当前位置:文档之家› 设计计算书(扶梯

设计计算书(扶梯

设计计算书(扶梯
设计计算书(扶梯

1.梯级和扶手带速度计算:

1.1已知数据

电动机 KFT160M-VF6B 额定转速 n电=960r/min 主动链轮 z1=23 t=31.75

被动链轮 z2=65 t=31.75

梯级曳引链轮 z3=16 t=133.33 d1=0.6341m

扶手带传动链轮 z4=30 t=25.40

扶手带驱动链轮 z5=26 t=25.40

扶手带驱动胶轮 d2=0.5974m

减速机 i=24.5

1.1已知数据

扶梯金属骨架,组合截面的转动惯量主梁选用矩形管(120x60x6)/20 1.方钢120x60x6的截面参数:

截面面积S=1971.2mm2

重心距离x0=19.2mm

y0=41.4mm

惯性矩Ix0=3.12x106mm4

2.自动扶梯驱动功率计算

1.1梯路牵引计算

1.1.1已知数据

1.1.2已知数据

土钉墙支护计算计算书

土钉墙支护计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息 1、基本参数 放坡参数:

K a1=tan2(45°- φ1/2)= tan2(45-18/2)=0.528; K a2=tan2(45°- φ2/2)= tan2(45-18/2)=0.528; K a3=tan2(45°- φ3/2)= tan2(45-12/2)=0.656; K a4=tan2(45°- φ4/2)= tan2(45-20/2)=0.49; 第1层土:0-1.2m(+0) H1'=[∑γ0h0]/γi=[0]/20=0m P ak1上=γ1H1'K a1-2c1K a10.5=20×0×0.528-2×12×0.5280.5=-17.439kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=20×(1.2+0)×0.528-2×12×0.5280.5=-4.767kN/m2 第2层土:1.2-2m(+0) H2'=[∑γ1h1]/γsati=[24]/20=1.2m P ak2上=[γsat2H2'-γw(∑h1-h a)]K a2-2c2K a20.5+γw(∑h1-h a)=[20×1.2-10×(1.2-1.2)]×0.528-2×12×0.52 80.5+10×(1.2-1.2)=-4.767kN/m2 P ak2下

5吨电梯计算书_一

XXXX5000/0.5—J交流调频调压调速载货电梯 计算书

XXXXXXX 目录 1.前言 2.电梯的主要参数

3.传动系统的计算 3.1曳引机的选用 3.2平衡系数的计算 3.3曳引机电动机功率计算 3.4曳引机负载转矩计算 3.5曳引包角计算 3.6放绳角计算 3.7轮径比计算 3.8曳引机主轴载荷计算 3.9额定速度验算 3.10曳引力、比压计算 3.11悬挂绳安全系数计算 3.12钢丝绳端接装置结合处承受负荷计算 4.主要结构部件机械强度计算 4.1轿厢架计算 4.2轿底应力计算

4.3轿厢壁、轿门壁、层门壁强度、挠度计算4.4轿顶强度计算 4.5绳轮轴强度计算 4.6绳头板强度计算 4.7机房承重梁计算 5.导轨计算 5.1轿厢导轨计算 5.2对重导轨计算 6.安全部件计算 6.1缓冲器的计算、选用 6.2限速器的计算、选用 6.3安全钳的计算、选用 7.轿厢有效面积校核 8.轿厢通风面积校核 9.层门、轿门门扇撞击能量计算 10.井道结构受力计算 10.1底坑预埋件受力计算 10.2层门侧井道壁受力计算 10.3机房承重处土建承受力计算 10.4机房吊钩受力计算 11.井道顶层空间和底坑计算 11.1顶层空间计算 11.2底坑计算

12.电气选型计算(变频器的容量,应急电源容量、接触器、主开关、电缆计 算) 13. 机械防护的设计和说明 14. 轿厢地坎和轿门至井道表面的距离计算 15. 轿顶护栏设计 16.轿厢护脚板的安装和尺寸图 17.开锁区域的尺寸说明图示 18.操作维修区域的空间计算(主机、控制柜、限速器、盘车操作) 19.轿厢上行超速保护装置的选型计算(类型、质量围) 20.引用标准和参考资料 1.前言 本计算书依据GB7588、GB/T10058、GB/T10059、GB10060等有关标准及有关设计手册,对KJDF5000/0.25—J(VVVF)载货电梯的传动系统、主要部件及安全部件的

土钉墙支护计算计算(准确)

土钉墙支护计算计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):7.430; 土钉墙计算宽度b'(m):100; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层的摩擦角; 条分块数:/; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 局布20.00 4.86 5 3、地质勘探数据如下:: 序号土名称土厚度坑壁土的重度γ坑壁土的摩擦角φ聚力C 极限摩擦阻力 (m) (kN/m3) (°) (kPa) (kPa)

1 填土 1.30 18.00 18.00 12.00 80.00 2 粘性土 1.30 18.00 20.00 25.00 100.00 3 粉土 3.10 19.00 25.00 18.00 110.00 4 粘性土 1.20 18.00 20.00 25.00 100.00 5 粉砂 4.10 19.00 35.00 18.00 115.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.43 3.00 100.00 土钉数据: 序号直径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 150 6.00 15.00 1.50 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj、s zj--土钉之间的水平与垂直距离 αj--土钉与水平面的夹角 ζ按下式计算:

基坑支护方案(土钉墙,详细计算)..

第一章基坑边坡计算 一、工程概况 (一)土质分布情况 ①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。层厚0.50~4.80米。 ①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。层厚0.40~2.90米。 ①3淤泥质填土(Q4ml):。主要为原场地塘沟底部的淤泥,后经翻填。分布无规律,局部分布。层厚0.80~2.30米。 ②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。层顶标高5.00~13.85米,层厚0.50~8.20米。 ②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。夹薄层粉砂,具水平状沉积层理,单层厚1.0~5.0cm,局部富集。该层分布不均匀,局部缺失。层顶标高1.30~ 10.93米,层厚0.80~4.50米。 ②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1.00~13.50米。 ②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。 ③1粉质粘土(Q3al):可~硬塑,中压缩性。干强度高,韧性高。含少量铁质浸染斑点及较多的铁锰质结核。该层顶标高-11.83~13.23米,层厚1.40~14.00米。 ③2粉质粘土(Q3al)可塑,局部软塑,中压缩性。该层顶标高-18.83~6.83米,层厚2.20~23.70米。 ④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。该层顶标高-26.73~-10.64米,层厚0.50~6.50米。 (二)支护方案的选择 根据本工程现场实际情况,基坑各部位确定采取如下支护措施

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

土钉墙支护计算计算书

土钉墙支护计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99中国建筑工业出版社出版 《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》 第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m): 7.700; 土钉墙计算宽度b'(m): 15.00; 土体的滑动摩擦系数按照tan计算,?为坡角水平面所在土层内的内摩擦角;条分块数:10; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 15.000; 基坑内侧水位到坑顶的距离(m): 15.000; 2、荷载参数: 序号类型面荷载q(kPa)荷载宽度b0(m)基坑边线距离b1(m) 1 满布 2.00 -- -- 3、地质勘探数据如下::

4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.70 2.54 12.00 土钉参数: 序号孑L径 (mm) 长度(m) 入射角(度) 竖向间距(m)水平间距(m) 1 120.00 4.00 15.00 1.50 2.00 2 120.00 7.00 15.00 1.50 2.00 3 120.00 5.00 15.00 1.50 2.00 、土钉(含锚杆)抗拉承载力的计算 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25 0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk= Z e k S xj S Zj/COS ja 其中 Z --荷载折减系数 ea jk --土钉的水平荷载 S xj、S zj --土钉之间的水平与垂直距离 a --土钉与水平面的夹角 按下式计算: Z =tan[Q(H)/2](1/(tan(( k)/2+-1/tan B )角加° ? /2) 其中/-土钉墙坡面与水平面的夹角。 ?-土的内摩擦角 e ajk按根据土力学按照下式计算:

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

土钉墙设计计算书1

土钉墙设计计算书 本计算依据《建筑基坑支护技术规程》(JGJ120-99)。 一、基本计算参数 1.地质勘探数据如下: ——————————————————————————————————————————— 序号 h(m) (kN/m3) C(kPa) (°) 极限摩阻(kPa) 计算方法土类型 1 4.00 17.50 8.00 18.00 30.0 水土分算填土 2 4.50 20.00 0.00 40.00 150.0 水土分算卵石 ——————————————————————————————————————————— 表中:h为土层厚度(m),为土重度(kN/m3),C为内聚力(kPa),为内摩擦角(°)。 基坑外侧水标高-8.00m,基坑内侧水标高-8.00m。 2.基本计算参数: 地面标高0.00m,基坑坑底标高-7.00m。 3.地面超载: —————————————————————————————————————————序号布置方式作用区域标高m 荷载值kPa 距基坑边线m 作用宽度m ————————————————————————————————————————— 4.土钉墙布置数据: 放坡级数为1级坡。 —————————————————————————— 序号坡高m 坡宽m 坡角°平台宽m 1 7.00 3.50 63.43 0.00 —————————————————————————— 土钉数据: ————————————————————————————————————— 层号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 材料 1 80.00 6.00 15.00 1.70 1.50 48X3.0钢管 2 80.00 5.00 15.00 1.60 1.50 48X3.0钢管 3 80.00 3.50 15.00 1.60 1.50 48X3.0钢管 4 80.00 2.50 15.00 1.60 1.50 48X3.0钢管 ————————————————————————————————————— 二、土钉(含锚杆)抗拉承载力的计算 土钉墙局部稳定验算:

载货电梯(5000Kg)设计计算书4.5米

THF5000/0.5-JXW-VVVF 目录 一井道顶层净高及底坑尺寸 二电梯主要参数 三传动系统 1.电动机功率计算 2.曳引机主要参数 3.选用校准 四曳引绳安全计算 五悬挂绳轮直径与绳径比值计算 六曳引条件计算 七比压计算 八正常工况下导轨应力,变形计算 九安全钳动作时,导轨应力计算 十轿厢架计算 十一缓冲的校核 十二限速的校核 十三安全钳的校核 十四轿厢通风面积和轿厢面积计算 十五承重大梁的校核 十六底坑地板受力的计算 一井道顶层净高及底坑尺寸

井道顶层净高4500mm 及底坑尺寸1700mm 缓冲器安全距离200mm ~350mm 取300mm 提升高度4.5m 1. 井道顶层空间计算:单位(mm) OH=H+H1+H2+H3+35V 2 OH=2450+300+175+1000+35x0.52 OH=3664<4500mm 所以井道顶层净高4500mm 满足要求。 OH-顶层高度 H-轿厢高(2500mm) H1-安全距离(300mm) H2-缓冲距离175mm V-速度(0.5米/秒) H3-轿厢投影部分与井道顶最底部分的水平面之间的自由垂直距离(1000+35V 2 mm) 2. 井道底坑空间计算:单位(mm)

P=L1+H1+H2+L3 P=650+300+175+500 P=1625<1700mm 所以井道底坑深度1700mm满足要求。 P-底坑深度 L1-轿底与安全钳拉杆距离(650mm) H1-安全距离(300mm) H2-缓冲距离(175mm) L3-底坑底与轿厢最底部件之间的自由垂直距离(500mm) 二电梯的主要参数

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

土钉墙支护计算计算书解析

土钉墙支护计算书 永昌县同人商贸影视城工程;属于框架;地上5层;地下1层;建筑高度:32m;标准层层高:4.5m ;总建筑面积:17590平方米;总工期:500天;施工单位:金昌市隆凯建筑安装工程有限公司 本工程由永昌县万安房地产开发有限公司投资建设, 华诚博远(北京)建筑规划设计有限公司设计,兰州岩土华夏有限公司勘察,金昌恒业建设工程监理有限公司监理,金昌市隆凯建筑安装工程有限公司组织施工;由李玉龙担任项目经理,张得文担任技术负责人。 本计算书参照《建筑基坑支护技术规程》JGJ120-2012 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:一级 基坑开挖深度h(m):10.000; 土钉墙计算宽度b'(m):30.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 满布15.00 -- -- 3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限摩擦阻力饱和重度(m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 杂填土 1.60 18.00 30.00 15.00 112.00 1.00 2 角砾层 2.6 19.00 30.00 5.50 112.00 1.00 3 粉砂 2.30 19.50 30.50 30.00 112.00 20.00 4 角砾 1.40 21.50 37.50 12.50 112.00 1.00 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 9.00 4.00 30.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 50.00 9.00 15.00 1.40 1.50 2 50.00 9.00 15.00 1.40 1.50 3 50.00 7.00 15.00 1.40 1.50 4 50.00 7.00 15.00 1.40 1.50 5 50.00 7.00 15.00 1.40 1.50 6 50.00 7.00 15.00 1.40 1.50 7 50.00 7.00 15.00 1.40 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-2012,R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj、s zj--土钉之间的水平与垂直距离

自动扶梯设计计算书H=99m

自动扶梯设计计算书 一. 速度计算: (1) 梯级运行速度校核: 电动机转速n=960r/min 减速机输出转速n 1=39.18r/min 梯级运行速度V=πd(Z 1×n 1/Z 2)÷60 =3.14×0.683(23×39.18/65)÷60 =0.495(m/s) 与额定速度偏差 %5%5.0005.05 .05 .0495.0<==- 满足标准(GB16899-1997第12.2.3条要求) (2) 扶手带运行速度校核: 扶手带速度Vf=π(d 5+10)(Z 1×n 1×Z 3/Z 2×Z 4)÷60 =3.14×(587+10)(23×39.18×30/65)÷60

=0.499(m/s) 与额定速度偏差 %2%4.0004.0495 .0495 .0499.0<==- 满足标准(GB16899-1997第7.1条要求) 二. 功率计算: (1) 乘客载荷:每节梯级载荷:W 1=1200N 承载梯级数量:H/X 1=9.9×1000/200 =49.5 因此W=1200×49.5=59400N (2) 由运动部件的摩擦所引起的能量损耗系数η1: 当α=30°时,η1=0.12 (3) 电动机效率η=0.83,满载系数φ=1 P=FV/(1-η1)×η =Vw φsin30°/(1-η1)×η =20.33(KW) 考虑扶手带消耗功率1.6KW 选用11×2=22(KW) 双驱动 三. 梯级链及驱动链安全系数计算: 梯级链与驱动链破断载荷为180KN 梯级链涨紧装置的弹簧涨紧力为2600N(单侧1300N) (1) 梯级链安全系数计算 根据EN115;1995第9.1.2条规定计算链条安全系数的乘客载荷为:W=5000ZH/tg30°(Z=1m 、H=9.9m) =5000×1×9.9/ tg30°

IC厌氧塔

产品描述: 一简介 IC反应器中文名内循环厌氧反应器,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组 成。 二工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD 在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液 经出水区排走,颗粒污泥则返回精处理区污泥床。 三选型、选材及尺寸(IC实验室选型) 1、有机玻璃IC厌氧反应器有效容积为25L,底边周长15cm,高120cm。其优点为外观结构干净漂亮;内部三相分离器、布水器、上下流管道等结构清晰可见;外附保温层保障了系统在合适的温度下自动运行; 该产品适用于学校、实验室小试模拟教学使用。 2、钢结构IC厌氧反应器为Q235碳钢焊制主体,内衬双层玻璃钢防腐层,内部管道喷双层环氧漆防腐,保障设备正常运行过程中不被腐蚀。该设备有效容积200L,底面直径40cm,高200cm,净重150kg。其优点为更接近于工程实际,抗压强度高,温度适应范围广,适用于科研单位、工地现场中试模拟运行。 四订货须知 1、用户应注明设备的材质及防腐要求。 2、用户应提供详细的水质化验单以便于我公司计算反 应器各部件的尺寸。 3、若用户有详细的加工图纸,可按用户要求进行生产。 4、可根据用户提出的具体要求进行设计制造。 天津国韵生物科技的限公司绍兴女儿儿酒有限公司山西 长冶金泽生化有限公司等 厌氧塔是本公司承接,效果很好~! 联系电话:

自动扶梯改造方案

重载公交型 自动扶梯改造 施 工 方 案 书 审核:批准: 编制:技术负责人: 2018-8-10

目录 一. 工程概况 二. 施工组织结构和管理规定 三. 扶梯改造施工流程 四. 施工安全的保证措施 五. 工程技术及质量保证措施 六. 对工期的保证措施 七. 文明施工措施 八. 产品保护的具体措施 九. 施工阶段有关配协调保证措施 十. 施工场地及施工用电要求 十一. 需方配合电扶梯改造的事项和要求十二. 改造施工日程部署 十三. 扶梯改造分项施工工艺控制要求十四. 改造项目施工要求及质量控制点十五. 改造后扶梯的调试和验收 十六. 项目负责人及施工班组人员名单 附录:1扶梯改造前后参数对照表 2扶梯改造设计计算书

一、工程概况: 本工程共有2台室外重载公交型扶梯;电梯的改造工程全部由承接。 改造原因:用户本着节省费用开支和减少原材料资源浪费的原则,为加深员工对重载公交型扶梯的认识及提高扶梯培训的效果,充分利用闲置的资源,将2台室外重载公交型扶梯进行改装,将原提升高度9.6m截短后安装在附属用房旁作为培训教具 改造后效果:经改造后桁架的强度、直线度、受力情况及相关角度达到原厂要求,整梯要求符合GB16899-2011标准。更新部分元件、控制线路,可使电气绝缘更稳定,消除事故隐患,提高了安全管理水平。通过以上的改造,电梯更经济更省电,故障率下降,使得电梯的日常维修费用也大幅度降低。 电梯现状及主要问题 此2台扶梯出厂日期为2010年5月4日出厂,改造前一直在闲置堆放。扶梯的桁架结构、大链轮、主机等大型关键部件情况良好。控制柜大多数电气元件比较新;整梯安全开关、梯级轮、安全玻璃均无损坏;扶手带无老化现象;有符合GB16899-2011标准的主回路和抱闸回路防粘连保护装置。 技术改造主要项目: 桁架裁截、接驳改造→更换胶条、裙板、扶手带→更新、加装全梯安全开关→更换饰条→裁截扶手带导轨→加装安全玻璃→更换油管→修整齿条→裁截梯级导轨→修整油盘→修整梳齿→更新、增加整梯梯级轮→更换梯级→裁截驱动链 二、施工组织结构和管理规定 (一)该改造工程的施工,由广州市迅业电梯厂负责管理,其属下分设搭棚组、吊装、调试验收组及项目监理组、改造组等相关部门分别担任施工实施与配合,其职能如下: 1、项目监理组负责一切的合同管理,工程费用的计价结算。 2、改造组负责解决施工过程产生的技术问题同时对安装工艺进行监督指导。 3、项目负责人将根据施工进度,进行现场不定期的安全抽查工作,保证施工安全。 4、项目负责人负责对整个工程实施全面质量监督。 5、项目监理组、改造组是整个工程的具体实施部门。

土钉墙支护计算书9米深..

钉墙支护计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息 1基本参数 2、荷载参数 3、土层参数 4、土钉墙布置数据 放坡参数:

土钉参数: 5、计算系数 二、土钉承载力计算 第 1 层土: 0-1.2m(+0) H i '=[ Z 0Y]/ i =[0]/18=0m]/18=0m P aki 上 = Y 1 H 1'K a1-2c 1K a10.5 =18X) X).528-2 >2><0.5280.5 =-17.439kN/m 2 P ak1T =Y 1(h 什H 1')K a1-2c 1K a10.5 =18X1.2+0) 0528-2 XX).5280.5 =-6.034kN/m 2 K a1=tan 2 (45 ° 奶/2) K a2=tan (45 ° 粋2) 2 K a3=tan (45 ° 艇/2) 2 =tan(45-18/2)=0.528; 2 =tan (45-18/2)=0.528; =tan 2 (45-14/2)=0.61; 2 =tan(45-14/2)=0.61; 2

第 2 层土: 1.2-3m(+0) H2'=[ HY]/ sYi=[21.6]/20=1.08m]/20=1.08m P ak2 上 =[sat2H2'- Y w( Xhh a)]K a2-2c2K a20.5+佩E h-h a)=[20 *08-10 (1.2-1.2)] 0.528-2 t2X).5280.5 +10X(1.2-1.2)=-6.034kN/m2 P ak2 下 =[$at2(H2'+h2)- Y w( E h-h a)]K a2-2c2K a20.5+ Y w( Xhh a)=[20 *1.08+1.8)-10 (3-X.2)] 0.528-2 x x0.5280.5+10x(3-1.2)=21.47kN/m2 第3层土:3-4m(+0) H3'=[Z2Y]/ Y ti=[57.6]/19=3.032m]/19=3.032m P ak3 上 =[$at3H3'-泌Xh-h a)]K a3-2c3K a30.5+泌Eh-h a)=[19 X.032-10 X-1.2)] 0X1-2 X)X).61O.5+1O 2 X(3-1.2)=26.54kN/m2 P ak3下 0.5 =[sat3(H3'+h3)- Y w( Eh-h a)]K a3-2C3K a3. + 旳(E2-h a)=[19 23.032+1)-10 (4X1.2)] 021-2 wx 0.610.5+1 0x(4-1 .2)=42.03kN/m2 第4层土:4-6.5m(+0) H4'=[ Eh s]/ sati=[76.6]/19=4.032m]/19=4.032m P ak4上 =[sat4H4'- Y w( Eh-h a)]K a4-2c4K a40.5+ >( Eh-h a)=[19 X.032-10 *-1.2)] 0X1-2 X)X0.610.5+10 2 X(4-1 .2)=42.03kN/m2 P ak4下 =[$at4(H4'+h4)- Y w( Xh-h a)]K a4-2c4K a40.5+泌Xhh a)=[19 X4.032+2.5)-10 (6X-1.2)] 0.X-2 x 0x0.610.5+10x(6.5-1.2)=80.755kN/m2 第5层土: 6.5-9m(+0) H5'=[ Z4Y]/ Y ti=[124.1]/22=5.641m]/22=5.641m P ak5上 =[sat5H5'-佩Eh-h a)]K a5-2c5K a50.5+ 佩Eh-h a)=[22 X.641-10 X.5-1.2)] O.X-2 X3X).490.5+ 2

地铁车站建筑设计 计算书

地下铁道车站建筑设计 说明书 学生姓名: 指导老师: 西南交通大学土木工程学院 2014年10月

目录 1车站建筑计算............................................................................................. . (1) 车站选址说明 (1) 出入口、风亭设计 (1) 设计客流及车站规模 (1) 2车站建筑设计 (6) 车站各层建筑布置及功能分区 (6) 车站客流组织 (7) 车站无障碍设计 (8) 车站防灾设计 (9)

1 车站建筑计算 车站选址说明 香港路道路宽20m,为双向四车道,交通较繁忙,车流量较大。规划道路目前尚未实施。菱角湖路与三眼桥北路道路宽10m,为双向二车道,交通较繁忙,车流量较大。规划道路目前尚未实施。 菱角湖路、三眼桥北路与香港路相交成十字路口。十字路口周围主要为大型的社区。东侧为菱角湖公园,西侧为唐家墩菱角湖社区,北侧为香港丽都,南侧为鹏飞湖庭。 经调查,江城大道路中下埋两根Φ1200雨水管为车站控制性管线,埋深。受雨水管影响,本站覆土为3m,施工期间对雨水管进行悬吊保护,完工后可按原线还建。 车站设置于江城大道与规划道路交叉路口,沿规划道路敷设。现状周边有4栋建筑在车站结构轮廓内,对车站布置有影响。 在车站范围内另有Φ300雨水管一根、10KV的电力管线1跟及路灯管线,施工期间对10 KV电力管线进行悬吊保护、Φ300雨水管临时废弃,对于路灯管线临时废弃,完工后均按原线还建。 出入口、风亭设计 本站位于香港路、菱角湖路与三眼桥北路交叉路口。车站共设4个出入口、1个无障碍电梯和2组风亭。十字路口东侧为菱角湖公园方向,在此设置Ⅰ号出入口;北侧为香港丽都,在此设置Ⅱ号出入口;西侧为唐家墩菱角湖社区,车站在此设置Ⅲ号出入口和2号风亭;南侧为鹏飞湖庭,在此设置Ⅳ号出入口和1号风亭。Ⅰ、Ⅱ、Ⅲ、Ⅳ号出入口分别设于路口周边四个象限的地块内,满足4个象限的客流吸引。车站1号风亭设于车站南侧,为满足防淹要求,设置为高风亭,车站2号风亭设于车站西侧,为高风亭。 设计客流及车站规模 设计客流 根据客流资料,该站预测客流见附表、表。 2042 2042

ABR、UASB、AO系统设计计算书

ABR 、UASB 、A/O 系统设计计算书 (1)ABR 厌氧池 主要设计参数: 厌氧池设置成2组并联,每组共6口串联。 配套污泥收集池1座,现浇半地下式钢砼结构。收集厌氧排出的剩余污泥,池内设 置污泥泵、泵提升装置及泵自控装置。 构筑物尺寸: 红泥塑料厌氧池:1-4口:L 1×B 1×H 1 = 4.5×6.9×6.5m ; 5-6口:L 1×B 1×H 2 = 4.5×6.9×6.0m , (厌氧池平均水深H 平均=5.8m ); 污泥收集池:L 2×B 2×H 3 = 2.5×1.2×4.2m ,(有效水深H 3有效 = 3.7m ); 水力停留时间(HRT ): d Q H B L Q V HRT 4.5400 8 .59.65.4121211≈???=??== 平均总有效; 厌氧池容积负荷:() d m kgCOD V C Q S cr i V ?=?=?= 3/25.12160 75 .6400总有效 S v <1.5kgCOD cr /(m 3·d) 符合设计要求; 式中:L 1、B 1、H 1、H 2、L 2、B 2、H 3——分别表示构筑物长度、宽度及深度,m ; Q —— 设计污水数量,400m 3/d ; 12 —— 表示12口厌氧池; S v —— 厌氧池容积负荷,kgCOD cr /(m 3·d) ; C i —— 厌氧池进水COD cr ,6.75kg/m 3; V 总有效 —— 厌氧池总有效容积,2160m 3。 构筑物数量:第一级与第二级合建,共1座; 厌氧池单口宽度4.5m ,下流区与上流区宽度比取4:1,考虑施工方便,下流区宽度 取0.9m ,上流区宽度3.6m 。

厌氧塔的防雷设计

厌氧塔的防雷设计 1.1接闪器的设计 厌氧塔简称IC 塔,是污水处理中的一个成品工艺设备,整体设备安装在厌氧反应器(IC 塔内),窜出屋面,IC 塔塔是一个全钢材制的距地标高为28.3m ,外直径为16m ,厚度为10mm 的圆形罐体,顶部还有4个圆形的小罐体,距地标高为31.25m ,直径为2.8m (见图1)。 鉴于厌氧塔的高度,在实际运用中,也相当于一个巨大的引雷器,需要设置避雷针保护一定半径的建筑物,而在IC 塔上的小罐体也需要防雷装置的保护,为了使其免受直击雷得破坏,根据《建筑物防雷规范》(GB55057-94 2000年版),进行了避雷针的设计和计算,设计方案见图。2 IC 塔的直径D=16m ,IC 塔的相对地面高度为28.3m ,圆形小罐体相对地面高度为32.15m ,直径为2.8m 。根据上述数据,用滚球法计算避雷针的高度: h 0=2)2/3(2D hr +h-hr (1) 式中: h0──保护范围的最低高度(圆形小罐体高度为3.85m )

D3──对角两避雷针水平距离(按规范规定,避雷针与被保护物间最小距离为3m,本设计为16m) h──避雷针的高度 hr──滚球半径(取60m) 将上述数据代入公式(1)中,经计算h=4.39m,因此设计避雷针的高度为5m。根据图集,由厂家根据设计结果制作自制的避雷针并进行现场安装。自制避雷针制作安装制作图可参见《建筑物防雷设施安装》99D501-1 避雷针底部与厌氧塔进行钢壁进行热镀锌可靠焊接,使其成为一体。 1.2下引线的设计 利用厌氧塔塔壁从上至下为均匀罐体的特点,因此把它作为下引线,由于塔壁厚度为10mm,根据规范规定,符合防雷设计要求。 1.3接地系统的设计 接地系统是避雷系统中重要的环节之一,不管是直击雷、感应雷和其他形式的雷电,最终都是把雷电引入大地,使之与大地的异种电荷中和。因此没有合理良好的接地装置,避雷是不可靠的。 利用厌氧塔基础中预埋地脚螺栓作为垂直接地级,基础中上下两层钢筋与地脚螺栓焊接在一起可形成地网,在厌氧塔基础上引出4个预留接地铁,每一个预留接地体采用2根40╳4镀锌扁钢与共同接地体可靠焊接,使其处于同一电位。 该工程采用总厂区共同接地的形式,各个单体接地系统均引出2根40╳4镀锌扁钢,与厌氧塔操作间地网可靠焊接,使总体处于同一等电位。 由于电力、电线线路不能直接接到地线上,在总进线处设置电涌保护器(SPD)实现了电气设备、电子设备、的等电位连接。 此外,各个单体均采用等电位联结措施。等电位是用连接导线或过电压保护器将在需要防雷空间内部的防雷装置、建筑物的金属构架、金属装置、外来的导体物、工艺设备电器和

相关主题
文本预览
相关文档 最新文档