x

用高斯-赛德尔迭代法求解,其结果是发散的,并分析其原因。 解:将上式写成下列迭代形式

()()?

????

?????--=-+=--=2131323213212/1252/1x x x x x x x x x

假设3,2x

x 初值为0,迭代结果如下:

迭代次数 0 1 2 3 4

1x 0 2.5 2.625 2.09375 2.6328125 2x 0 -0.75 0.4375 - 1.171875 1.26171825

3x 0 1.25 -0.0625 2.078125 -0.89453125

显然,方程迭代过程发散

因为迭代公式的选择应使每一个迭代变量的系数总大于或等于式中其他变量的系数绝对值代数和。

4-3、试对附图所示的常物性,无内热源的二维稳态导热问题用高斯-赛德尔迭代法计算

4321,,,t t t t 之值。

解:温度关系式为:

()()()()??

????

????????+++=+++=+++=+++=5104/115304/130204/130404/1324413412321t t t t t t t t t t t t 开始时假设取()()200201==t t ℃;

()()150403==t t ℃ 得迭代值汇总于表

迭代次数

0 20 20 15 15

1 26.25 22.8125 21.5625 14.84375

2 28.59375 23.359375 22.109375 15.1171875

3 28.8671875 23.49609375 22.24607565 15.18554258

4 28.93554258 23.53027129 22.28027129 15.2026356

5 5 28.95263565 23.53881782 22.28881782 15.20690891

6 28.9569089 23.54095446 22.290955445 15..20797723 其中第五次与第六次相对偏差已小于4

10-迭代终止。

4-4、试对附图所示的等截面直肋的稳态导热问题用数值方法求解节点2,3的温度。图中

)./(30,25,852000K m W h C t C t f ===.肋高H=4cm,

纵剖面面积

,42

cm A L =导热系数)./(20K m W =λ。

解:对于2点可以列出: 节点2:

;0)(221432

1=-?+?-+?-t t x h x t t x t t λδλδ

节点3:

0)(22)(23132=-?+-+?-t t x

h t t h x t t f f δλδ

由此得:

)(2212

2321=-?+

-+-t t x

h t t t t λδ

0)(2)(3

2332=-?+-+

-t t h

x t t h

t t f f λδ

λδ

δ,

?

?? ??

?+?

??

??

???? ???++=λδλδ22222312xH h t xH h t t t f

???

? ???++?????

????? ???++=λδλλδλ2122223x h h t x h t h

t t f f

06.001.02002

.0302

2

=??=?λδx

h ,于是有:12.0212.0212+++=f t t t t , ()53.253.153.203.05.103.020/30103.020/302f 223f

f f f t t t t t t t t t +++=++++==

,代入得:

f f

t t t t t 12.053

.253.112.2212++=,

f 2123036.053.153.23636.5t

t t t t f +++=,

f

t t t 8336.153.23636.412+=,

3636

.48336.153.22f

f t t t +=

C

t 8.5979.593636.484

.4505.2153636.4258336.18553.22?=+=?+?=, C

t 8.3875.3853.225

53.18.593?=?+=

离散方程的建立

4-5、试将直角坐标中的常物性无内热源的二维稳态导热微分方程化为显式差分格式,并指出其稳定性条件()y x ?≠?。

解:常物性无内热源二维非稳态方程微分方程为

???? ????+??=??2222y t x t a t

τ

扩散项取中心差分,非稳态项取向前差分:

()()???? ???+-+?+-=?--+-++21

1211122y t t t x t t t a t t i

n i n i n i n i n i n i n i n τ

所以有

()

i n

i

n i n i n t y x a t t y x a t ?????????? ???+??+++???? ???+??=-++2211221112111ττ 稳定性条件 2

/1≤+??y x Fo Fo

4-6、极坐标中常物性无内热源的非稳态导热微分方程为

???? ????+??+??=??2222211?τt r r t r r t a t

试利用本题附图中的符号,列出节点(i,j )的差分方程式。

解:将控制方程中的各阶导数用相应的差分表示式代替,可得:

1111111122222112k k i k k k k k k k k j t j

t j t j j t j j i j i j i j j j t t t t t t t t t r a r r r r τ

?++-+---??

--+--+=+?+? ? ??????

?,,,,,,,,,。

也可采用热平衡法。对于图中打阴影线的控制容积写出热平衡式得:

()()

111k k k k k k i j i j

i j i j

i j i j

j

j j t t t t t t r r c r r r r ?ρλ

λ

τ

?

?

+-+---??=?+?+

???,,,,,,

1

1

,22k k k k

i j i j

i j i j

j j t

t

t t

r r r r r

r

λ

?λ?+---???

???+?+-? ?

????

???,,,

对等式两边同除以

j r r

???并简化,可以得出与上式完全一样相同的结果。

4-7、一金属短圆柱在炉内受热厚被竖直地移植到空气中冷却,底面可以认为是绝热的。为用数值法确定冷却过程中柱体温度的变化,取中心角为1rad 的区域来研究(如本题附图所示)。已知柱体表面发射率,自然对流表面传热系数,环境温度,金属的热扩散率,试列出图中节点(1,1),(M,1)(M,n)及(M,N )的离散方程式。在r 及z 方向上网格是各自均分的。

解:应用热平衡法来建立四个节点点离散方程。 节点(1,1):

212121*********

1222282k k k k k k t t t t t t r r z r z c z r λλρτ+????---?????????+?=???

? ? ??????????????

,,,,,,

节点(m ,1):

()11,1111211

1

;22222k k k

k k k k

k m m m m m m m m m m m m t t t t t t t t z z z z z r r r r c r r r r z λλλρτ-+----???????????????-+++??=??? ??? ??? ?

?????????????

?,,,,,,,

节点(m ,n ):

()()1

,4411111003332242242422k k k k k k m n

m n

m n m n m n m n m m m m m m m m m m n m n t

t t t t t r r r r r r r z r z r r z r r h t t T T c r z r

λ

λεσρ---------+?-?+?????????????????????????????-+++?-+-= ??? ? ? ? ??? ? ? ??????????????????????

????????,,,,,,,。

4-8、一个二维物体的竖直表面收液体自然对流冷却,为考虑局部表面传热系数的影响,表面传热系数采用

25.11)(t t c h -=来表示。试列出附图所示的稳态无内热源

物体边界节点(M,n )的温度方程,并对如何求解这一方程提出你的看法。设网格均分。

解:利用热平衡法:

()()

0.25

M n f M n f h c t t t t =--,,,

将h 写为()()

0.25

M n f M n f

h c t t t t =--,,,其中M n t ,为上一次迭代值,则方程即可线性化。

4-9、在附图所示的有内热源的二维导热区域中,一个界面绝热,一个界面等温(包括节点4),其余两个界面

与温度为f t

的流体对流换热,h 均匀,内热源强度为Φ 。试列出节点1,2,5,6,9,10的离散方程式。

解:节点1:

()5121111

02242f t t t t x y x y yh t t y x λ

λφ--??????++??-?-= ? ?

??????;

节点2:()3262121

0222t t t t t t y y x x y x x y λλλφ---??????++?+??= ? ????????; 节点5:()()15956551

0222f t t t t t t y x y x y yh t t y y x λλλφ---??????++?+??-?-= ? ????????; 节点6:()()()()2676105560t t t t t t t t

x y x y x y y x y x λλλλφ----?+?+?+?+??=????;

节点9:()59109910

22422f t t t t x y x y x y h t t y x λ

λφ--??????????

++??-+-= ? ? ?????????;

节点10:()()9101110610101

0222f t t t t t t y y x x y xh h t x x y λ

λλφ---??????++?+??-?-= ? ?

???????。

当x y ?=?以上诸式可简化为:

节点1:2521

12202f h y h y t t t t y φλλλ?????

???++-++?= ? ? ???????;

节点2:26132240

t t t t y φλ??

++-+?= ???;

节点5:2619522220

f h y h y t t t t t y φλλλ????????+++-++?= ? ? ??????? 节点6:271057640

t t t t t y φλ??

+++-+?= ???;

节点9:25109122102f h y h y t t t t y φλλλ??????

??++-++?= ? ?????????; 节点10:269111022220

f h y h y t t t t t y φλλλ????????+++-++?= ? ? ???????。

一维稳态导热计算

4-10、一等截面直肋,高H,厚δ,肋根温度为0t ,流体温度为

f

t ,表面传热系数为h,肋

片导热系数为λ。将它均分成4个节点(见附图),并对肋端为绝热及为对流边界条件(h

同侧面)的两种情况列出节点2,3,4的离散方程式。设

H=45cm,

)./(50,102

K m W h mm ==δ,λ=50W/(m.K),1000=t ℃,20=f t ℃,计算节点2,3,4的温度(对于肋端的两种边界条件)。

解:采用热平衡法可列出节点2、3、4的离散方程为:

节点2:()()()1232220f t t t t h x t t x

x

λδ

λδ

--+-?-=??; 节点3:

()()()2343320

f t t t t h x t t x

x

λδ

λδ

--+

-?-=??;

节点4:肋端绝热

()()3440

f t t h x t t x

λδ

--?-=?,

肋端对流

()()()34440

f f t t h x t t h t t x

λδ

δ--?---=?。

其中

3H

x ?=

。将已知条件代入可得下列两方程组: 肋端绝热 322.045100.90t t -+=

2342.0450.90t t t -++= 341.02250.450t t -+= 肋端对流 322.045100.90t t -+= 2342.0450.90t t t -++= 341.03750.80t t -+=

由此解得:肋端绝热0292.2t C =,0387.7t C =,0

486.2t C =; 肋端对流0291.5t C =,0386.2t C =,

0483.8t C =。 肋端对流换热的条件使肋端温度更接近于流体温度。

4-11、复合材料在航空航天及化工等工业中日益得到广泛的应用。附图所示为双层圆筒壁,假设层间接触紧密,无接触热阻存在。已知

40,18,16,5.121321====λmm r mm r mm r W/(m.K),150),./(12012==f t K m W λ℃,

60),./(1000221==f t K m W h ℃,)./(38022K m W h =。试用数值方法确定稳态时双层圆

筒壁截面上的温度分布。

解:采用计算机求解,答案从略。

采用热平衡法对两层管子的各离散区域写出能量方程,进行求解;如果采用Taylor 展开法列出方程,则需对两层管子单独进行,并引入界面上温度连续及热流密度连续的条件,数值计算也需分两区进行,界面耦合。截面的温度分布定性地示于上图中。 4-12、有一水平放置的等截面直杆,根部温度

1000=t ℃,其表面上有自然对流散热,

()[]

4

/1/d t t c h f -=,其中,

);./(20.175.1C m W c o

=d 为杆直径,m 。杆高H=10cm ,直径d=1cm, λ=50W/(m.K),25=∞t ℃。不计辐射换热。试用数值方法确定长杆的散热

量(需得出与网格无关的解。杆的两端可认为是绝热的。 解:数值求解过程略,Q=2.234W 。

4-13 在上题中考虑长杆与周围环境的辐射换热,其表面发射率为0.8,环境可作为温度为

∞t 的大空间,试重新计算其导热量。

解:数值求解过程略,Q=3.320W 。

4-14、有如附图所示的一抛物线肋片,表面形线方程为:

()()()[]

2/122

H x e b e x y --+=

肋根温度0t 及内热源Φ

恒定,流体表面传热系数h,流体温度

f

t 为常数。定义:

H

x t t t t f

f /,0=--=

Θξ。

试:(1)建立无量纲温度Θ的控制方程;(2)在无量

纲参数()01

.0,1.0,05.0,01.002====-ΦλλhH

H b H e t t H f 下对上述控制方程进行数量计

算。确定无量纲温度Θ的分布。

解:无量纲温度方程为:

()

(

)2

22/0.012/5510d d ξξΘ+-Θ+-=。数值计算结果示于

下图中,无量纲温度从肋根的1变化到肋端的0.852。

一维非稳态导热计算

4-15、一直径为1cm,长4cm 的钢制圆柱形肋片,初始温度为25℃,其后,肋基温度突然升高到200℃,同时温度为25℃的气流横向掠过该肋片,肋端及两侧的表面传热系数均为100)./(2

K m W 。试将该肋片等分成两段(见附图),并用有限差分法显式格式计算从开始加热时刻起相邻4个时刻上的温度分布(以稳定性条件所允许的时间间隔计算依据)。已

知λ=43W/(m.K),s m a /10333.12

5

-?=。(提示:节点4

的离散方程可按端面的对流散热与从节点3到节点4的导热相平衡这一条件列出)。

解:三个节点的离散方程为:

节点2:

()()12223212222/2444k k k k k k k

f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ????????????

节点3:

()()12224323333/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ????????????

节点4:

()22344/244k k k f t t d d h t t x ππλ????-=- ? ??????。

以上三式可化简为:

12132222

43421k k f a a h a h t t t t t x x cd x cd τττττρρ+?????????????=+++-- ? ? ? ????????????

13243222

43421k k f a a h a h t t t t t x x cd x cd τττττρρ+?????????????

=+++-- ? ? ? ???????????

? ()4322k k f xh t t xht λλ+?=+?

稳定性要求2

3410a h x cd ττ

ρ??-

-≥?,即

2341/a h x cd τρ???≤+ ????。 5

5

4332.258101.33310c a λρ-===??,代入得:

5253 1.33310410011/8.898770.020.0132.258100.0999750.0124s τ-??????≤+== ???+??,

如取此值为计算步长,则:

5221.333108.898770.29660.02a x τ-???==?,5441008.898770.110332.258100.01h cd τρ???==??。

于是以上三式化成为:

1

13220.29660.29660.1103k k f t t t t +?++=

12430.29660.296620.1103k k k f t t t t ++?+=

340.97730.0227k k f t t t += 8.89877s τ?=

在上述计算中,由于τ?之值正好使

210x cd ρ-

-=?,

因而对节点2出现了在τ?及2τ?时刻温度相等这一情况。如取τ?为上值之半,则

20.1483a x τ?=?,40.0551h cd τρ?=,23410.5a h x cd ττρ??--=?,于是有:

1132220.14830.14830.50.0551k k k f t t t t t +?+++=

124330.14830.148320.50.0551k k k k f t t t t t ++?++=

340.97730.0227k k f t t t +=

()4.4485s τ?=

4-16、一厚为2.54cm 的钢板,初始温度为650℃,后置于水中淬火,其表面温度突然下降为93.5℃并保持不变。试用数值方法计算中心温度下降到450℃所需的时间。已知

s m a /1016.125-?=。建议将平板8等分,取9个节点,并把数值计算的结果与按海斯勒

计算的结果作比较。

解:数值求解结果示于下图中。随着时间步长的缩小,计算结果逐渐趋向于一个恒定值,当

τ?=0.00001s 时,得所需时间为3.92s 。

如图所示,横轴表示时间步长从1秒,0.1秒,0.01秒,0.001秒,0.0001秒,0.00001秒的变化;纵轴表示所需的冷却时间(用对数坐标表示)。

4-17、一火箭燃烧器,壳体内径为400mm,厚10mm,壳体内壁上涂了一层厚为2mm 的包裹层。火箭发动时,推进剂燃烧生成的温度为3000℃的烟气,经燃烧器端部的喷管喷住大气。大气温度为30℃。设包裹层内壁与燃气间的表面传热系数为2500 W/(m.K),外壳

表面与大气间的表面传热系数为350)./(2

K m W ,外壳材料的最高允许温度为1500℃。试

用数值法确定:为使外壳免受损坏,燃烧过程应在多长时间内完成。包裹材料的λ=0.3

W/(m.K),a=s m /1022

7-?。

解:采用数值方法解得420s τ=。

4-18、锅炉汽包从冷态开始启动时,汽包壁温随时间变化。为控制热应力,需要计算汽包内壁的温度场。试用数值方法计算:当汽包内的饱和水温度上升的速率为1℃/min,3℃/min 时,启动后10min,20min,及30min 时汽包内壁截面中的温度分布及截面中的最大温差。启动前,汽包处于100℃的均匀温度。汽包可视为一无限长的圆柱体,外表面绝热,内表面与水之间的对流换热十分强烈。汽包的内径,9.01m R =外半径,01.12m R =热扩散率

s m a /1098.926-?=。

解:数值方法解得部分结果如下表所示。

汽包壁中的最大温差,K

启动后时间,min 温升速率,K/min

1 3

10 7.136 21.41 20 9.463 28.39 30 10.19 30.57

4-19、有一砖墙厚为m 3.0=δ,λ=0.85W/(m.K),)./(1005.13

6

K m J c ?=ρ室内温度

为201=t ℃,h=6

)./(2

K m W 。起初该墙处于稳定状态,且内表面温度为15℃。后寒潮入侵,室外温度下降为10

2-=f t ℃,外墙表面传热系数352=h )./(2

K m W 。如果认为内墙

温度下降0.1℃是可感到外界温度起变化的一个定量判据,问寒潮入侵后多少时间内墙才感知到?

解:采用数值解法得t=7900s 。

4-20、一冷柜,起初处于均匀的温度(20℃)。后开启压缩机,冷冻室及冷柜门的内表面温度以均匀速度18℃/h 下降。柜门尺寸为m m 2.12.1?。保温材料厚8cm ,λ=0.02W/(m.K)。冰箱外表面包裹层很薄,热阻可忽略而不计。柜门外受空气自然对流及与环境之间辐射的加热。自然对流可按下式计算: ()

4

/1/55.1H t h ?=)./(2K m W

其中H 为门高。表面发射率8.0=ε。通过柜门的导热可看作为一维问题处理。试计算压缩机起动后2h 内的冷量损失。 解:取保温材料的

()

43110/c J m K ρ=??,用数值计算方法得冷量损失为4

5.9710J ?。

4-21、一砖砌墙壁,厚度为240mm ,

λ=0.81W/(m.K),

()K kg J c m kg ./88.0,/18003==ρ。

设冬天室外温度为24h 内变化如下表所示。室内空气温度15=i t ℃且保持不变;外墙表面

传热系数为10)./(2K m W ,内墙为6

)./(2

K m W 。试用数值方法确定一天之内外墙,内墙及墙壁中心处温度随时间的变化。取h 1=?τ。设上述温度工况以24h 为周期进行变化。

时刻/h 0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00 11:00

温度/

-5.9 -6.2 -6.6 -6.7 -6.8 -6.9 -7.2 -7.7 -7.6 -7.0 -4.9 -2.3

0C

时刻/h 12:

00

13:

00

14:

00

15:

00

16:

00

17:

00

18:

00

19:

00

20:

00

21:

00

22:

00

23:

00

温度

/

0C

-1.0 2.4 1.8 1.8 1.60.5-1.6-2.8-3.5-4.3-4.8-5.3解:采用数值解法得出的结果如下表所示。

时刻

/h

012345678

环境温

/0C

-5.9-6.2-6.6-6.7-6.8-6.9-7.2-7.7-7.6

外墙温

/0C

-1.70-2.19-2.44-2.76-2.85-2.93-3.01-3.26-3.67

墙壁中

心温度

/0C

3.65 3.32 3.15 2.92 2.87 2.81 2.75 2.59 2.31

内墙温

/0C

8.998.828.738.618.588.558.528.438.28

时刻

/h

91011121314151617

(完整版)传热学期末考试试题

传热学(一) 第一部分选择题 ?单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1. 在稳态导热中 , 决定物体内温度分布的是 ( B) A. 导温系数 B. 导热系数 C. 传热系数 D. 密度 2. 下列哪个准则数反映了流体物性对对流换热的影响 ?(C ) A. 雷诺数 B. 雷利数 C. 普朗特数 D. 努谢尔特数 3. 单位面积的导热热阻单位为 ( B)

A. B. C. D. 4. 绝大多数情况下强制对流时的对流换热系数 (C ) 自然对流。 A. 小于 B. 等于 C. 大于 D. 无法比较 5. 对流换热系数为 100 、温度为 20 ℃的空气流经 50 ℃的壁面,其对流换热的热流密度为(D ) A. B. C. D. 6. 流体分别在较长的粗管和细管内作强制紊流对流换热,如果流速等条件相同,则( C) A. 粗管和细管的相同 B. 粗管内的大 C. 细管内的大 D. 无法比较 7. 在相同的进出口温度条件下,逆流和顺流的平均温差的关系为( A) A. 逆流大于顺流 B. 顺流大于逆流 C. 两者相等 D. 无法比较

8. 单位时间内离开单位表面积的总辐射能为该表面的(A ) A. 有效辐射 B. 辐射力 C. 反射辐射 D. 黑度 9. (D )是在相同温度条件下辐射能力最强的物体。 A. 灰体 B. 磨光玻璃 C. 涂料 D. 黑体 10. 削弱辐射换热的有效方法是加遮热板,而遮热板表面的黑度应(B ) A. 大一点好 B. 小一点好 C. 大、小都一样 D. 无法判断 第二部分非选择题 ?填空题(本大题共 10 小题,每小题 2 分,共 20 分) 11. 如果温度场随时间变化,则为。非稳态温度场

第四章编程题

三、编程题 4.16 设计工程,已知圆的半径r,求圆面积S。 【解答】设圆半径为r,圆面积为S。根据数学知识,已知圆半径r,求圆面积S的公式为:2r Sπ =。 设计步骤如下。 (1)建立应用程序用户界面,如图4-1所示。 (2)设置对象属性: Label1的Caption属性为“已知圆半径r=”; Text1的Text属性为空; Command1的Caption属性为“圆面积为:”; Label2的Caption属性为空; Label2的BorderStyle属性为1-Fixed Single。 各控件的属性设置如图4-2所示。 图4-1 建立用户界面图4-2 设置各控件的属性(3)编写程序代码。 写出“圆面积为:”命令按钮Command1的Click事件代码为: Private Sub Command1_Click( ) Const pi = 3.14 Dim r As Single, S As Single r = V al(Text1.Text) S = pi * r ^ 2 Label2.Caption = S End Sub 运行程序时,在文本框输入圆半径的值,单击“圆面积为:”按钮后,输出结果如图4-3所示。 也可以不用文本框接收输入值,改用InputBox函数接收圆的半径r,求圆面积S,代码如下。 图4-3 程序运行结果 Private Sub Form_Load( ) Show Const pi = 3.1415926

Dim r As Single, S As Single r = V al(InputBox("输入半径:", "计算圆面积", "10")) FontSize = 18 S = pi * r ^ 2 Print "圆面积:"; S End Sub 程序运行时,首先显示如图4-4所示的对话框,在该对话框的文本框中输入数字,按Enter 键或单击“确定”按钮后,才能显示窗体。 图4-4 输入对话框 用InputBox 函数输入文本虽然很方便,但是由于输入框弹出后将暂停程序的运行,直到用户响应,因此输入框不符合VB 自由环境的精神。输入框适合于像要求用户输入口令等这样不常见的输入方式。还可以用更好的用户输入方式,如文本框、选项按钮等。 4.17 已知平面坐标系中两点的坐标,求两点间的距离。 【解答】 由数学知识可知,已知两点坐标(x A , y A )、(x B , y B ),求两点间距离的计算公式为 2 A B 2 A B )()(y y x x s -+-= 建立用户界面如图4-5所示。在该界面中用TextBox 控件输入数据,用Label 控件输出数据。为了形象地表示两点之间的距离,可用Picture 控件插入一幅图,该图用画图软件绘制。 命令按钮Command1的Click 事件代码为: Private Sub Command1_Click( ) Dim xa As Single, xb As Single Dim ya As Single, yb As Single Dim s As Single xa = Val(Text1.Text) ya = V al(Text2.Text) xb = V al(Text3.Text) yb = V al(Text4.Text) s = Sqr((xb - xa) ^ 2 + (yb - ya) ^ 2) Label6.Caption = s End Sub 程序运行结果如图4-6所示。

传热学简答分析题

简答分析题 1.牛顿冷却公式中的△t改用热力学温度△T是否可以? 2.何谓定性温度,一般如何取法。 3.天花板上“结霜”,说明天花板的保温性能是好还是差。 4.同一物体内不同温度的等温线能够相交,对吗?为什么? 5.何谓传热方程式,并写出公式中各符号的意义及单位。 6.在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么? 7.毕渥数和努谢尔数有相同的表达式,二者有何区别? 8.在圆筒壁敷设保温层后,有时反而会增加其散热损失,这是为什么? 9.冬天,在同样的温度下,为什么有风时比无风时感到更冷? 10.试用传热学理论解释热水瓶的保温原理。 11.比较铁、铜、空气、水及冰的导热系数的大小。 12.在空调的房间里,室内温度始终保持在20℃,但在夏季室内仅需穿件单衣,而在冬季却需要穿毛衣,这是什么原因? 13.冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。试解释原因。 14.有人将一碗热稀饭置于一盆凉水中进行冷却。为使稀饭凉得更快些,你认为他应搅拌碗中的稀饭还是盆中的凉水?为什么? 15.窗玻璃对红外线几乎不透明,但为什么隔着玻璃晒太阳使人感到暖和? 16.一铁块放入高温炉中加热,从辐射的角度分析铁块的颜色变化过程 17.我们看到的物体呈现某一颜色,解释这一现象。 18.北方深秋季节的清晨,树叶叶面上常常结霜。试问树叶上、下二面哪一面易结箱?为什么? 19.夏天人在同样温度(如:25度)的空气和水中的感觉不一样。为什么? 20.为什么水壶的提把要包上橡胶? 22.某管道外经为2r,外壁温度为tw1,如外包两层厚度均为r(即δ2=δ3=r)、导热系数分别为λ2和λ3(λ2 / λ3=2)的保温材料,外层外表面温度

传热学第四版课后思考题答案(杨世铭-陶文铨)]

第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试 写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: )(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何 一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就 烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析 其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热 量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为:n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

(完整word版)传热学储运试题2

2004-2005学年第一学期期末考试题 专业班级:储运02-班课程名称:传热学第1页共2页 一、简答题(本大题18分,每小题3分)选3个)。 1、热量传递的三种基本方式? 2、分析置于室外大气中的架空输送原油的保温管道有哪些传热环节。(油温大于空气温度) 3、写出角系数的相对性的数学表达式(以空间任意两表面为例)。 4、什么情况下可以说两个物理现象是相似的? 5、写出对于漫灰表面的基尔霍夫表达式? 6、通常工业应用的沸腾换热过程设计在哪个沸腾状态阶段,为什么。 二、计算题(本大题60分,每小题12分) 1、有一房间墙壁厚为0.4m,面积为12m2,导热系数为0.7 W/m·K,其内外表面的对流换热系数分别为6W/m2·K 和40 W/m2·K,房间内空气温度为20℃,室外空气温度为5℃,忽略辐射换热量,求房间通过该墙壁的散热量。 2、将初始温度为400℃,重量为40g的铝球突然抛入15℃的空气中。已知对流换热表面传热系数h=40W/m2·K,铝的物性参数为ρ=2700kg/m3,c=0.9 kJ/kg·K,λ=240W/m·K。试用集总参数法确定该铝球由400℃降至100℃所需的时间。(忽略辐射换热) 3、一大房间里放有一圆管,长为2m,直径为10cm,表面温度为127℃,发射率(黑度)为0.6,房间墙壁温度为27℃,求其辐射换热量是多少? 4、为研究一换热设备的换热情况,采用一个缩小成原设备1/10的模型来研究,已知原设备空气流速为1m/s,热条件不变,模型中流体仍是空气,求模型中空气流速是多少才能保证模型与原设备的换热现象相似。 5、某房间吊装一水银温度计读数为15℃,已知温度计头部发射率(黑度)为0.9,头部与室内空气间的对流换热的表面传热系数为20 W/m2·K,,墙表面温度为10℃,求①气流的真实温度,②该温度计的测量误差。三、综合题(本大题22分) 有一水平管道直径为200mm ,分别包有=0.04W/m·K,和=0.05 W/m·K的保温材料,厚度分别为20mm和 30mm,管内流有50℃的空气,流速为10m/s,管外大气温度为10℃。(管道厚度很薄,可以忽略不计)求:1.管内的对流换热表面传热系数。(7分) 2.管外的对流换热表面传热系数。(7分) 3.每米管道的传热热阻和传热系数。(4) 4.每小时每米管道散热量。(4分) 备注:1.管内流动的对流换热实验关联式 : 2.管外横掠的对流换热实验关联式 : 3.管外自然对流换热实验关联式 : (注:此关联式中定性温度取管外流体温度,中的Δt=5℃,其中体积膨胀系数可以按管外为理想气体计算) 4.空气的热物性: t℃ ρ kg/m3 Cp kJ/kg.K λ* W/m.K υ*Pr 10℃ 1.25 1.0 2.5 14.0 0.7 20℃ 1.20 1.0 2.6 15.0 0.7 25℃ 1.18 1.0 2.6 15.5 0.7

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学重点章节典型例题

第一章 1-1 对于附图所示的两种水平夹层,试分析冷、热表面间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:( a )中热量交换的方式主要有热传导和热辐射。 ( b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-7 一炉子的炉墙厚 13cm ,总面积为 20m 2 ,平均导热系数为 1.04w/m · k ,内外壁温分别是 520 ℃及 50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 × 10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-9 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度 t w = 69 ℃,空气温度 t f = 20 ℃,管子外径 d= 14mm ,加热段长 80mm ,输入加热段的功率 8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-14 宇宙空间可近似的看作 0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为 0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-27 附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ = 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ =17.5w/m ? K ,试问在稳态工况下表面 3 的 t w3 温度为多少? 解: 表面 1 到表面 2 的辐射换热量 = 表面 2 到表面 3 的导热量 第二章

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

(完整)传热学第一章答案第四版-杨世铭-陶文铨汇总,推荐文档

传热学习题集第一章 思考题 1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的 传热学公式。试写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳 兹曼常数;T -辐射物体的热力学温度。 3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程 有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可 以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干 后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6.用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地 感到热。试分析其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7.什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪 些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

传热学第四版1-7章试卷及答案

传热试卷 一、判断题(每题2分,共10分) 1、如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将提高(√) 2、同名准则数相等,两种现象必相似。(×) 3、流体分别在较长的促管和习惯内做强制紊流对流换热,如果流速条件相等,则粗管内换热较大(√) 4、根据流体流动的起因不同,把对流换热分为层流换热和湍流换热(×) 5、沸腾的临界热流量q c是从不稳定膜态沸腾过渡到稳定膜态沸腾的转折点。(×) 二、简答题(每题8分,共40分) 1、简述导热微分方程的三类定解条件 答:第一类:规定了边界上的温度;第二类:规定了边界上的热流密度;第三类:规定了物体与周围流体间的表面传热系数h及周围流体的温度。 2、试用简明语言说明边界层的特点及引入边界层的意义。 答:特点1)流动边界层厚度δ<

传热学第一章答案第四版-杨世铭-陶文铨汇总

传热学习题集 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传 热学公式。试写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方 向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳 兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有 关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以 通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后, 水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感 到热。试分析其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些 情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

建环期末考试传热学 答案B

一、选择 1.下列(D)准则反映了流体物性对对流换热的影响。 a.雷诺数 b.瑞利数 c.普朗特数 d.努谢尔特数 2.绝大多数下强制对流换热的换热系数(A)自然对流。 a.大于 b.小于 c.等于 d.无法比较 3.(B)反映了物质的导热能力的大小。 a.热流密度 b.导热系数 c.对流换热系数 d.温度梯度 4.当Fo数(A)0.2时,瞬态温度场的变化进入正常情况阶段。 a.大于 b.小于 c.等于 d.无法比较 5.在相同进出口温度条件下,逆流和顺流的平均温差关系为(A) a.逆流大于顺流 b.顺流大于逆流 c.二者相等 d.无法比较 6.(C)传热不需要冷热物体直接接触? a.导热 b.热对流 c.热辐射 d.以上几种都不是 7.如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将(B) a.不变 b.提高 c.降低 d.随机改变 8.某一传热过程的热流密度q=500W/m2,冷、热流体间的温差为10℃,其传热系数和单位面积的总传热热阻各为多少?(C) a.K=50W/(m2〃K)r=0.05m2〃K/W b.K=0.02W/(m2〃K)r=50m2〃K/W c..K=50W/(m2〃K)r=0.02m2〃K/W d..K=50W/(m2〃K)r=0.05K/W 9.黑体表面的有效辐射(D)对应温度下黑体的辐射力。 a.大于 b.小于 c.无法比较 d.等于 10.下列各种方法中,属于削弱传热的方法是(D) a.增加流体流速 b.管内加插入物增加流体扰动 c.设置肋片 d.采用导热较小的材料使导热热阻增加 二、填空题 1.传热学是研究在温差作用下热量传递_过程规律的科学。 2.热传递的三种方式分别为热对流、导热和热辐射。 3.兰贝特余弦定律是指黑体在任何方向上的定向辐射强度与方向无关,符合兰贝特余弦定律的表面有黑体、漫灰表面。 4.按照导热机理,水的汽液固三种状态中,气态状态下导热系数最小。 5.肋片效率ηf的定义是肋片实际散热量与肋片处于肋基温度下的比值。 6.一大平壁传热过程的传热系数为100W/(m2〃K),热流体侧的传热系数为200W/(m2〃K),冷流体侧的传热系数为250W/(m2〃K),平比厚度5mm,则该平壁的导热系数为__,导热热阻为__。 三、判断 1.手摸在铜板和木板上,很快就会感到铜板比木板冷的多,这是由于铜的导热系数大于木板的导热系数的缘故。F 2.用套管温度计测量温度时,为减小测量误差,常采用导热系数较小的材料作套管。F 3.黑体就是可以全部吸收透射到其表面上的所有波长的辐射能量。T 4.对一维肋片,导热系数越高,沿肋高方向的热阻越小,因而沿肋高方向的温度变化越小。T 5.同一块砖,在受潮时候的导热系数大于干燥时的导热系数T 四、名词解释 1.热边界层:当壁面与流体间有温差时,会产生温度梯度很大的热边界层。

传热学经典计算题

传热学经典计算题 热传导 1. 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为()210/W m K ?。热电偶近似为球形,直径为0.2mm 。试计算插入10s 后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的()67/W m K λ=?,7310ρ= 3/kg m ,()228/c J kg K =?。 解: 先判断本题能否利用集总参数法。 3 5100.110 1.491067hR Bi λ--??===?<0.1 可用集总参数法。 时间常数 3 73102280.110 5.563103c cV c R hA h ρρτ-??===?= s 则10 s 的相对过余温度 0θθ=exp c ττ??-= ???exp 1016.65.56??-= ???% 热电偶过余温度不大于初始过余温度1%所需的时间,由题意 0θθ=exp c ττ??- ??? ≤0.01 exp 5.56τ?? - ???≤0.01 解得 τ≥25.6 s

1、空气以10m/s 速度外掠0.8m 长的平板,C t f 080=,C t w 030=,计算 该平板在临界雷诺数c e R 下的c h 、全板平均表面传热系数以及换热量。 (层流时平板表面局部努塞尔数 3/12/1332.0r e x P R Nu =,紊流时平板表面局部努塞尔数3/15/40296.0r e x P R Nu =,板宽为1m ,已知5105?=c e R ,定性 温度C t m 055=时的物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P ) 解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度 C t t t w f m 055)(21=+=,此时空气得物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P )(92.0101046.1810565m u R X ul R c c e c e =???==?=-ν ν 由于板长是0.8m ,所以,整个平板表面的边界层的流态皆为层流 ? ==3/12/1332.0r e x P R hl Nu λ)/(41.7697.0)105(8.01087.2332.0332.023/12/1523/12 /1C m W P R l h r e c c ?=????==-λ (2)板长为0.8m 时,整个平板表面的边界层的雷诺数为: 561033.41046.188.010?=??==-νul R e 全板平均表面传热系数: )/(9.13697.0)1033.4(8.01087.2664.0664.023/12/1523/12 /1C m W P R l h r e c ?=????==-λ 全板平均表面换热量W t t hA w f 9.557)3080(18.09.13)(=-???=-=Φ

《传热学》第四版课后习题答案

《传热学》 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写 出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ -=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率, “-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: ) (f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度; f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4 T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么哪些是物性参数,哪些与过程有关 答:① 导热系数的单位是:W/;② 表面传热系数的单位是:W/;③ 传热系数的单位是:W/。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一 个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧 坏。试从传热学的观点分析这一现象。

传热学核心考点模拟试题

传热学模拟试题(一) 一.填空题 1.导热系数是由式定义的,式中符号q表示沿n方向的 ,是 。 2.可以采用集总参数法的物体,其内部的温度变化与坐标 。 3.温度边界层越________,则对流换热系数越小,为了强化传热,应使温度边界层越________越好。 4.凝结换热的两种形式是 和 。 5.保温材料是指 的材料。 6.P r(普朗特数)即 ,它表征了 的 相对大小。 7.热辐射是依靠 传递能量的,它可以在 进行。 8.同一温度下黑体的辐射能力 、吸收能力 。 9.热水瓶的双层玻璃中抽真空是为了 。 10.换热器传热计算的两种方法是 。 二.单项选择题 1.热量传递的三种基本方式是( ) A.热对流、导热、辐射 B.复合换热、热辐射、导热 C.对流换热、导热、传热过程 D.复合换热、热辐射、传热过程 2.无量纲组合用于对流换热时称为 ( )准则。 A.R e(雷诺) B.P r(普朗特) C.N u(努谢尔特) D.G r(格拉晓夫) 3.对流换热以( )作为基本计算式。 A.傅立叶定律 B.牛顿冷却公式 C.普朗克定律 D.热路欧姆定律 4.下述几种方法中,强化传热的方法是( )。 A.夹层抽真空 B.增大当量直径 C.增大流速 D.加遮热板 5.当采用加肋片的方法增强传热时,将肋片加在( )会最有效。 A.换热系数较大一侧 B.换热系数较小一侧 C.随便哪一侧 D.两侧同样都加 6.下列各参数中,属于物性参数的是( ) A.换热系数 B.传热系数 C.吸收率 D.导温系数 7.某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的 保温效果,应将( )材料放在内层。

《传热学》第四版课后习题问题详解

《传热学》 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写 出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率, “-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐 射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。 试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶的水烧干后,水壶很快就烧坏。 试从传热学的观点分析这一现象。 答:当壶有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6.用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。 答:当没有搅拌时,杯的水的流速几乎为零,杯的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7.什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A与B,注入同样温度、同样体积的热水后不久,A杯的外表面就可以感觉到热,而B杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 答:B:杯子的保温质量好。因为保温好的杯子热量从杯子部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 能量平衡分析 1000cm。冷水通过电热器从15℃被加热到43℃。试1-3淋浴器的喷头正常工作时的供水量一般为每分钟3 问电热器的加热功率是多少?为了节省能源,有人提出可以将用过后的热水(温度为38℃)送入一个换热器

相关主题
文本预览
相关文档 最新文档