当前位置:文档之家› 典型环境传递函数及模拟电路的构成方式

典型环境传递函数及模拟电路的构成方式

典型环境传递函数及模拟电路的构成方式
典型环境传递函数及模拟电路的构成方式

姓名:指导老师:成绩:

学院:专业:班级:

实验内容:

年月日其他组员及各自发挥作用:

独立完成实验内容,并进行了验证。

一、实验时间:

2014年9月22日

二、实验地点:

课外Multisim进行仿真,课堂上用labACT试验箱进行验证

三、实验目的:

1、了解labACT试验箱的模拟电路的基本组成、工作原理及使用方法

2、掌握典型环境传递函数及模拟电路的构成方式

3、熟悉各种典型环境的阶跃响应曲线

4、理解各个典型环境在系统中所起的作用

四、实验设备与软件

1、Multisim12电路设计与仿真软件

2、labACT实验台与虚拟示波器

五、实验原理

在实际生产中系统往往很复杂,但不管多么复杂的系统,在分析时都可以看成是由不同的基本环节构成。例如:由电子线路组成的放大器是最常见的比例环节;在机械系统中的齿轮减速器是一个比例环节。积分和惯性环节也是非常常见的,如:液位控制系统中阀控液压缸可看成积分环节,而直流电机的励磁回路就是一个惯性环节。比例环节可以改变输入信号的放大倍数;积分环节具有记忆功能,常用来改善系统的稳定性能;微分环节则常用来改善系统的动态特性。

六、实验内容、方法、过程与分析

1、实验内容:分别在Multisim12和labACT模拟试验箱观测记录比例(K)、积分((T i s)-1)、比例积分(1+(T i s)-1)、惯性环节((1+T i s)-1)的阶跃响应曲线。

2、实验方法:

(1)Multisim仿真(2)labACT试验箱验证

3、实验过程与分析

A、单位阶跃

(1)比例环节一般采用反响输入的方式,Multisim原理图及仿真结果如下;

图1 比例环节原理图

图2 比例环节输入信号波形

图3 比例环节输出信号波形

(2)积分环节,Multisim原理图及仿真结果如下;

图4 积分环节原理图

图5 积分环节输入信号波形

图6 积分环节输出信号波形(初始阶段)

(3)比例积分环节,Multisim原理图及仿真结果如下;

图8 比例积分环节原理图

图9 比例积分环节输入信号波形

图10 比例积分环节输出信号波形(初始阶段)

图11 比例积分环节输出信号波形(稳定阶段)

(4)惯性环节,Multisim原理图及仿真结果如下;

图12 惯性环节原理图

图13 惯性环节输入信号波形

图14 惯性环节输出信号波形(初始阶段)

图15 惯性环节输出信号波形(稳定阶段)

B、输入3V,改变时间常数

T=

七、实验结论与总结

结论:1、连续系统传递函数的生成

命令格式:sys=tf(num,den);

2、连续系统zpk函数的生成

命令格式:sys=zpk(z,p,k);

3、传递函数模型与zpk传递函数模型间的转换

命令格式:[num,den]=zp2tf(z,p,k);

[z,p,k]=tf2zp(num,den);

4、线性系统传递函数的零点和极点

命令格式:pole/zero(sys);

5、连续传递函数的静态增益

6、部分分式分解和还原

命令格式:[z,p,k]=residue(num,den);

[num,den]=residue(z,p,k);

总结:初步掌握MATLAB的基本语句用法,但是还需要进一步学习MATLAB 的语法,算法。

附录:.m文件

num1=[1 6 11 6];

den1=[1 15 74 120 0];

sys=tf(num1,den1);

z1=[-1 -2 -3];

p1=[0 -4 -5 -6];

k1=1/20;

srs=zpk(z1,p1,k1);

z2=[-1 -2 -3]';

p2=[0 -4 -5 -6]';

k2=1/20;

spk=zpk(z2,p2,k2);

[num2,den2]=zp2tf(z2,p2,k2); stf=tf(num2,den2);

tishi1='零极点传递函数形式是:' spk

tishi2='多项式点传递函数形式是:' stf

num3=[1 6 11 6];

den3=[1 15 74 120 0];

stf2=tf(num3,den3);

[z3,p3,k3]=tf2zp(num3,den3); spk2=zpk(z3,p3,k3);

stf=tf(num3,den3);

tishi1='零极点传递函数形式是:' spk2

tishi2='多项式点传递函数形式是:' stf2

[r,p,k]=residue(num3,den3); [num,den]=residue(r,p,k);

工程师不得不知的20个经典模拟电路(详细图文)

工程师不得不知的20个经典模拟电路(详细图文) 对模拟电路的掌握分为三个层次初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 1桥式整流电路 注意要点:1、二极管的单向导电性,伏安特性曲

线,理想开关模型和恒压降;2、桥式整流电流流向过程,输入输出波形;3、计算:V o,Io,二极管反向电压。2电源滤波器注意要点:1、电源滤波的过程,波形形成过程;2、计算:滤波电容的容量和耐压值选择。3信号滤波器 注意要点:1、信号滤波器的作用,与电源滤波器的区别和相同点;2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线;3、画出通频带曲线,计算谐振频率。 4微分和积分电路注意要点:1、电路的作用,与滤波器的区别和相同点;2、微分和积分电路电压变化过程分析,画出电压变化波形图;3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 5?共射极放大电路注意要点:1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;3、静态工作点的计算、电压放大倍数的计算。 6分压偏置式共射极放大电路注意要点:1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;2、电流串联负反馈过程的分析,负反馈对电路参数的影响;3、静态

工程师应该掌握的20个模拟电路

工程师应该掌握的20个模拟电路 电子信息工程系黄有全高级工程师 对模拟电路的掌握分为三个层次。 初级层次 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师 维修维护技师 维修维护技师。 高级层次 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师 设计工程师 设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型:2、桥式整流电流流向过程: 输入输出波形: 3、计算:V o, Io,二极管反向电压。二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC串联和并联电路的阻抗计算,幅频关

系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算。 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。

PCB必掌握20种模拟电路

对模拟电路的掌握分为三个层次: 初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形:

3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。

20个常用模拟电路

一. 桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器 1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也

向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器 1信号滤波器的作用:把输入信号中不需要的信号成分衰减到足够小的程度,但同时必须让有用信号顺利通过。 与电源滤波器的区别和相同点:两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。 相同点:都是用电路的幅频特性来工作。 2LC串联和并联电路的阻抗计算:串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC) 并联时电路阻抗为Z=1/jωC∥(R+jωL)= 考滤到实际中,常有R<<ωL,所以有Z≈

工程师应该掌握的20个模拟电路(详细分析与参考答案)

一、桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器

1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也 向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器

电赛需知的20个模拟电路

对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。

一、桥式整流电路 1、二极管的单向导电性: 2、桥式整流电流流向过程: 输入输出波形: 二、电源滤波器 电源滤波的过程分析: 电源滤波器是一种无源双向网络,它的一端是电源,另一端是负载。

电源滤波器的原理就是一种——阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。 电源滤波器一般都设计为只由电阻、电容及电感组成的被动滤波器,没有像晶体管之类的主动元件。 EMI电源滤波器的安装过程中,应该注意以下问题: 1、EMI电源滤波器金属壳与机箱壳必须保证良好面接触,并将接地线接好; 2、EMI电源滤波器输入线、输出线必须拉开距离,切忌并行,以免降低滤波器效能;

3、EMI电源滤波器连接线以选用双绞线为佳,它可有效消除部分高频干扰信号。 三、信号滤波器 1、信号滤波器的作用: 四、微分和积分电路 微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分。微分电路的工作过程是:RC的乘积,即

常见的20个基本模拟电路

电子电路工程师必备的20种模拟电路 对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟 电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器

1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器1、信号滤波器的作用:与电源滤波器的区别和相同点:2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。3、画出通频带曲线。计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 2、元器件的作用、电路的用途、电压

典型环节及其阶跃响应.

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

经典的20个模拟电路原理及其电路图汇总

经典的20个模拟电路原理及其电路图对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。

二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

工程师应该掌握的20个模拟电路原理及其电路图

工程师应该掌握的20个模拟电路 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。

一、桥式整流电路 1、二极管的单向导电性: 2、桥式整流电流流向过程:输入输出波形: 3、计算:V o, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

一、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 二、共射极放大电路

最基本的20个模拟电路和作用 你一定要知道

最基本的20个模拟电路和作用你一定要知道 模拟电路的重要性小伙伴们都懂!最基本的是20个模拟电路,一定要懂!初级小伙伴是熟练记住这二十个电路,清楚这二十个电路的作用。 中级小伙伴是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。最有意思的是,这时的你可以作为威客来我爱快包接包,用互联网的模式和自己的本事赚工作之外的钱,开心吧! 高级小伙伴是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。当然了,作为技术高手的你可以常常出招解决技术难题,我爱快包帮你一起赚到银子多多!想想都醉了! 一、桥式整流电路 1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:V o,Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器1、信号滤波器的作用:与电源滤波器的区别和相同点: 2、LC串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。

20个模拟电路电子初学者必会的

……………………………………………………………精品资料推荐………………………………………………… 工程师应该掌握的20个模拟电路 对模拟电路的掌握分为三个层次。 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 1

一、桥式整流电路 1、二极管的单向导电性: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。

计算谐振频率。 一、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 二、共射极放大电路

电子工程师应该掌握的20个模拟电路的详细分析与解答

电子工程师应该掌握的20个模拟电路的详 细分析及参考答案 一、桥式整流电路 1.1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 1.2伏安特性曲线; 1.3理想开关模型和恒压降模型: 理想开关模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。 恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2.1桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd3导通;而二极管Vd2和Vd4截止,负载R L的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd2和Vd4导通而Vd1和Vd3截止,负载R L上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3.1计算:Vo,Io,二极管反向电压.

Uo=0.9U2, Io=0.9U2/R L,U RM=√2 U 2

1.1电源滤波的过程分析:电源滤波是在负载R L两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 1.2波形形成过程:输出端接负载R L时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥R L C)≈RiC,一般Ri〈〈R L,忽略Ri 压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过R L放电,放电时间常数为R L C,放电时间慢,u 0变化平缓。当ωt=ωt2时,u 2=u 0, ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。ωt=ωt3时有u 2=u 0,ωt3后,电容通过R L放电。如此反复,周期性充放电。由于电容C的储能作用,R L上的电压波动大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2.1计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2之间,输出电压的平均值取决于放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步近似为Uo≈1.2U2整流管的最大反向峰值电压U RM=√2U 2,每个二极管的平均电流是负载电流的一半。

学模拟应该学会的20个模拟电路

一、桥式整流电路 1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用:与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路

1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算。 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。

3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。 七、共集电极放大电路(射极跟随器) 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。电路的输入和输出阻抗特点。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 八、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益。 3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。

经典的20个模拟电路原理及其电路图(精编文档).doc

【最新整理,下载后即可编辑】 经典的20个模拟电路原理及其电路图 对模拟电路的掌握分为三个层次: 初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 【最新整理,下载后即可编辑】

【最新整理,下载后即可编辑】 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、 电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。

三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。 四、微分和积分电路 【最新整理,下载后即可编辑】

相关主题
文本预览
相关文档 最新文档