当前位置:文档之家› 浅谈陀螺仪.

浅谈陀螺仪.

浅谈陀螺仪.
浅谈陀螺仪.

课程:学号:姓名:

浅谈陀螺仪

摘要:首先介绍陀螺仪的发展历史、结构及其工作原理等,然后介绍不同种类的陀螺仪, 最后介绍陀螺仪在各种领域的应用。

关键词:陀螺仪;简介;分类;应用

无论是大至航空器械, 还是小至智能手机, 当利用它们来导航定位时, 都少不了一种器件——陀螺仪。陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。

1. 陀螺仪简介

绕一个支点高速转动的刚体称为陀螺 (top。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。与苍蝇退化的后翅(平衡棒原理类似。在一定的初始条件和一定的外在力矩作用下, 陀螺会在不停自转的同时,环绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进 (precession,又称为回转效应 (gyroscopic effect。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例 [1]。人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪 (gyroscope, 它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动等。

陀螺仪的种类很多, 按用途来分, 它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。

结构

基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子, 转子装在一支架内;在通过转子中心轴 XX1上加一内环架,那么陀螺仪就可

环绕平面两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕平面 [2]三轴作自由运动,就是一个完整的太空陀螺仪 (space gyro。

历史

1850年法国的物理学家莱昂·傅科(J.Foucault 为了研究地球自转,首先发现高速转动中地的转子 (rotor , 由于它具有惯性, 它的旋转轴永远指向一固定方向, 他用希腊字 gyro (旋转和 skopein (看两字合为 gyro scopei 一字来命名这种仪表。

陀螺仪是一种既古老而又很有生命力的仪器, 从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现在, 陀螺仪仍在吸引着人们对它进行研究, 这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直, 这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支, 它以物体的惯性为基础, 研究旋转物体的动力学特性。

原理

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改

变的。人们根据这个道理,用它来保持方向, 制造出来的东西就叫做陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向, 并自动将数据信号传给控制系统。在现实生活中, 陀螺仪发生的进给运动是在重力力矩的作用下发生的。

特性 [3]

陀螺仪被广泛用于航空、航天和航海领域。这是由于它的两个基本特性:一为定轴性 (inertia or rigidity , 另一是进动性 (precession , 这两种特性都是建立在角动量守恒的原则下。

定轴性

当陀螺转子以高速旋转时, 在没有任何外力矩作用在陀螺仪上时, 陀螺仪的自转轴在惯性空间中的指向保持稳定不变, 即指向一个固定的方向; 同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。其稳定性随以下的物理量而改变:

1. 转子的转动惯量愈大,稳定性愈好;

2. 转子角速度愈大,稳定性愈好。

进动性

当转子高速旋转时, 若外力矩作用于外环轴, 陀螺仪将绕内环轴转动; 若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。进动角速度的方向取决于动量矩 H 的方向(与转子自转角速度矢量的方向一致和外力矩 M 的方向,而且是自转角速度矢量以最短的路径追赶外力矩。

2. 陀螺仪功能分类

光纤陀螺仪【 4】

光纤陀螺仪属于第四代陀螺仪———光学陀螺仪的一种, 其基本工作原理基于萨格纳效应, 即在同一闭合光路中从同一光源发出两束特征相同的光, 沿相反的方向进行传播, 汇合到同一探测点, 产生干涉。若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度, 则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。通过光程差与相应的相位差的关系, 可通过检测相位差, 计算角速度。它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。与传统的机械陀螺仪相比,具有无运

动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。与另一种光学陀螺仪———环形激光陀螺仪相比, 光纤陀螺仪不需要光学镜

的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。

双轴速率陀螺仪 [5]

双轴速率陀螺仪是一种新型的采用空间惯性导向技术的连续测量系统。它通过测量地球的旋转速率、重立场和传感器的工作状态来计算井眼的位置。根据井斜角的不同 , 该系统可在两种方式下工作 , 即陀螺罗盘测量技术和连续测量模式。陀螺罗盘测量技术是用来测量接近垂直井段井眼位置的 , 是通过静止地测量重力场和地球转速的分量来确定井斜角和方位角的 , 连续测量模式是用来测量大斜度井段井眼方向的 , 它通过在运动中测量井斜角和方位角的变化率确定井斜角和方位角。

三轴陀螺仪 [6]

为了实现单片集成六自由度微惯性测量单元,提出了一种改进的由 4个大质量块和 4个小质量块组合而成的四方全对称结构的三轴陀螺仪。该惯性测量元件的结构及工作原理, 根据结构参数计算出了详细的性能指标, 并进行了面内驱动模态和面内外的敏感模态仿真。通过分析热弹性阻尼能量耗散机理, 对驱动及敏感谐振模态的品质因数进行仿真。最后, 基于

表面加工和体加工工艺, 设计了高深宽比的加工流程。对该四方对称解耦结构的设计和仿真表明其模态匹配和品质因数性能满足三轴陀螺的设计要求。

激光陀螺仪

激光陀螺仪的原理是利用光程差来测量旋转角速度(Sagnac 效应。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉, 利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。

MEMS 陀螺仪 [7]

基于 MEMS 的陀螺仪价格相比光纤或者激光陀螺便宜很多,但使用精度非常低,需要使用参考传感器进行补偿,以提高使用精度, ADI 公司是低成本的 MEMS 陀螺

仪的主要制造商, VMSENS 提供的 AHRS 系统正是通过这种方式, 对低成本的MEMS 陀螺仪进行辅助补偿实现的。基于 MEMS 技术的陀螺因其成本低,能批量

生产,已经能够广泛应用于汽车牵引控制系统、医用设备、军事设备等低成本需求应用中。

3. 陀螺仪的应用

陀螺仪器最早是用于航海导航, 但随着科学技术的发展, 它在航空和航天事业中也得到广泛的应用。陀螺仪器不仅可以作为指示仪表, 而更重要的是它可以作为自动控制系统中的一个敏感元件, 即可作为信号传感器。根据需要, 陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号, 以便驾驶员或用自动导航仪来

控制飞机、舰船或航天飞机等航行体按一定的航线飞行, 而在导弹、卫星运载器

或空间探测火箭等航行体的制导中, 则直接利用这些信号完成航行体的姿态控制和轨道控制。 [8]作为稳定器, 陀螺仪器能使列车在单轨上行驶, 能减小船舶在风浪中的摇摆, 能使安装在飞机或卫星上的照相机相对地面稳定等等。作为精密测试仪器,陀螺仪器能够为地面设施、矿山隧道、地下铁路、石油钻探以及导弹发射井等提供准确的方位基准。由此可见, 陀螺仪器的应用范围是相当广泛的, 它在现代化的

国防建设和国民经济建设中均占重要的地位。

广泛使用的 MEMS 陀螺 (微机械可应用于航空、航天、航海、兵器、汽

车、生物医学、环境监控等领域。并且 MEMS 陀螺相比传统的陀螺有明显的优势:

1. 体积小、重量轻。适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。

2. 低成本。

3. 高可靠性。内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。

4. 低功耗。

5. 大量程。适于高转速大 g 值的场合。

6. 易于数字化、智能化。可数字输出,温度补偿,零位校正等。

隧道中心线测量

在隧道等挖掘工程中,坑内的中心线测量一般采用难以保证精度的长距离导线。特别是进行盾构挖掘(shield tunnel 的情况,从立坑的短基准中心线出发必须有很高的测角精度和移站精度, 测量中还要经常进行地面和地下的对应检查, 以确保测量的精度。特别是在密集的城市地区, 不可能进行过多的检测作业而遇到困难。如果使用陀螺经纬仪可以得到绝对高精度的方位基准,而且可减少耗费很高的检测作业(检查点最少 ,是一种效率很高的中心线测量方法。

通视障碍时的方向角获取

当有通视障碍,不能从已知点取得方向角时,可以采用天文测量或陀螺经纬仪测量的方法获取方向角(根据建设省测量规范。与天文测量比较,陀螺经纬仪测量的方法有很多优越性:对天气的依赖少、云的多少无关、无须复杂的天文计算、在现场可以得到任意测线的方向角而容易计算闭合差。

日影计算所需的真北测定

在城市或近郊地区对高层建筑有日照或日影条件的高度限制。在建筑申请时,要附加日影图。此日影图是指,在冬至的真太阳时的 8点到 16点为基准,进行为了计算、图面绘制所需要的高精度真北方向测定。使用陀螺经纬仪测量可以获得不受天气、时间影响的真北测量。

4. 陀螺仪在智能手机中的应用 [9]

2010年 6月,首款携带三重陀螺仪的智能手机 iPhone4正式发布。 i0s 一直都是手机游戏的最佳平台之一。在 iPhone 中,我们玩游戏的方式多种多样,虚拟摇杆触控操作、重力感、声控、摄像头等都可以用来控制游戏。与此同时.支持三重陀螺仪的软件和游戏也在不断增加。重力感应、陀螺仪等传感器的出现充分增强了玩家的操作体验. 缩短了现实与虚拟世界的距离。

1. 可以和手机上的摄像头配合使用,比如防抖,在拍照时的维持图像的稳定,防止由于手的抖动对拍照质量的影响。在按下快门时, 记录手的抖动动作, 将手的抖动反馈给图像处理器,可以让手机捕捉到更清晰稳定的画面。

2. 各类游戏的传感器,比如飞行游戏,体育类游戏,甚至包括一些第一视角类射击游戏, 陀螺仪完整监测游戏者手的位移, 从而实现各种游戏操作效果。有关这点, 想必用过任天堂 WII 的网友会有很深的感受。

3. 可以用作输入设备,陀螺仪相当于一个立体的鼠标,这个功能和第三大用途中的游戏传感器很类似,甚至可以认为是一种类型。通过小幅度的倾斜,偏转手机,实现菜单,目录的选择和操作的执行。 (比如前后倾斜手机,实现通讯录条目的上下滚动;左右倾斜手机,实现浏览页面的左右移动或者页面的放大或缩小。 [10]

5. 总结 .

总之,陀螺仪经过将近许多年的发展,其应用范围不断拓展。在军用方面,陀螺仪广泛装备在导弹系统、飞机和舰艇的导航系统以及军用卫星与地形跟踪匹配等系统中; 在民用方面,陀螺仪可用于飞机导航和石油勘察、钻井导向,特别是在工业上具有极大应用的潜力。在生活方面, 手机及便携式 GPS 无时无刻不在方便着我们的生活。随着高科技的不断发展, 陀螺仪将拥有越来越广阔的应用前景

参考文献:

[1] 神奇的陀螺仪热点聚焦 2013-08-08

[2] 飞机百度百科 2006-01-4

[3] 常振军,张志利,周召发陀螺仪进动与章动运动分析传感器与微系统 2012年第 31卷第 9期

[4] 周海波, 刘建业, 赖际舟, 李荣冰等光纤陀螺仪的发展现状传感器技术2005,24(6 [5] 董本双轴速率陀螺仪工作原理探讨钻采工艺 1998年第 21卷第 4期[6] 夏敦柱 , 孔伦 , 虞成四模态匹配三轴硅微陀螺仪光学精密工程 2013年 9月 [7]

RANDI I,CAMINADA C, CORONATO Proceedings of 2011 IEEE InternationalSolid—-State

Circuits Conference on Digest of Tech— nical Papers, San Francisco, CA , United states

ISSCC.2011 103—105. [8] 滕浩军,韦俊新,葛毅宇航级液浮陀螺仪装配的污染控制中国惯性技术学报 2013 年 2 月 [9] 《射频世界》手机传感器种类和功能 2012 年第 3 期 [10] 手机陀螺仪点上 365 网 2013-6-24 5

微陀螺仪的设计与制造过程

微陀螺仪的设计与制造 学校:华中科技大学 专业:机械设计制造及其自动化 姓名:潘登 班级:1104班 学号:U201110689 指导老师: 廖广兰 来五星

中文摘要 随着科学技术的发展以及科研技术的逐渐成熟。陀螺仪也逐渐进入了各个领域。现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。 文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。 关键词: 微机械陀螺仪,MEMS工艺,制作过程,关键技术

Abstract With the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solid micro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future. The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion. Keywords: Micromechanical gyroscopes, MEMS technology, production process, key technologies

浅谈陀螺仪.

课程:学号:姓名: 浅谈陀螺仪 摘要:首先介绍陀螺仪的发展历史、结构及其工作原理等,然后介绍不同种类的陀螺仪, 最后介绍陀螺仪在各种领域的应用。 关键词:陀螺仪;简介;分类;应用 无论是大至航空器械, 还是小至智能手机, 当利用它们来导航定位时, 都少不了一种器件——陀螺仪。陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 1. 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺 (top。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。与苍蝇退化的后翅(平衡棒原理类似。在一定的初始条件和一定的外在力矩作用下, 陀螺会在不停自转的同时,环绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进 (precession,又称为回转效应 (gyroscopic effect。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例 [1]。人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪 (gyroscope, 它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动等。 陀螺仪的种类很多, 按用途来分, 它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子, 转子装在一支架内;在通过转子中心轴 XX1上加一内环架,那么陀螺仪就可

陀螺仪的作用

陀螺仪的作用 这陀螺仪和重力传感器有什么区别呢?区别很多,但最大的区别就是重力传感对于空间上的位移感受维较少,能做到6个方向的感应就已经很不错了,而陀螺仪则是全方位的。这很重要,毫不夸张的说,这两者不是一个级别上的产品。 可能看到这里,大家还是会觉得有些迷惑,既然陀螺仪很厉害,那么它在手机上到底有什么用呢?我们不妨来看看。 第一大用途,导航。陀螺仪自被发明开始,就用于导航,先是德国人将其应用在V1、V2火箭上,因此,如果配合GPS,手机的导航能力将达到前所未有的水准。实际上,目前很多专业手持式GPS上也装了陀螺仪,如果手机上安装了相应的软件,其导航能力绝不亚于目前很多船舶、飞机上用的导航仪。 第二大用途,可以和手机上的摄像头配合使用,比如防抖,这会让手机的拍照摄像能力得到很大的提升。 第三大用途,各类游戏的传感器,比如飞行游戏,体育类游戏,甚至包括一些第一视角类射击游戏,陀螺仪完整监测游戏者手的位移,从而实现各种游戏操作效果。有关这点,想必用过任天堂WII的兄弟会有很深的感受。 第四大用途,可以用作输入设备,陀螺仪相当于一个立体的鼠标,这个功能和第三大用途中的游戏传感器很类似,甚至可以认为是一种类型。 第五大用途,也是未来最有前景和应用范围的用途。下面重点说说。那就是可以帮助手机实现很多增强现实的功能。增强现实是近期才冒出的概念,和虚拟现实一样,是计算机的一种应用。大意是可以通过手机或者电脑的处理能力,让人们对现实中的一些物体有跟深入的了解。如果大家不理解,举个例子,前面有一个大楼,用手机摄像头对准它,马上就可以在屏幕上得到这座大楼的相关参数,比如楼的高度,宽度,海拔,如果连接到数据库,甚至可以得到这座大厦的物主、建设时间、现在的用途、可容纳的人数等等。 这种增强现实技术可不是用来满足大家的好奇心,在实际生产上,其用途非常广泛,比如盖房子,用手机一照,就知道墙是否砌歪了?歪了多少?再比如,假如您是一位伊拉克抵抗美军的战士,平时只需要揣着一部此类手机,去基地那里转转,出来什么坦克,装甲车或者直升机,用手机对准拍下,马上就能判断出武器的型号,速度、运动方向

带你看看高精度陀螺仪有哪些

带你看看高精度陀螺仪有哪些 对于陀螺仪,可能大家没怎么听过这样概念,但是你早已接触过陀螺仪带来的功能。就是在不锁定手机的情况下,进行手机的翻转,界面也跟着翻转;在玩精灵宝可梦的时候,你通过手机的偏转,画面进行的偏转,从而抓到你的皮卡丘。 陀螺仪的另一种叫法又称角速度传感器,从定义上来看陀螺仪是测量载体角运动或者角速度的传感器从应用的角度上来看,陀螺仪多用于导航、定位等系统常用实例如手机GPS 定位导航、卫星三轴陀螺仪定位,其陀螺仪的精度在整个过程中起到了至关重要的作用,也就是高精度的陀螺仪直接决定了惯性导航系统的精度以及制导和自动控制系统的性能品质。 现在随着陀螺仪的发展,技术越来越成熟,陀螺仪的结构和原理都有着很大的变化。由于设备对偏转度的要求越来越精准,已经出现了高精度陀螺仪这一概念,完全不局限在传统的机械陀螺仪当中,下面就来介绍一下,近年来成功开发的高精度陀螺仪。 1.静电陀螺仪 虽然传统的机械陀螺仪已经满足不了用户、或是场景变换上的精度需求了,但并不意味着包含转子结构的陀螺仪已经完全退出了高精度陀螺仪队伍当中。其身为机械陀螺仪的升级版本,静电陀螺仪利用电场克服了转子旋转的摩擦力,大大提高了陀螺仪的精度。可惜生产难度较大,限制了其大规模的应用。 2.压电陀螺仪 对于经常接触传感器的人都会知道,在需要完成测压力这一任务的时候,我们基本会采用压电传感器。但对压电陀螺仪并不清楚,压电陀螺仪是一种振动陀螺,依靠压电材料的压电效应,当角速度不同时,贴在不同方向上的压电薄片的电压也出现偏差,依此测量角速度。作为高精度陀螺仪,压电陀螺仪的抗干扰能力也十分强大,甚至经受的动态核爆实验也没有损坏,因此多用在军工方面。 3.光纤陀螺仪 光纤陀螺仪可谓顺应着时代的陀螺仪潮流而诞生,其具有精度高,体积小等特点,而且在

浅谈在航拍过程中飞手与云台手的配合

112无人直升机和多旋翼航拍是需要配合完成的 团队工作,随着航拍领域的不断拓展,对航 拍操作流程的系统化和航拍镜头的高质量提出了更严 格的要求,只有具备完善的航拍组织团队,才能够最大 限度节约人力、物力,保障拍摄的专业性和艺术性。 专业化的航拍摄像师 多旋翼航拍特殊的工作环境,需要有专业航拍摄 像师拍摄,才能够保证镜头的高质量。首先在审美方面,地面上看起来高大雄伟的建筑物在空中成了点、线、 面的重新组合,用日常拍摄的方法,难以捕捉画面的美, 这就需要航拍摄像师从专业的角度观察,运用独特的构图方式,来展示空中俯瞰的壮阔景色;其次多旋翼航拍配备的陀螺仪和机械减震设备操作方式复杂,摄像师在空中操作难度很大,只有具备相关的操作经验,长时间的练习,才能在航拍中运用自如,实现稳定流畅的镜头效果;第三,航拍 中,气候和各种突发情况千变万化,与地面拍摄 相比,航拍摄像师必须具备丰富的实践经验和知识储备,才能适应复杂的空中环境,从容解决突发问题,拍摄到优美的镜头影像。 专业化的航拍飞行员 航拍飞行和日常飞行的区别在于:航拍中更 多运用特技飞行、超低空飞行等超常规模式,因 此专业的航拍飞行员,首先必须具备丰富的实际 操作经验,能够在各种条件下,尽可能配合航拍 镜头设计,完成各种高难度的飞行动作,并保障 航拍工作的安全性;其次根据航拍镜头的设计, 很大程度需要飞行员来配合把握镜头的运动轨 迹,航拍飞行员应当对电视及电影摄像的特点和 规律有相当的了解,才能创造性地配合航拍进 行;第三,在飞行过程中,飞行员需要有较好的沟 通能力,与摄像师形成默契,在航拍过程中实时 相互交流,达到飞行员、摄影师两位一体的最佳 状态,才能取得完美的拍摄效果。 责编/王晶 浅谈在航拍过程中飞手与云台手的配合 漫话 航拍 HELICOPTER SHOOT

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

光纤陀螺仪的发展现状_周海波

2005年第24卷第6期 传感器技术(J o u r n a l o f T r a n s d u c e r T e c h n o l o g y) 综述与评论 光纤陀螺仪的发展现状 周海波,刘建业,赖际舟,李荣冰 (南京航空航天大学导航研究中心,江苏南京210016) 摘 要:根据光纤陀螺仪的工作原理和特点,光纤陀螺仪具有不同的分类。介绍了国外光纤陀螺仪的现状,预测了近期和长远的发展趋势,旨在对我国的光纤陀螺技术的发展能有所帮助。 关键词:光纤陀螺仪;萨格纳效应;干涉型;谐振式;布里渊式 中图分类号:T N2,T P2 文献标识码:A 文章编号:1000-9787(2005)06-0001-03 D e v e l o p m e n t s t a t u s o f f i b e r-o p t i c g y r o s c o p e s Z H O UH a i-b o,L I UJ i a n-y e,L A I J i-z h o u,L I R o n g-b i n g (N a v i g a t i o nR e s C e n t e r,N a n j i n gU n i v e r s i t yo f A e r o n a u t i c s a n dA s t r o n a u t i c s,N a n j i n g210016,C h i n a) A b s t r a c t:T h ef i b e r-o p t i cg y r o s c o p e(F O G)i sc l a s s i f i e d i n t od i f f e r e n tt y p e sa c c o r d i n gt oi t sp r i n c i p l ea n d c h a r a c t e r i s t i c.T h e i n t e r n a t i o n a l s t a t u so f F O G i si n t r o d u c e da n dt h es h o r t-t e r m a n dl o n g-t e r m t r e n do f F O G i s f o r e c a s t.I t w i l l b eb e n e f i t t o t h e c o u r s e o f o u r F O G. K e yw o r d s:F O G(f i b e r-o p t i c g y r o s c o p e);S a g n a c e f f e c t;i n t e r f e r o m e t r i c;r e s o n a n t;B r i l l o u i n 0 引 言 光纤陀螺仪属于第四代陀螺仪———光学陀螺仪的一种,其基本工作原理基于萨格纳效应,即在同一闭合光路中从同一光源发出两束特征相同的光,沿相反的方向进行传播,汇合到同一探测点,产生干涉。若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度,则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。通过光程差与相应的相位差的关系,可通过检测相位差,计算角速度。它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。与传统的机械陀螺仪相比,具有无运动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。与另一种光学陀螺仪———环形激光陀螺仪相比,光纤陀螺仪不需要光学镜的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。 本文从光纤陀螺仪的原理和优点出发,着重对光纤陀螺仪的分类、国外研究现状及其发展趋势做了详细的介绍,希望对我国的光纤陀螺的研制和发展有所裨益。 1 光纤陀螺仪的分类 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有结构简单、价格 收稿日期:2004-11-20便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器[1]。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关[2],主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 按照光学系统的构成可分为全光纤型和集成光学器件型。全光纤陀螺成本较低,但实现高精度的技术难度较大,大多用于精度要求不高和低成本的场合。集成光学器件光纤陀螺在信号处理中可以采用数字闭环技术,易于实现高精度和高稳定性,是目前最常用的光纤陀螺构成模式。 按照性能和应用的角度可分为速率级、战术级和惯性级等3个级别[3]。速率级光纤陀螺已经产业化,主要应用于机器人、地下建造隧道、管道路径勘测装置和汽车导航等对精度要求不高的场合。日本、法国等国家研制、生产的这种精度的陀螺仪,已大批量应用到民用领域。战术级光纤陀螺具有寿命长、可靠性高和成本低等优点,主要用于战术导弹、近程/中程导弹和商用飞机的姿态对准参考系统中。惯性级光纤陀螺主要是用于空间定位和潜艇导航,其开发和研制正逐步走向成熟,美国有关公司和研究机构是研制、生产该级别光纤陀螺的佼佼者,如H o n e y w e l l,N o r t h r o p等公司。 1

陀螺仪温度控制系统设计

基于Fuzzy-PID的陀螺仪温度控制系统设计 Temperature Control System of Gyroscope Based on Fuzzy-PID 摘要:陀螺仪是舰船上的重要组成部件,其性能的稳定对于舰船的控制至关重要。将Fuzzy-PID算法应用于陀螺仪温度控制系统,以MCS-51单片机作为温度控制系统的核心部件,采用模糊PID算法以及其他的软硬件设计,实现了一套温度采集和控制的设计方案。 关键词:温度控制;Fuzzy-PID;陀螺仪 引言 ---在舰船中,陀螺仪是关键的部件,陀螺球体与陀螺壳体之间的空间内充满悬浮液体。陀螺球体质量和悬浮液体比重的选择,应确保在悬浮液体加热到工作温度以后,陀螺球体可以拥有中性浮力。所以温度控制系统的设计应保证加热和保持充入陀螺部件的液体的常值工作温度为70±0.2℃,因为在这个温度上陀螺球体具有中性浮力。 ---传统控制方法(包括经典控制和现代控制)在处理具有非线形或不精确特性的被控 对象时十分困难。而温度系统为大滞后系统,较大的纯滞后可引起系统不稳定。大量的应用实践表明,采用传统的PID控制稳态响应特性较好,但难以得到满意的动态响应特性。模糊控制的优点是能够得到较好的动态响应特性,并且无需知道被控对象的数学模型,适应性强,上升时间快,鲁棒性好。但模糊控制也存在固有的缺点,容易受模糊规则有限等级的限制而引起误差。本设计中采用AT89C52作为控制内核,并采用了Fuzzy-PID复合控制。弥补了单纯采用PID算法的不足。对PID参数的模糊自适应整定进一步完善了PID控制的自适应性能,在实际应用中取得了很好的效果。 温度控制系统的工作原理 ---陀螺仪温度控制系统主要由温度传感器、AT89C52单片机、A/D信号采集模块、可控硅输出控制及其他一些外围电路组成。系统的被控对象是陀螺部件内的液体温度,执行机构是可控硅触发电路。工作温度借助电桥测量。电桥的三个臂是配置在控制系统内的电阻,第四个臂是陀螺部件加热温度传感器的电阻。来自电桥的信号值通过高精度集成运放OP07进行差动放大、滤波,然后再送给A/D采样。根据测量的电流端和电压端原理,电桥电压信号的采集采用三线制接法,如图1所示。这是一种最实用又能较精确测温的方式,R4、R5和R6为连线和接触电阻。由于采用上述三线制接法,调整R1即可使包括R5在内的电桥平衡,而R4可通过R6抵消,因此工业上常用这种接法进行精密温度测量。控制部分采用Fuz zy-PID的复合控制使单片机输出PWM脉冲,进而控制执行机构输出到陀螺加热器的电流量,实现陀螺加热器的温度自动调节控制。由于采用了模糊自适应PID控制算法,系统就可以在

浅谈测绘新技术运用

浅谈测绘新技术运用 当今时代,我国的各项科学技术迅猛地发展,而测绘工程技术实现产业化的发展已逐步突破传统测绘技术的瓶颈,成为高新技术产业之重要的组成部分。测绘新技术的广泛应用较大地促进我国测绘事业的快速发展,特别很多新测绘技术的已取得重大突破,笔者结合自己的长期的实践,粗浅讨论我国测绘工程技术之发展前景。 标签:测绘工程;新技术;运用 一、测绘新技术概况。 传统测绘工程主要依靠水准仪、经纬仪与平板仪等进行测试工作,随着现代科技不断发展,测绘技术的发展也有了巨大改变,我们告别传统测绘技术迎接新技术的时刻已然来临。卫星定位导航技术、遥感技术、地理信息技术是现代测绘技术的关键核心。现代测绘技术中,卫星导航定位的技术与遥感技术则是航天技术与卫星技术及传感技术、通信技术、计算机科技等综合集成的产物,“地理信息系统”是计算机与数据库技术及空间分析、模拟技术等综合集成的产物。所以,现代的测绘技术是空间与信息技术等高新技术的集大成者,是我国高新技术重要分支。 二、现代测绘技术的新发展。 1.现代测绘仪器的新发展。 现代的测量仪器发展特征主要是“数字化、自动化、网络化、智能化”,传统以“光学”为主的测量仪器正逐渐退出测量技术发展的历史舞台。“全站仪”已成为工程测量最有代表性的仪器,它由“电子经纬仪”与“测距仪”集合而成。“全站仪”具备“电子测角”与“电子测距”功能,能够实现自动记录与存储、自动计算能力,具有较高的工作效率。近期所出现的“自动目标识别全站仪”,能够自动地跟踪反射器数据实时获得三维坐标,通过软件支持与设计值进行对比,以实现良好地控制施工过程。高精度定向陀螺经纬仪也已转向激光陀螺定向的发展趋势。此外,组合“陀螺仪”与“全站仪”使之变成“陀螺全站仪”。GPS全球定位系统已经大面积应用于“首级控制测量”中。专门用于控制测量的“静态GPS接收机”实现了天线与接收机与电源的集成一体化,测量过程实现了高度的自动化。专用于图根的控制测量及数据采集的“实时动态RTK GPS接收机”,能够瞬时获取地面点的坐标值。另外,它还能够实现在30km到50km的范围内按坐标数据施工放样。全站仪与GPS的集成组合,出现了“超站仪”,超站仪改变了“工程测量外业”作业的模式,能实现控制测量与碎部测量及施工放样一体化无缝衔接作业。而“三维激光影像扫描仪”能快速且精确可靠地捕获被识别物体的三维空间数据,将其用在水坝监测及建模、桥梁变形、开挖容量测量、土石滑坡监控、城市数字化测量等方面被广泛使用。虽然高精度高程测量的方法目前仍然采用几何水准测量办法,但水准测量仪器也已经实现了数字化、自动化。“数字水准仪”不仅实现了“自动

什么是陀螺仪

什么是陀螺仪 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外力矩在作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停 地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常 见的现象,许多人小时候都玩过的陀螺就是一例。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的 自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示, 作为驾驶和领航仪表使用。 陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这 个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转 得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信 号传给控制系统。 现代陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广 泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略 意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂, 它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的 阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅 速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作 可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航 仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集 成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞 格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度, 那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生 变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制 造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是 通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个 简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 编辑本段陀螺仪的用途 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要 的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保

陀螺仪主要性能指标(优.选)

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

飞行安全的最后防线——浅谈弹射逃生

飞行安全的最后防线——浅谈弹射逃生 战斗机性能日新月异,除战斗机日益提升外,也对飞行员弹射逃生的安全构成威胁,随着战斗机包线的扩展,弹射座椅的包线也应随之扩大以确保飞行员的安全,将火箭推进、推力矢量控制、陀螺仪与大气传感器等新技术纳入弹射座椅设计中,利用计算机控制包括座舱盖抛离、弹射火箭点火与开伞时机等相关弹射程序的进行,确保飞行员安全从失控战斗机中逃生。 2010年加拿大CF-18在航展表演中坠毁,飞行员在不利姿态下弹射,安全逃生 前言 弹射系统是飞行安全的最后一道防线,如何使飞行员从一架已陷入危险状态的飞机安全逃生是一种专门的艺术,现代战斗机的攻击性与破坏力都相当惊人,从军备角度分析战斗机性能一般着重于性能或动力参数。虽然随着科技的进步,特别是包线日益扩展,战斗机能够做出种种匪夷所思的机动,但进一步对弹射逃生造成挑战,这不仅牵涉到精密机械设计,还要考虑如何使飞行员安全脱离已失控飞机而不遭受伤害。

飞行员启动弹射系统时飞机姿态多已无法保持稳定,理想情况是在平稳姿态下以合适的速度和高度弹射,但在多数情况下飞机已经脱离控制,其姿态、速度与高度都不利于弹射跳伞程序的进行,甚至飞行员已经受伤。因此如何在飞行员下达弹射决心后简单、迅速、安全地逃生成为弹射系统设计的主要理念。 弹射逃生的历史可以追溯到最初的跳伞表演,当时空中马戏团的演员从气球跃下,打开降落伞缓缓着地来取悦观众。但发展从战损或失控战斗机上逃生的技术却被认为是懦夫行径,甚至还有人认为逃生设计会使飞行员变得贪生怕死。然而随着一战飞机大量运用于战场上,空勤人员大量折损后,如何增加空勤人员的存活率开始被人所重视。 早期的气球跳伞表演

简单介绍各类陀螺仪的使用

简单介绍各类陀螺仪的使用 最近,被安排调试MPU6050模块,之前从没接触过相关MEMS传感器,所以感觉一头雾水。幸好还有网络,还有强大的兄弟团的支持。不过,很可惜,网上大部分资料只是简单教你如何配置MPU6050并从数据寄存器读出测量值,而之后的数据处理很少涉及。这使得像我一样的菜鸟们十分抓狂。所以在此开辟专栏,希望大家集思广益,共同征服MPU6050。对于那些还不知道MPU6050是啥玩意的童鞋们,百度文科会告诉你。由于对此传感器的介绍铺天盖地,所以此处就一笔带过,不再详细介绍。 毫无疑问,无论是学习MPU6050,还是其他ICs,大家首先想到的是数据手册。没错,MPU6050有两个非常重要的数据手册,一个是PS-MPU- 6000A,另一个是RM-MPU-6000A。其他的都是原厂评估板的相关使用手册,对我们屌丝来说可以不用拜读了。PS-MPU-6000A是产品说明书,主要介绍了内部的结构、技术参数以及封装等内容;RM-MPU-6000A(*)是寄存器映射和描述文档,里面详细介绍了MPU6050内部各个寄存器的实现功能,对我们用户来说相当重要。网上虽然有一些翻译的中文资料,但自己还是硬着头皮仔细研读了一下两个手册。下面就把自己的心得和大家一起分享一下(产品说明书网上已有中文版,这里着重讲一下第二个数据手册)。 RM-MPU-6000A列出了将近100个寄存器,还有一部分寄存器没有列出来,估计是不对用户开放的。这些寄存器大致上可分为如下几类:自检寄存器、陀螺仪加速度配置寄存器、总线配置相关寄存器、中断配置寄存器、数据寄存器、第三方传感器配置寄存器、FIFO相关寄存器、系统配置寄存器。第一次看到这么多寄存器时倒吸一口凉气,相信很多网友会跟我有相同的感觉。其实,仔细分析下来,真正需要你配置的寄存器也就一半左右。由于我手中的MPU6050模块并没有外接第三方传感器,所以需要配置的寄存器就更少了。下面我们就一起来学习一下一些比较重要的寄存器。 系统配置寄存器 1、PWR_MGMT_1 该寄存器用来配置工作模式和时钟源。此外,还可以通过配置该寄存器复位整个器件以及禁止使用温度传感器。偶设置为0x08,处于正常工作模式,禁止使用温度传感器,选用内部8MHZ的时钟源。 2、PWR_MGMT_2 该寄存器用来配置加速度计模式下的唤醒频率和待机模式。 3、USER_CTRL 该寄存器用来使能或禁止FIFO缓冲、IIC主模式、和IIC接口。 4、MOT_DETECT_CTRL 该寄存器用来添加加速度计上电的延迟时间,默认是延时为4ms。 5、SIGNAL_PATH_RESET

陀螺仪传感器

陀螺仪传感器 对于不熟悉这类产品 的人来说,陀螺仪传感器 是一个简单易用的基于自 由空间移动和手势的定位 和控制系统。在假象的平 面上挥动鼠标,屏幕上的 光标就会跟着移动,并可 以绕着链接画圈和点击按 键。当你正在演讲或离开 桌子时,这些操作都能够 很方便地实现。陀螺仪传 感器原本是运用到直升机模型上的,现在已经被广泛运用于手机这类移动便携设备上(IPHONE的三轴陀螺仪技术)。 基本类型 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有:三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度) 从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动。更确切地说,一个绕对称铀高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪, 陀螺仪的基本部件有: (1)陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值); (2)内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构); (3)附件(是指力矩马达、信号传感器等)。

原理 陀螺仪的原理就是,一个旋转物体 的旋转轴所指的方向在不受外力影响时, 是不会改变的。人们根据这个道理,用它 来保持方向。然后用多种方法读取轴所指 示的方向,并自动将数据信号传给控制系 统。现代陀螺仪是一种能够精确地确定运 动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用 的一种惯性导航仪器。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械 式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面 的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个 全新的阶段。70年代提出了现代光纤陀螺仪的基本设想,到八十年代以后, 光纤陀螺仪就得到了非常迅速的发展, 与此同时激光谐振陀螺仪也有了很大 的发展。由于光纤陀螺仪具有结构紧 凑,灵敏度高,工作可靠等等优点, 所以目前光纤陀螺仪在很多的领域已 经完全取代了机械式的传统的陀螺仪, 成为现代导航仪器中的关键部件。和 光纤陀螺仪同时发展的除了环式激光

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

微机械陀螺仪的国内外发展概述

微机械陀螺仪的国内外发展概述 学号:07060441x28 姓名: 摘要:陀螺仪是一种用于测量旋转速度或旋转角的仪器。它在运输系统,例如:导航、刹车调节控制和加速度测量等方面有很多的应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种,现在工业控制、航空航天、军用技术都不可能离开惯性传感器:汽车、消费品和娱乐市场也开始依赖这些设备。许多市场调查一致认为微机械传感器市场将以每年15%-25%的年增长率增长。微机械陀螺仪的性能指标在很短的十几年内得到了迅速提高,目前正由速率级向战术级精度迈进。根据随机游走系数定义陀螺仪的性能指标,体微机械和表面微机械陀螺仪的性能在每2年便以10倍的速度得到提高,表面微机械陀螺仪和体微机械陀螺仪的性能的差距也越来越小。也正是由于微机械陀螺仪的广泛应用,使得世界各国都致力于对陀螺仪的研究和发展。 正文: 一、微机械陀螺仪的分类简介及用途。 陀螺是首先在火箭上得到应用的,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来并成功地获得应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种: (1)振动式微机械陀螺仪。 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质量,在被基座带动旋转时的哥氏效应感测角速度。多采用平面电极或是梳状电极静电驱动,并采用平板电容器进行检测。其分类如下:

浅谈全向轮机器人三位一体定位方法

浅谈全向轮机器人三位一体定位方法 摘要:在亚太机器人国内选拔赛中,各大高校制作的机器人都是全向轮机器人,基于全向轮定位使用最多的是码盘定位。但码盘行走存在误差,适合于短距离的移动。对于长距离的行走,误差比较大。因此,文章提供一种新式的定位方法,即码盘-陀螺仪-激光雷达三位一体定位方法。码盘计算机器人行走距离,陀螺仪给出机器人当前姿态角,激光雷达用于辅助定位。 关键词:全向轮;码盘;陀螺仪;激光雷达 中图分类号:TP242 文献标识码:A 文章编号:1009-2374(2014)16-0078-02 在各大比赛中,轮式机器人车轮一般都选用全向轮。基于全向轮的底盘定位大多是码盘定位。机器人在行走的过程中有平动,也有转动,仅靠码盘来定位存在很大的误差,定位和姿态角计算也比较困难。因此,本文提供一种新式的定位方法。 1 码盘-编码器 码盘其实是一种全向轮,可以实现任意方向上的行走。编码器主要用于测量机器人走过的路程和当前的速度。综合考虑,我们选增量式编码器。增量式编码器每转一圈会输出

固定的脉冲,脉冲数由光栅的分辨率和倍频决定,可以实现多圈无限累加计数。 2 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交 于自转轴的一个或两个轴的角运动检测装置称为陀螺仪。主要用于检测角位移和角速度,具有很高的灵敏度。陀螺仪存在误差,所以使用前需要校正。陀螺仪的线性误差可以通过实验测量测出。即把陀螺仪放在旋转平台上一定角度,观测其返回的值,判断是否有误差。若有误差,则可以多次测量进行线性补偿。 3 激光雷达 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。工作原理:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,目标进行探测、识别。利用激光雷达的这个原理,可以用它发出激光束扫射场地上固定位置的物体,通过返回来的激光束来测量机器人到固定位置物体距离,从而得出机器人在场地上的坐标。 4 定位算法 本定位方案采用双码盘-陀螺仪-激光雷达三位一体定位

相关主题
文本预览
相关文档 最新文档