当前位置:文档之家› 关于地源热泵技术国家和地方鼓励政策

关于地源热泵技术国家和地方鼓励政策

关于地源热泵技术国家和地方鼓励政策
关于地源热泵技术国家和地方鼓励政策

关于地源热泵技术国家和地方鼓励政策

2006,8,28 国家财政部、建设部发布

《建设部、财政部关于推进可再生能源在建筑中应用的实施意见》

2006,9,4 发布《可再生能源建筑应用示范项目评审办法》

《可再生能源建筑应用专项资金管理暂行办法》

专项资金支持的重点领域包括:利用土壤源热泵和浅层地下水源热泵技术供热制冷;地表水丰富地区利用淡水源热泵技术供热制冷;沿海地区利用海水源热泵技术供热制冷;利用污水源热泵技术供热制冷。

专项资金使用范围:示范项目的补助;示范项目综合能效检测、标识,技术规范标准的验证及完善等;可再生能源建筑应用共性关键技术的集成及示范推广;示范项目专家咨询、评审、监督管理等支出;财政部批准的与可再生能源建筑应用相关的其他支出。

2006.12.28 国家建设部发布《建设事业“十一五”重点推广技术领域》的通知“(建科[2006]315号)

通知中将水源地源热泵技术列为建设事业十一五期间一建筑节能与新能源开发利用技术领域重点推广技术。

2007,7,27 国家建设部鼓励建立可再生能源建筑应用产业化基地

随着我国可再生能源在建筑中的规模化应用,地源热泵的产能不能满足规模化应用的需求;加快培育可再生能源建筑应用的产业化基地成为当前紧迫而重要的任务。

为此,建设部决定在“十一五”期间,确定一批部级可再生能源建筑应用产业化基地,通过产业化基地的培育建设,以提高热泵机组的生产能力,并进一步形成相关政策法规、标准规范和技术、材料、产品体系。

2006,5,31 北京市发布《关于发展热泵系统的指导意见》

发展改革委、市规划委、市建委、市市政管委、市科委、市财政局、市水务局、市国土局和市环保局共同研究制订。6月颁布,7月1日实施。

水源热泵系统是利用低温热源进行供热制冷的新型能源利用方式,与使用煤、气、油等常规能源供热制冷方式相比,具有清洁、高效、节能的特点。该《意见》主要有以下四个方面的内容。

1)因地制宜,合理发展热泵系统;

2)支持鼓励热泵系统的建设和运营;

3)加强热泵系统管理,合理开发保护资源,促进热泵系统的有序发展,市各有关部门要加强热泵系统建设和运营管理;

4)进一步加强热泵发展规划和完善热泵技术、规范等基础工作。

其中第2条“支持鼓励热泵系统的建设和运营”中具体规定“鼓励新建或改造的办公楼、工业厂房、医院、宾馆、学校、大型商场、商务楼等公共建筑以及居民住宅楼和农村集中建设的住宅采用热泵系统,鼓励燃煤、燃油锅炉改用热泵系统,市政府每年安排固定资产投资给予支持。市、区(县)政府投资的学校、医院、园林、行政事业办公楼等公益性项目,供暖制冷系统优先选用热泵系统,所需投资从市政府固定资产投资中安排解决。其他在本市辖区内建设的各类项目,供热制冷系统选用热泵系统的,根据市规划委核定的建筑面积从北京市固定资产投资中安排一次性补助,补助标准为:地下(表)水源热泵35元/平方米,地源热泵和再生水源热泵50元/平方米。”

采用热泵系统的供暖企业参照我市清洁能源锅炉供暖价格收取采暖费,具体价格由各区(县)价格主管部门核定。

鼓励国内外企业在本市投资建立专业化能源公司,从事热泵系统的研发、建设、经营和服务,能源公司享受上述投资补助、价格等政策。

2006,9,29 国家建设部确定沈阳为水源热泵推广试点城市

2006.9.29 沈阳市出台《全面推广地源热泵系统建设和应用工作的实施意见》

从现在开始,我市将要全面推广地源热泵系统的建设和应用。到2007年底,计划完成应用面积1800万平方米;2008年、2009年,按照每年不少于1600万平方米的规模发展,2010年1500万平方米;至2010年底,计划全市实现地源热泵技术应用面积6500万平方米,占全市供热面积的32.5%。

为推广地源热泵技术,我市特别出台了五大扶持政策。一是降低运营成本。对采用地源热泵系统供热(制冷)的项目,系统用电按民用电价收取,缓收水资源费。二是给予资金支持。在科学利用国家建设部给予的专项资金的同时,市政府决定今后凡应用地源热泵技术供热的区域,均享受市政府给予应用燃煤供热区域的全部优惠政策。三是提供技术保证。市政府成立推进地源热泵系统建设和应用的技术专家咨询机构,提供技术保证。四是加强政务服务。市和区县(市)、开发区两级政府加强对利用地源热泵技术从事供热、制冷经营企业的服务,简化办事程序,实行特事特办、“一站式”服务,不断提高办事效率。五是培育产业发展。市政府将组织制定地源热泵系统设备及配套材料应用的行业标准,并施行市场准入制度,吸引和鼓励国内外地源热泵生产企业在我市投资建厂,强力推动地源热泵系统设备和配套材料的产业化建设。

2006,12.30 天津下发《地源热泵系统管理暂行规定》

各区县水务(水利)局、各有关单位:

为合理开发利用和保护地下水资源,促进地源热泵系统在我市健康有序发展,依据《中华人民共和国水法》、《取水许可和水资源费征收管理条例》及《天津市实施<中华人民共和国水法>办法》等法律法规,结合本市的实际情况,我局制定了《天津市地源热泵系

统管理暂行规定》(以下简称《规定》),经局长办公会议研究同意,现印发给你们,请遵照执行。同时,就加强地源热泵系统管理有关事项通知如下:

一、从本通知印发之日起,恢复对地源热泵项目取水的审批。

二、各区县水务(水利)局审批的地源热泵取水项目,必须经具有建设项目水资源论证资质的单位进行水资源论证,并经市水利局组织专家审查后,再行批复,批复后报我局备案。已经批复的项目请在2007年1月15日前将相关材料报市水利局备案。

三、各区县水务(水利)局及市有关单位应按《规定》要求加强地下水地源热泵项目凿井施工、验收及运行的日常监督管理,一旦发现采灌不平衡及水质恶化现象,立即采取措施。

四、论证资质单位应严格按照《规定》进行论证,承接地源热泵取水论证项目应符合《规定》的有关要求.

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

地源热泵行业相关政策

1997年~2002年 ■ 1997年11月8日,原国家科委与美国能源部在北京签署了中美两国《关于地热能源生产与应用的合作协议书》,决定在我国开始推广美国土-气(水)型地源热泵技术。 ■ 1998年11月4日,“中美两国《能源效率和可再生能源技术的发展利用领域合作议定书》工作小组第一次工作会议”在美国举行,会议通过了《中美两国政府合作推广美国地源热泵技术工作计划书》,中美两国政府地源热泵合作项目正式启动。 ■ 2002年4月23日,中美在北京签署了《中美两国地源热泵资助项目协议书》,大大加快了中美两国政府地源热泵合作项目的进程。 ■ 2002年12月19日,国土资源部发布《关于进一步加强地热矿泉水资源管理的通知》(国土资发[2002]414号)。通知指出,地热资源是宝贵的矿产资源,是重要的清洁能源之一,各级国土资源行政主管部门对此要有足够的认识,要加大地热资源的勘查评价力度,加强地热资源的开发和保护,严格地热井审批、施工和年审程序,开展地热开发利用示范项目和地热水回灌等新技术的研究推广工作,实现地热资源的可持续利用。 2005年 ■ 2005年2月28日,国家主席胡锦涛颁布33号主席令:2006年1月1日《中华人民共和国可再生能源法》开始正式实施。地热能的开发与利用被明确列入新能源所鼓励发展的范围。 ■ 2005年11月29日,国家发展和改革委员会制订并颁布了《中华人民共和国可再生能源产业发展指导目录》,“地热发电、地热供暖、地源热泵供暖或空调、地下热能储存系统”被列入重点发展项目;“地热井专用钻探设备、地热井泵、水源热泵机组、地热能系统设计、优化和测评软件、水的热源利用”等被列为地热利用领域重点推荐选用的设备。 2006年 ■ 2006年5月30日,财政部发布实施了《可再生能源发展专项资金管理暂行办法》(财建[2007]371号)。该办法明确提出,加强对可再生能源发展专项资金的管理,重点扶持燃料乙醇、生物柴油、太阳能、风能、地热能等的开发利用。其中第二章有关“扶持重点”第七条中提出“在建筑供热、采暖和制冷的可再生能源开发利用,重点支持太阳能、地热能等在建筑物中的推广应用。” ■ 2006年5月31日,由北京市发展和改革委员会、规划委、建委、市政管委、科

地源热泵的由来及国内地源热泵应用

“地源热泵”的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。 1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。 20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。直到20世纪70年代初世界上出现了第一次能源危机,它才开始受到重视,许多公司开始了地源热泵的研究、生产和安装。这一时期,欧洲建立了很多水平埋管式土壤源热泵,主要用于冬季供暖。虽然欧洲是世界上发展地源热泵最成熟的地区,但是它也曾因为热泵专家不懂安装技术,安装工人又不懂热泵原理等因素,致使地源热泵的发展走了一段弯路。 随着科技的进步,关于能源消耗和环境污染的法律制订越来越严格,地源热泵的发展迎来了它的另一次高潮。欧洲国家以瑞士、瑞典和奥地利等国家为代表,大力推广地源热泵供暖和制冷技术。政府采取了相应的补贴政策和保护政策,使得地源热泵生产和使用范围迅速扩大。上世纪80年代后期,地源热泵技术已经趋于成熟,更多的科学家致力于地下系统的研究,努力提高热吸收和热传导效率,同时越来越重视环境的影响问题。地源热泵生产呈现逐年上升趋势,瑞士和瑞典的年递增率超过10%。美国的地源热泵生产和推广速度很快,技术产生了飞速的发展,成为世界上地源热泵生产和使用的头号大国。 从地源热泵应用情况来看,北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况对我国地源热泵的发展有着借鉴意义。 2005年美国商务部和密苏里大学在北京成立的环境和能源技术联合办公室(ETO),将国际地源热泵协会在中国的工作纳入其计划之中。 国内地源热泵应用 地源热泵系统,是冬供热夏制冷的好东西。他山之石,可以攻玉,了解一下我国地源热泵的发展及现状,可为推广技术借鉴。 中国早在50年代,就曾在上海、天津等地尝试采用夏取冬灌的方式抽取地下水制冷。天津大学热能研究所吕灿仁教授在1965年研制成功国内第一台水冷式热泵空调机。1997年,中国科技部与美国能源部签署了中美能源效率及可再生能源合作议定书,其中一项就是地源热泵的发展战略。1998年,中美两国确定在我国北京(代表北部寒冷地带)、宁波(代表中部夏热冬冷地带)、广州(代表南部亚热带),合作建立三个地源热泵的示范工程。北部示范工程是北京食品发酵研究所综合办公楼及专家楼,中部示范工程是宁波雅戈尔工业城,南部示范工程是广州松田职业技术学院。在这三个示范工程项目中,两个为地下水源热泵系统,一个为复合式地下水源热泵系统。 土壤源热泵的发展主要是从1998年开始。国内数家大学建立了土壤源热泵实验台,且大多数进行了地下换热器与地面热泵设备的长期联合运行。土壤源热泵系统最早应用在89年10月投入运行的上海闵行开发区办公楼,其技术和设备均由美国提供,使用情况良好。目前,国内的清华大学、天津大学、重庆大学、天津商学院、山东建工学院、中国科学院广州能源研究所等多家大学和研究机构都在对水源热泵进行研究,其中清华大学经过多年在多工况水源热泵的研究已经形成产业化的成果。 我国地源热泵的开发利用起步较晚,20世纪90年代开始推广和研究地源热泵系统。主要用于建筑物冬季供暖和夏季制冷。从2000年以来,地源热泵的开发利用在全国得到普遍推广,每年以10-15%的速度增长。京津地区发展速度最快。据中国地质调查局的资料显示,至2005年末,浅层地温能应用面积约2000万平方米。2005年以来,中国水源热泵的应用明显加快,由于这项技术比较成熟,在中国将进入大规模推广应用阶段。 北京是我国地源热泵技术推广较好的城市,主要原因是近年来,北京市根据城市能源发

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

关于地源热泵技术国家和地方鼓励政策

关于地源热泵技术国家和地方鼓励政策 2006,8,28 国家财政部、建设部发布 《建设部、财政部关于推进可再生能源在建筑中应用的实施意见》 2006,9,4 发布《可再生能源建筑应用示范项目评审办法》 《可再生能源建筑应用专项资金管理暂行办法》 专项资金支持的重点领域包括:利用土壤源热泵和浅层地下水源热泵技术供热制冷;地表水丰富地区利用淡水源热泵技术供热制冷;沿海地区利用海水源热泵技术供热制冷;利用污水源热泵技术供热制冷。 专项资金使用范围:示范项目的补助;示范项目综合能效检测、标识,技术规范标准的验证及完善等;可再生能源建筑应用共性关键技术的集成及示范推广;示范项目专家咨询、评审、监督管理等支出;财政部批准的与可再生能源建筑应用相关的其他支出。 2006.12.28 国家建设部发布《建设事业“十一五”重点推广技术领域》的通知“(建科[2006]315号) 通知中将水源地源热泵技术列为建设事业十一五期间一建筑节能与新能源开发利用技术领域重点推广技术。 2007,7,27 国家建设部鼓励建立可再生能源建筑应用产业化基地 随着我国可再生能源在建筑中的规模化应用,地源热泵的产能不能满足规模化应用的需求;加快培育可再生能源建筑应用的产业化基地成为当前紧迫而重要的任务。 为此,建设部决定在“十一五”期间,确定一批部级可再生能源建筑应用产业化基地,通过产业化基地的培育建设,以提高热泵机组的生产能力,并进一步形成相关政策法规、标准规范和技术、材料、产品体系。 2006,5,31 北京市发布《关于发展热泵系统的指导意见》 发展改革委、市规划委、市建委、市市政管委、市科委、市财政局、市水务局、市国土局和市环保局共同研究制订。6月颁布,7月1日实施。 水源热泵系统是利用低温热源进行供热制冷的新型能源利用方式,与使用煤、气、油等常规能源供热制冷方式相比,具有清洁、高效、节能的特点。该《意见》主要有以下四个方面的内容。 1)因地制宜,合理发展热泵系统; 2)支持鼓励热泵系统的建设和运营;

地源热泵空调系统使用手册

地源热泵空调系统使用手册 及 日常维护 湖南省第三建筑工程有限公司

目录 第一部分日常注意事项及维护步骤 (3) 一、技术分析 (3) (一)、地源热泵机组使用注意事项及日常维护 (4) 1、日常检查及保养周期 (4) 2、主机系统保养时常见故障和排除方法 (6) 3、地源热泵主机使用说明 (8) (二)、风机盘管的日常维护 (9) (三)、组合式空调机组的日常维护 (12) (四)、循环水泵的日常维护 (15) (五)、加湿器的日常维护 (16) 第二部分、空调运行记录表 (17) 1、地源热泵机组运行记录表 (17) 2、循环水泵运行记录表 (18) 3、系统运行启停时间记录表 (19) 4、风机盘管系统运行记录表 ......................... 错误!未定义书签。 5、新风机运行记录表 (20)

第一部分日常注意事项及维护步骤 一、技术分析 中央空调系统日常运行时、外部系统影响及使用质量等方面工作因素,其系统内部循环系统、传热系统、控制系统、运转部件、气密性元件等可能或多或少会发生一些偏差或改变。此时,使用时日常保养工作显得尤为重要,如系统不能得到及时的调整、清洗和处理,轻者可能造成设备或部件无法最佳工作,严重的将导致系统运行可靠性与使用寿命受到影响,并引起设备故障率与系统运行能耗的增加。 主要表现在以下几个方面: (一):地源热泵机组使用注意事项及日常维护 (二):风机盘管的日常维护 (三):组合式空调机组的日常维护 (四):循环水泵的日常维护 (五):加湿器的日常维护

(一)、地源热泵机组使用注意事项及日常维护1、日常检查及保养周期 1.1、日常检查项目表

地源热泵技术简单介绍.

地源热泵 地源热泵的利用是国土资源部大力推广的一种新型环保、节能技术,具有再生、清洁、安全、高效的特点。 地源热泵系统的利用分地埋管地热源系统、地下水地热源系统和地表水地热源系统。 量转移到建筑物内 , 一个年度形成一个冷热循环 . 是最具有发展前景的一种形式。但对于该项技术的使用,受限制较多(需要当地土地资源部门对当地土地资源的评估、批准 ,而且其初步的投资较高。 2. 地表水地热源系统,即污水源热源系统。城市污水来源广泛,汇流面积大,污水原水流量具有小时变化规律明确、日流量相对稳定、随着城市规模的扩大而呈逐年递增的趋势。利用污水热泵空调系统不仅可以使污水资源化,更是改善我国供暖以煤为主的能源消费结构现状的有效途径。城市污水有三种形式:原生污水、二级再生水和中水。原生污水是指未经过任何物理手段处理的污水。运用原生污水源热泵空调系统相比于二级再生水和中水热泵空调系统的初投资及运行费用低。城市污水温度变化幅度较小,与环境温度相比,表现为冬暖夏凉,污水温度在冬季通常为13℃ ~17℃,在夏季为 22℃ ~25℃与河水及空气相比较,城市污水在温度在冬季最高、夏季最低,全年波动最小。污水的温度在城市可以利用的热能中是最多的。而且在能量消费密度越高的城市中其蕴藏的热量也越大。虽然污水的热赋存量很大,却不适用于产生动力,仅适用于 50℃一下的低温用户。

由于城市污水具有比较稳定的流量和适宜的温度, 污水源热泵系统能够高效稳定、安全可靠的运行, 可使夏季室温保持在 21℃ ~26℃, 冬季可达 18℃ ~24℃ . 城市污水热源泵,容易安装。一套设备可以实现夏季供冷、冬季供热,设备利用率高,总投资额为传统空调的 60%。 该技术已在北京、秦皇岛、哈尔滨等地开始运用。 下面是污水热源泵系统原理图: 但该项技术对于污水的需求量非常大,受水资源的限制。 3. 地下水热源系统(水源热泵常常被人们赞誉为“绿色空调” 。水源热泵就是以地下水作为冷热 " 源体 " ,在冬季利用热泵吸收其热量向建筑物供暖,在夏季热泵将吸收到的热量向其排放、实现对建筑物供冷。传统的暖通空调系统需要很多辅助系统或设备来完成一个完整的暖通空调功能,如冷却塔。而水源热泵系统只是通过与地下水的热交换来完成制冷或制热的效果。只应用一个硬件系统, 通过在不同季节进行冷凝器和蒸发器的转换,就可以完成制冷与制热功能的转换。该向技术已在我市部分楼盘开始使用。

关于地源热泵技术的毕业论文开题报告

关于地源热泵技术的毕业论文开题报告 一、选题的依据及意义: 1.依据: 进入90年代后,我国的居住环境和工业生产环境都已广泛地应用 热水供应装置,热水供应装置已成为现代学校居住必备。90年代中期,由于大中城市电力供应紧张,供电部门开始重视需求管理及削峰填谷,热泵供热技术提到了议事日程。近年来,由于能源结构的变化,促进 了地源热泵供热机组的快速发展。 随着生产和科技的不断发展,人类对地源热泵供热技术也进行了一 系列的改进,同时也在积极研究环保、节能的地源热泵供热产品和技术,现在利用成熟的电子技术来进行综合的控制,并和太阳能结合更注意 能源的综合利用、节能、保护环境及趋向自然的舒适环境必然是今后 发展的主题。 2.意义: 地源热泵技术,是利用地下的土壤、地表水、地下水温相对稳定 的特性,,通过消耗电能,在冬天把低位热源中的热量转移到需要供热 或加温的地方,在夏天还可以将室内的余热转移到低位热源中,达到降 温或制冷的目的。地源热泵不需要人工的冷热源,可以取代锅炉或市政 管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地 下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。通常根据热泵的热源(heatsource)和热汇(heatsink)(冷源)的不同,主要分成三类:空气源热泵系统(air-sourceheatpump)ashp 水源热泵系统(water-sourceheatpump)wshp 地源热泵系统(ground-sourceheatpump)gshp 平时还有人把热泵系统按照一次和二次介质的不同,分别叫做: 空气---水热泵系统 水---空气热泵系统

地源热泵技术文件

辛集市阳光壹号翡翠园住宅小区 建筑能耗监测 审查:XXX 校对:XXX 设计:XXX 2011年06月09日

1.设计依据 1.1《过程检测及控制流程图图形符号和文字代号》GB2625-81 1.2《民用建筑电气设计规范》JGJ16 -2008 1.3《财政部、建设部关于加强可再生能源建筑应用示范管理的通知》(财建[2007]38号) 1.4《关于加快开展可再生能源建筑应用示范项目验收评估工作的通知》(财办建[2009]116号) 2.概述 地源热泵技术是一种利用浅层常温土壤或地下水中的能量作为能源的高效节能、零污染、低运行成本的既可供暖又可制冷并能提供生活热水的新型热泵技术。热泵是一种从低温热源汲取能量,使其转换成有用热能的装置。 系统由水循环系统、热交换器、地源热泵机组和控制系统组成。冬季代替锅炉从土壤中取出热量,以30-40℃左右的热风向建筑物供暖,夏季代替普通空调向土壤排热,以10—17℃左右的冷风形式给建筑物制冷。同时,它还能供应生活热水。它的最大优点是节能、无污染和运行费用低、空气质量高。它不向外界排放任何废气、废水、废渣,是一种的理想的“绿色技术”。从能源角度来说,它是一种用之不尽的可再生能源。 先进的自动化技术在可再生能源建筑应用中已广泛使用,并发挥出显著的技术经济效益。在系统控制过程中,通过对水泵、热泵、机组以及水流流量的控制和监测,使系统达到最大程度的高效和节能。 3.监控系统构成 根据本工程的实际情况及工艺要求,监控系统设计采用分布式计算机监控系统。系统由中心监控计算机和现场控制分站组成,采用以太网及现场控制总线相结合的通讯网络。同时中心监控计算机预留与物业管理网络衔接的通讯接口。设置中央控制室,中央控制室内设置中央监控计算机、打印机、投影仪等设备。 由可编程序控制器及自动化仪表组成检测控制系统---现场控制站,对各工艺过程进行分散控制;再由中央控制室,对全系统实行集中管理。分控站与中央控制室之间由以太网进行数据通信。

地源热泵技术原理及其优缺点

地源热泵技术介绍 一、什么是热泵 热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出可用的高品位热能的设备,可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。热泵技术在空调领域的应用可分为空气源热泵、水源热泵以及地源热泵三类。由于热泵是提取自然界中能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已经在全世界范围内受到广泛关注和重视。 二、什么是地源热泵 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 三、地源热泵的结构 地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 四、地源热泵的基础原理 地源热泵原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。 1、地源热泵制热原理 地源热泵系统在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进

行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器(风机盘管),以13℃以下的冷风的形式为房供冷。 2、地源热泵制冷原理 地源热泵系统在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过四通阀将冷媒流动方向换向。由室外地能换热系统吸收地下水或土壤里的热量,通过水源热泵机组系统内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/空气热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下的热量不断转移至室内的过程中,以室内采暖空调末端系统向室内供暖。

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

国家关于地源热泵出台的相关政策和标准

国家关于地源热泵出台的相关政策和标准 《中华人民共和国可再生能源法》2006年1月1日 可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。 ⒈《建筑节能管理条例》 ⒉2004年国家发展和改革委员会发布了中国第一个《节能中长期专项规划》:加快太阳能、地热等可再生能源在建筑物的利用。 ⒊2006年8月,国务院发布了《关于加强节能工作的决定》:大力发展风能、太阳能、生物质能、地热能、水能等可再生能源和替代能源。 最新颁布的《中国应对气候变化国家方案》:积极扶持风能、太阳能、地热能、海洋能等的开发和利用。积极推进地热能和海洋能的开发利用,推广满足环境和水资源保护要求的地热供暖、供热水和地源热泵技术. ⒋《关于进一步加强中央国家机关节能减排工作的通知》:实施地热源、水源、空气源热泵技术试点示范工程,积极推广空调和采暖系统变频调速技术、空气热回收技术等新技术的应用,扩大太阳能等新能源的使用范围。 财政部建设部印发《可再生能源建筑应用示范项目评审办法》 ⒌财政部建设部印发《可再生能源建筑应用专项资金管理暂行办法》 ⒍<建设部、财政部关于推进可再生能源在建筑中应用的实施意见> ,重点支持领域:一共8个领域,与地源热泵有关系的有4个. ⑴地表水及地下水丰富地区利用淡水源热泵技术供热制冷; ⑵沿海地区利用海水源热泵技术供热制冷; ⑶利用土壤源热泵技术供热制冷; ⑷利用污水源热泵技术供热制冷; 在《可再生能源法》的颁布之后,可再生能源利用将成为一个新的亮点,我国很快将成为世界上可再生能源利用第一大国。地源热泵技术将成为利用可再生能源的一个主力军,它已经在全国城市级区域逐渐推广应用,必将成为我国城市经济发展中的一个新的增长点;不过,地源热泵的广泛应用,还需要更多的各个专业各个领域的人来共同努力共同配合,从政府政策、主机设计制造、系统的设计和运行管理等各个方面都来共同参与。只有这样,地源热泵才能最大限度的发挥其作用。 可以预计中国的地源热泵市场前景广阔。之所以对中国的地源热泵市场发展前景持乐观态度,一方面是为社会节约常规能源、充分利用可再生能源的国内外大趋势;另一方面,我国具有较好的热泵科研与应用的基础,国内多家科研院所等单位曾多次召开全国性的有关地

地源热泵的研究与应用

地源热泵的研究与应用 重庆大学 李保群 康侍民 段凯 摘 要:本文介绍了地源热泵的工作原理和基本类型; 比较了地源热泵与普通空调系统的特点,得出地源热泵在技术上和经济上具有明显优势的结论。介绍了地源热泵技术在工程中的应用,分析了地源热泵在中国的发展前景。关键词:地源热泵 应用 展望 Abstract:The development of ground-source heat pump ( GSHP) at home and abroad is briefly introduced. The working principle and fundamental types are discussed here. With the comparison between the GSHP and common airconditioner, the apparent advantages in technology and economics for the GSHP are presented. The development of ground-source heat pump’s application in engineering were introduced. Good prospect of development and utilization of ground-source heat pump technology in China was brought forword. Keywords: ground-source heat pump, application, prospect。 1 热泵 1.1 热泵就是通过制冷循环使热量从温度低的介质流向温度高的介质的装置。根据供热时所采用的低品位热源分类,热泵可分为:空气源热泵、水源热泵和地源热泵。其中,地源热泵包括地下水源热泵和地下土壤源热泵。 地源热泵技术是利用地下的土壤、地表水、地下水温相对稳定的特性,通过消耗电能,在冬天把低位热源中的热量转移到需要供热或加温的地方,在夏天还可以将室内的余热转移到低位热源中,达到降温或制冷的目的。地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它向土壤、地下水或者地表水放热,达到给建筑物降温的目的。同时,它还可供应生活用水,可谓一举三得,是一种有效利用能源的方式。 地源热泵(Ground Source Heat Pumps ,GSHP)系统包括三种不同的系统:以利用土壤作为冷热源的土壤源热泵,又称为地下耦合热泵系统( Ground-coupled heat pump systems)或者地下热交换器热泵系统(Ground heat exchanger);以利用地下水为冷热源的地下水热泵系统( Ground water heat pumps);以利用地表水为冷热源的地表水热泵系统( Surface-water heat pumps)。 1.2 土壤源热泵[1]

地源热泵分析及造价

地源热泵工程造价分析众所周知,地源热泵是一种利用浅层和深层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。 抽取地下水的水源热泵,由于技术限制,全部回灌不易做到,监督实施也比较困难,而且容易造成地下水污染。 在国外目前大面积推广使用的是埋管式地源热泵技术,是充分利用浅层地热的最佳技术途径。在我国,建设部和一些省市的建筑节能政策中明确提出要推广使用埋管式地源热泵。 水源热泵系统的存在的困感: 1、回灌困难,许多水源热泵工程难以回灌,只能将大量地下水排向市政排水管道。一般 来说回灌井与抽水井回灌比超过3,都不适合水源热泵工程。 2、容易污染地下水资源

机组内工质一旦泄漏,将对地下水造成难以挽救化学污染;其次,不能严格做到同层回灌,造成不同地下层地下水的混合,使得优质地下水层的水质受到污染。 3、取水井长时间取水后,易出现水量不足。主要原因是取水井被细沙堵塞,运行期间每 隔一段时间就需要洗井,而且洗井费用较高,长期来看,系统运行费用较高。另外一个原因就是地下水位的下降,很多地区的地下水位每年都在下降。 4、抽水井、回水井之间互相影响。 很多项目根本不具备采用水源热泵,项目硬上,水井之间距离过近,造成抽水温度接近于回水温度,热源温度越来越差,机组能效比降低。 5、水源热泵工程中,潜水泵扬程都较大,一般都在80米以上,甚至更高,系统耗电量 大。而且潜水泵一旦损坏,维修困难。 地源热泵系统一般情况下的造价 不同土质地源井造价对比表(成井深度80m) 土质钻井单价钻井De32双U型管双U型头单井造价单位井深换热量换热量成本 单位 元/m元元元/个元W/m元/W 沙土30 24001408130393835 1.41 黄土45 36001408130513835 1.84 风化岩100 80001408130953840 2.98说明:一般,沙土地质地源井造价在20~30元/m之间,黄土地质造价在30~45元/m之间,风化岩地质造价在80~100元/m之间,混合地质类型约为85元/m。(各地地质情况、环境不同,仅供参考)。 以10000m2办公楼为例估算地埋管系统造价(仅供参考) 土质类型单井 造价 所需地下提热 量 所需井数 地埋管井 总价 水平管及附件安装合价平米造价 单位 元个个元元元元元/平米 沙土 39385251877364062350351055601077001108 黄土 51385251879608062350351055601301401130 风化岩 1153852518721576062350351055602498201250 说明:热负荷指标按70W/m2,冷负荷指标按100W/m2;地源井冬季单位井深提热量按35 W/m,夏季地源井单位井深散热量按70W/m计算。 土壤源热泵系统与基础设计 土壤源系统是一种利用地下浅层土壤资源的热能,既可供热又可制冷的高效节能系统。土壤源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热

国家最新热泵节能补贴政策汇总

国家最新热泵节能补贴政策汇总 1、2015年1月1日起,正式施行新版《绿色建筑评价标准》: 《标准》采用分项打分的方式,总分达到45-50分是一星级,60分是二星级,80分是三星级,创新类绿色建筑项目将在评价中得到额外加分。 2、国家发展改革委办公厅2015年2月印发《低碳社区试点建设指南》: 在有条件的社区,优先推广分布式能源和地热、太阳能、风能、生物质能等可 再生能源。 推广利用新设备新技术。鼓励在社区改造中选用冷热电三联供、地源热泵、太 阳能光伏并网发电技术,鼓励安装太阳能热水装置,实施阳光屋顶、阳光校园 等工程。在供热系统节能改造中,鼓励采用余热回收、风机水泵变频、气候补 偿等技术,推广新型高效燃煤炉具。 3、住房城乡建设部2015年2月印发《绿色工业建筑评价技术细则》: 工业建筑建筑规划设计阶段,可再生能源利用占暖通空调能耗的70%以上,分值1.1;利用可再生能源供应的生活热水不低于生活热水总量的10%,分值 0.6;空气源热泵供热量占空调供热量或生活热水供热量不低于30%,分值0.6.在全面评价阶段,可再生能源利用占暖通空调能耗的70%以上,分值1.1;利 用可再生能源供应的生活热水不低于生活热水总量的50%,分值0.8;空气源 热泵供热量占空调供热量或生活热水供热量不低30%,分值0.6.

4、国务院办公厅2015年3月印发《国务院办公厅关于加强节能标准化工作 的意见》: 在能源领域,重点制定煤炭清洁高效利用相关技术标准,加强天然气、新能源、可再生能源标准制修订工作。在建筑领域,完善绿色建筑与建筑节能设计、施 工验收和评价标准,修订建筑照明设计标准,建立绿色建材标准体系。 选择具有示范作用和辐射效应的园区或重点用能企业,建设节能标准化示范项目,推广低温余热发电、吸收式热泵供暖、冰蓄冷、高效电机及电机系统等先 进节能技术、设备,提升企业能源利用效率。 5、国务院2015年4月印发《中共中央国务院关于加快推进生态文明建设的 意见》: 实施节能环保产业重大技术装备产业化工程,规划建设产业化示范基地,规范 节能环保市场发展,多渠道引导社会资金投入,形成新的支柱产业。加快核电、风电、太阳能光伏发电等新材料、新装备的研发和推广,推进生物质发电、生 物质能源、沼气、地热、浅层地温能、海洋能等应用,发展分布式能源,建设 智能电网,完善运行管理体系。 6、国家发展改革委2015年4月印发《2015年循环经济推进计划》: 推进建筑节能降碳,在政府投资的公益性建筑和大型公共建筑的基础上,进一 步扩大绿色建筑标准强制执行范围。提出城镇建筑能效标准提升路线图,完善 分地区、分类型的建筑能效指标体系及节能量核算办法,推动建立覆盖全国的

地源热泵技术方案

地源热泵系统工程 技术方案 一、项目介绍

1、工程概况 本工程为。总用地15322.46㎡。 本项目总建筑面积约为,包括,旧楼。空调系统需满足建筑物冷、热负荷要求。 2、设计依据 2.1 参考资料 《建筑给水排水设计规范》GB 50015-2003(2009) 《采暖通风与空气调节设计规范》GB 50019-2003 《高层民用建筑设计防火规范》GB 50045-95(2005年版) 《公共建筑节能设计标准》GB 50189-2005 《公共建筑节能设计标准》DB13(J)81-2009 2.2 设计参数 采用负荷指标法估算建筑物的冷、热负荷: 夏季冷指标为94.5w/㎡,冷负荷为3130.82kw; 冬季热指标为81.7 w/㎡,热负荷为2706.75kw。 二、设计方案描述 1、设计思路 本项目埋孔面积有限,土壤换热器的数量仅能满足部分建筑物冷热需求,所以空调系统采用地源热泵+户式空调的组合方式,新增建筑的七层以下(含七层)及原有培训楼(旧楼)采用地源热泵系统,新增建筑的八层以上(含八层)采用户式空调。地源热泵系统采用集中温控系统实现自动控制。 2、热泵主机配置描述 本方案配置2台美国美意公司生产的 MWH2800CC型地水源热泵机组。 MWH2800CC型地水源热泵机组是以地能即 地下水(井水、地埋管或其他地表水)为主要能源辅以 电能,通过先进的设备将地下取之不竭但不易利用的 低品位再生能源开发利用,使其变为高品位能源。

MWH2800CC型地水源热泵机组的性能参数如下:

3、室外地埋孔描述 目前普遍采用的有垂直埋管和水平埋管两种基本的配置形式。 水平埋管是在浅层土壤中挖沟渠,将PE管水平的埋置于沟渠中,并填埋的施工工艺。水平埋管占地面积较垂直埋管大,效率较垂直埋管低。 垂直埋管是在地层中垂直钻孔,然后将地下热交换器(PE管)以一定的方式置于孔中,并在孔中注入填充材料的施工工艺。 地下热交换器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。本方案采用垂直埋管的型式。 根据本项目地源热泵空调系统设计负荷,经过计算得土壤换热器总延米数为42000m,单位土壤换热器孔深选100m,则需要布置土壤换热器的数量为420个,孔径φ220mm。换热孔间距4×4m,若单孔占地面积平均以16㎡计,孔位分布总面积为6557㎡ 室外埋管采用高密度聚乙烯(PE100)塑料管,采用进口原料。垂直管采用抗压1.6MPa,SDR11 D32的PE100塑料管,单U下管。室外水平管采用抗压1.0MPa,SDR17的PE100塑料管。 室外地埋管为隐蔽工程,使用寿命50年以上,地埋管的管材、管件的选择与土壤热泵系统的使用效果、寿命等密切相关。多年来我公司致力于土壤源热泵技术的发展,在地下埋管方面做了许多研发工作,并在国家《土壤源热泵系统工程技术规范》GB 50366-2005中得以体现。 4、软化水系统描述 空调系统末端循环水侧由于要经常运行,同时要适应冷、热两种工况,必须进行软化处理,选用全自动软化水器制取软化水共空调系统末端侧循环系统使用。 5、水泵描述 本方案水泵采用了上海凯泉泵业(集团)有限公司生产的KQL、KQDP 系列水泵。该系列水泵用电机直接连接,振动小、噪音低;电机采用Y2型电机,防护等级IP54全封闭结构,防止粉尘、飞雨、飞溅水滴等进入电机内部,造成电机损坏;F级绝缘,提高了电机使用的最高允许温升,因而抗过载能力高,

地源热泵设计方案及运行费用分析实例

地源热泵设计方案及运行费用分析实例 时间:2006-2-19 9:24:58 作者:天津大学机械工程学院热能工程系朱强汪健生 浏览次数:4666 摘要:本文对津晋高速公路津港收费站地源热泵系统的设计进行了分析与计算,并对系统的实际运行费用进行了分析。与以空气作为热源的一般空调器在相同的供热、供冷负荷下运行相比,地源热泵系统具有显著的节能效果。 关键词:热泵供热制冷 引言 地源热泵作为热泵技术应用的一个新的分支,由于其节能和优越的环保性能,近年来正在得到广泛的应用。地源热泵是利用土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用;在冬季供热时,热泵系统通过预埋在地下的管道将储存在地下的热通过传热介质吸收,作为逆循环中的低温热源,由热泵完成逆循环并向热用户提供热量;在夏季供冷时,利用地下环境温度较低的特点使制冷系统中的冷凝温度降低,从而提高系统的制冷系数,与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。由于地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。因此,如不考虑电能的来源,地源热泵系统是城市供热及供冷的一种清洁能源,它不需要建立一般城市供热所需的锅炉房,同样也不存在由于燃料燃烧(燃煤、燃油)而带来的城市环境污染问题,可以实现冷热联供。此外,在实际使用中,对于一些受客观条件限制而无法采用其他供热、供冷方式的场所,如高速公路收费站、人员设备相对较少的科考站、边防哨所,地源热泵则更体现出其特有的优越性;基于以上特点,本文对津港高速公路收费站地源热泵系统的设计及实际运行效果进行了系统分析。 一、地源热泵系统负荷计算 1.1 热泵系统负荷计算 津晋高速公路天津段自天津起至大港,全长35公里,建有三个收费站。津港收费站包括综合楼、综合楼附属用房及7个收费亭。其中综合楼建筑面积为744m2;综合楼附属餐厅为80m2;7个收费亭合计建筑面积47m2;津港收费站合计总建筑面积为871m2。 根据天津气候条件及收费站建筑物的土建围护结构,本设计采用了ASHRAE推荐提供的CLF冷负 荷系数法计算收费站建筑负荷;地源热泵系统在制冷工况时,蒸发器温度为7~12℃,冷凝器温度为30~35℃,室内温度25℃。其中收费站综合楼和附属用房的供冷负荷为120W/m2,收费亭供冷负荷 为220W/m2。据此,津港收费站供冷最大负荷合计为113 KW,津港收费站埋地换热器放热最大负荷 合计为146 KW。 热负荷计算,本设计采用了ASHRAE推荐提供的方法计算收费站建筑热负荷,地源热泵系统在制 热工况时,冷凝器温度为45~50℃,蒸发器温度为2~6℃,室内温度为18℃。其中收费站综合楼和附属用房的供热负荷为100w/m2,收费亭供负荷为120 W/m2。由此可以计算出津港收费站最大供 热负荷为92KW。 1.2 室内末端系统设计

相关主题
文本预览
相关文档 最新文档