高中数学必修3提纲(教师版)
- 格式:doc
- 大小:1004.50 KB
- 文档页数:14
高中数学必修三3.2教案
教学重点:椭圆的定义和性质,三要素、离心率和焦点等相关理论知识的掌握。
教学难点:椭圆方程的转化和应用、椭圆的综合应用、以及解答椭圆相关问题的思维能力。
教学准备:教学课件、教学实验装置、教学实验设备、课堂习题
教学过程:
一、导入:通过提问和展示图片等形式引导学生了解椭圆的概念和性质。
二、讲解:介绍椭圆的定义、三要素、离心率、焦点等椭圆的基本概念和性质,以及相关
定理。
三、实验:通过实验装置演示椭圆的性质和形状,帮助学生更直观地理解椭圆的特点。
四、练习:设计一些练习题,让学生灵活运用椭圆的相关知识进行计算和分析,加深对椭
圆的理解。
五、讨论:组织学生进行小组讨论,分享解题思路和方法,探讨解答椭圆问题的多种可能性。
六、总结:总结本节课的内容,强调椭圆的重要性和应用价值,激发学生学习兴趣。
七、作业:布置相关练习作业,巩固学生对椭圆的理解和掌握。
教学反思:本节课通过多种形式和方法引导学生深入了解椭圆的相关知识,激发学生学习
兴趣和解题能力,提高了学生数学素养和应用能力。
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
第一章 算法初步1.1 算法与程序框图 1.1.1 算法的概念授课时间:第 周 年 月 日(星期 )教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?(2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i 表示2—(n-1)中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n,得到余数r.判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i 除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i 表示. 第五步,判断“i >(n-1)”是否成立.若是,则n 是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x 2-2=0 (x>0)的近似解的算法.分析:令f(x)=x 2-2,则方程x 2-2=0 (x>0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b ](满足f(a)·f(b)<0)“一分为二”,得到[a,m ]和[m,b ].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m ]或[m,b ],仍记为[a,b ].对所得的区间[a,b ]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表..实际上,上述步骤也是求2的近似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.强调:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.1.1.2 程序框图与算法的基本逻辑结构整体设计授课时间:第周年月日(星期)三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起. 图形符号名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分. 三种逻辑结构可以用如下程序框图表示:顺序结构 条件结构 循环结构 应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式) 算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7, 求a 2的值. 解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 年份 2004 2005 2006 2007 2008 钢琴的价格10 00010 30010 60910 927.2711 255.09程序框图如下: 强调:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如上给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax 2+bx+c=0的算法,并画出程序框图表示. 算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等的实数根 x 1=ab 2∆+-,x 2=a b 2∆--;若Δ=0,则原方程有两个相等的实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x 1和x 2之前,先计算p=ab2-,q=a 2∆.解决这一问题的算法步骤如下: 第一步,输入3个系数a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2.程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0是否有实数根,并画出相应的程序框图. 解:算法步骤如下:第一步,输入3个系数:a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法. 相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式Δ=b 2-4ac 的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图. 解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下: (1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解; (3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法. 程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作. 知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图. 解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束. 第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束. 程序框图如右:例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试画出计算费用f 的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f 的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图: 拓展提升有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15—25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x ,y),求其与市中心的距离r=22y x +,确定是市区、近郊区,还是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下: 课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题. 作业习题1.1A 组3.3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P 时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.。
§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。
正态分布一正态曲线及其性质1.我们称f(x)=()2221e2xμσσ--π,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.2.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.3.若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.4.正态曲线的特点:(1)非负性:对∀x∈R,f(x)>0,它的图象在x轴的上方.(2)定值性:曲线与x轴之间的面积为1.(3)对称性:曲线是单峰的,它关于直线x=μ对称.(4)最大值:曲线在x=μ处达到峰值1σ2π.(5)当|x|无限增大时,曲线无限接近x轴.(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.(7)当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.5.正态分布的几何意义:若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.二利用正态分布的性质求概率正态总体在三个特殊区间内取值的概率值P(μ-σ≤X≤μ+σ)≈0.682_7;P(μ-2σ≤X≤μ+2σ)≈0.954_5;P(u-3σ≤X≤μ+3σ)≈0.997_3.三正态分布的应用解题时,应当注意零件尺寸应落在[μ-3σ,μ+3σ]之内,否则可以认为该批产品不合格.判断的根据是小概率事件在一次试验中几乎是不可能发生的,而一旦发生了,就可以认为这批产品不合格.考点一 正态分布的特征【例1】(1)(2021·黑龙江鹤岗市·鹤岗一中高二期末(理))若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3(2)(2021·黄石市有色第一中学高二期末)设随机变量ξ服从正态分布()4,3N ,若()()51P a P a ξξ<-=>+,则实数a 等于( )A .7B .6C .5D .4【答案】(1)A(2)B【解析】(1)由于随机变量()23,X N σ,则()()15P X P X <=>, 因此,()()()()151********.20.6P X P X P X P X ≤≤=-<->=->=-⨯=.故选:A.(2)∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a ﹣5)=P(ξ>a+1),∴x=a ﹣5与x=a+1关于x=4对称,∴a ﹣5+a+1=8,∴2a=12,∴a=6,故选:B .【练1】(2021·江苏常州市·高三期末)设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=( )附:若()2,N ξμσ,则()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈.A .0.1587B .0.1359C .0.2718D .0.3413【答案】B 【解析】函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根,44()0ξ∴∆=--<,1ξ∴<-, 又()22f x x x ξ=+-没有零点的概率是0.5,(1)0.5P ξ∴<-=,由正态曲线的对称性知:1μ=-,()1,1N ξ∴-,1,1μσ∴=-=,2,0,23,21μσμσμσμσ∴-=-+=-=-+=,(20)0.6826P ξ∴-<<=,(31)0.9544P ξ-<<=,[][]11(01)(31)(20)0.95440.68260.135922P P P ξξξ∴<≤=-<<--<<=-=, 故选:B.考点二 正态分布的实际应用【例2】(2021·安徽池州市)2020年新冠疫情以来,医用口罩成为防疫的必需品.根据国家质量监督检验标准,过滤率是生产医用口罩的重要参考标准,对于直径小于5微米的颗粒的过滤率必须大于90%.为了监控某条医用口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个医用口置,检测其过滤率,依据长期生产经验,可以认为这条生产线正常状态下生产的医用口罩的过滤率Z 服从正态分布()2,N μσ.假设生产状态正常,生产出的每个口罩彼此独立.记X 表示一天内抽取10个口罩中过滤率小于或等于3μσ-的数量.(1)求()1P X ≥的概率;(2)求X 的数学期望()E X ;(3)一天内抽检的口罩中,如果出现了过滤率Z 小于3μσ-的口罩,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修,试问这种监控生产过程的方法合理吗?附:若随机变量()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=,()330.9974P Z μσμσ-<≤+=,100.99870.9871≈.【答案】(1)0.0129;(2)0.013;(3)这种监控生产过程的方法合理.【解析】(1)抽取口罩中过滤率在(]3,3μσμσ-+内的概率()330.9974P Z μσμσ-<≤+=,所以()10.997430.00132P Z μσ-≤-==, 所以()310.00130.9987P Z μσ>-=-=,故()()1011010.998710.98710.0129P X P X ≥=-==-=-=(2)由题意可知()~10,0.0013X B ,所以()100.00130.013E X =⨯=.(3)如果按照正常状态生产,由(1)中计算可知,一只口罩过滤率小于或等于3μσ-的概率()10.997430.00132P Z μσ-≤-==,一天内抽取的10只口覃中,出现过滤率小于或等于3μσ-的概率()0.11029P X ≥=,发生的概率非常小,属于小概率事件.所以一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修.可见这种监控生产过程的方法合理.【练2】(2020·全国高三专题练习)标准的医用外科口罩分三层,外层有防水作用,可防止飞来进入口罩里面,中间层有过滤作用,对于直径小于5微米的颗粒阻隔率必须大于90%,近口鼻的内层可以吸湿,根据国家质量监督检验标准,过滤率是重要的参考标准,为了监控某条口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个口罩,并检验过滤率.根据长期生产经验,可以认为这条生产线正常状态下生产的口罩的过滤率z 服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的10个口罩中过滤率小于3μσ-的数量,求()1P X ≥及X 的数学期望;(2)下面是检验员在一天内抽取的10个口罩的过滤率: 1 2 3 4 5 6 7 8 9 10 0.9376 0.9121 0.9424 0.9572 0.9518 0.9058 0.9216 0.9171 0.9635 0.9268经计算得:10110.933510i i x x ===∑,()102110.018910i i s x x ==-≈∑(其中i x 为抽取的第i 个口罩的过滤率)用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值,利用该正态分布,求().09524P z ≥(精确到0.001)(附:若随机变量X 服从正态分布()2,N μσ,则①() 0.6826P X μμσσ-<<+=;②()220.9544P X μσμσ-<<+=;③()330.9974P X μσμσ-<<+=;另:100.99870.9871≈)【答案】(1)()0.11029P X ≥=,()0.013E X =;(2)0.1587.【解析】(1)已知检验率服从正态分布()2,N μσ,则事件()10.997430.00132P X μσ-<-== 当生产状态正常时,重复不放回的取10个口罩属于独立重复事件,10n =,0.0013p =,故有:().1000013003.1E X np ==⨯=,而()()()100010101101110.99870.0129P X P X C p p ≥=-==--=-=. (2)由题意知:由平均数近似估计μ,则有()()10.68260.95240.15872P z P z x s -≥=≥+==. 考点三 正态分布与其他知识的综合运用【例3】(2021·内蒙古赤峰市)疫情防控期间,为了让大家有良好的卫生习惯某校组织了健康防护的知识测试(百分制)活动,活动结束后随机抽取了200名学生的成绩,并计算得知这200个学生的平均成绩为65,其中5个低分成绩分别是30、33、35、38、38;而产生的10个高分成绩分别是90、91、91、92、92、93、95、98、100、100.(1)为了评估该校的防控是否有效,以样本估计总体,将频率视为概率,若该校学生的测试得分近似满足正态分布()2,N μσ(μ和2σ分别为样本平均数和方差),则认为防控有效,否则视为效果不佳.经过计算得知样本方差为210,请判断该校的疫情防控是否有效,并说明理由.(参考数据:21014.5≈)规定:若()220.9544P X μσμσ-<<+>,()330.9974P X μσμσ-<<+>,则称变量X “近似满足正态分布()2,N μσ的概率分布”. (2)学校为了鼓励学生对疫情防控的配合,决定对90分及以上的同学通过抽奖的方式进行奖励,得分低于94分的同学只有一次抽奖机会,不低于94分的同学有两次抽奖机会.每次抽奖获得50元奖金的概率是34,获得100元的概率是14.现在从这10个高分学生中随机选一名,记其获奖金额为Y ,求Y 的分布列和数学期望.【答案】(1)该校的疫情防控是有效的,理由见解析;(2)分布列见解析,87.5.【解析】(1)据该校的疫情防控是有效的,理由如下: 21014.5≈,265214.536μσ∴-=-⨯=,265214.594μσ+=+⨯=, 365314.521.5μσ-=-⨯=,365314.5108.5μσ+=+⨯=,得分小于36分的学生有3个,得分大于94分的有4个,()72210.9650.9544200P X μσμσ∴-<<+=-=>, 学生的得分都在[]30,100间,()3310.9974P X μσμσ∴-<<+=>. ∴学生得分近似满足正态分布()65,210N 的概率分布,因此该校的疫情防控是有效的;(2)设这名同学获得的奖金为Y ,则Y 的可能值为50、100、150、200,()6395010420P Y ==⨯=,()2614331001041048P Y ⎛⎫==⨯+⨯= ⎪⎝⎭, ()124313*********P Y C ==⨯⨯⨯=,()241120010440P Y ⎛⎫==⨯= ⎪⎝⎭, 故Y 的分布列为: Y 50 100 150 200 P 920 38 320 140()93315010015020087.52082040E Y ∴=⨯+⨯+⨯+⨯=. 【练3】(2021·江西南昌市)2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作[20,40)、9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100),例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T 服从正态分布()2~,N μσ,其中μ可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,2σ用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T 服从正态分布()2,N μσ,则()0.6827P T μσμσ-<≤+=,(22)0.9545P T μσμσ-<≤+=,(33)0.9973P T μσμσ-<≤+=.【答案】(Ⅰ)10:04;(Ⅱ)答案见解析;(Ⅲ)819.【解析】(Ⅰ)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为:(300.005500.015700.020900.010)2064⨯+⨯+⨯+⨯⨯=,即10∶04(Ⅱ)由频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数,即(0.0050.015)20104+⨯⨯=,所以X 的可能的取值为0,1,2,3,4.所以()464101014C P X C ===,()31644108121C C P X C ===,()2264410327C C P X C ===, ()136********C C P X C ===,()4441014210C P X C ===. 所以X 的分布列为: X0 1 2 3 4 P 114 821 37 435 1210 (Ⅲ)由(1)得64μ=,22222(3064)0.1(5064)0.3(7064)0.4(9064)0.2324σ=-⨯+-⨯+-⨯+-⨯=车辆 所以18σ=,估计在9:46~10:40之间通过的车辆数也就是在46,100通过的车辆数,由()2~64,18T N ,得()(22)(641864218)0.818622P T P T P T μσμσμσμσ-<≤+-<≤+-≤≤+⨯=+=,所以估计在在9:46~10:40之间通过的车辆数为10000.8186819⨯≈.课后练习1.(2020高二上·天津期末)在某次高三联考数学测试中,学生成绩服从正态分布(100,σ2)(σ>0),若ξ在(85,115)内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25B.0.1C.0.125D.0.5【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】由题意得,区间(85,115)关于μ=100对称,=0.125,所以P(ξ≥115)=1−P(85<ξ<115)2即该生成绩高于115的概率为0.125.故答案为:C.【分析】根据题意由正态分布表曲线的对称性即可得出该生成绩高于115的概率。
高中数学教学大纲完整版(最新)高中数学教学大纲完整版高中数学新课程标准教学大纲(完整版)第一部分课程目标一、总目标高中数学课程目标是建立在学习数学基础知识与基本技能的基础上,进一步培养学生抽象思维和推理能力,提高学生的综合素养;为学生未来的探索和创造奠定基础。
二、具体目标1.数学基础知识与基本技能数学基础知识:包括数与代数、几何与三角、概率统计、离散数学等内容。
基本技能:包括运算能力、思维能力、空间想象能力、分析和解决问题的能力以及数学表达和交流的能力。
2.数学抽象思维和推理能力数学抽象思维:包括数学概念、公式、方法和理论的概括、分析和综合,以及通过数学模型来理解现实世界的能力。
数学推理能力:包括逻辑推理、归纳推理、类比推理等,以得出合理的结论。
3.综合素养数学建模:能够用数学的思维和语言解决实际问题,能够解释观察到的数学现象。
问题解决:能够理解问题、分析问题、选择合适的解决方法、以及评估和优化解决方案。
数据分析:能够从数据中提取有用的信息,并根据数据进行决策。
创新思维:能够应用数学知识,发挥创新思维,发现新问题、提出新想法,创造性地解决问题。
第二部分课程设置一、必修课程1.数学必修课程包括四个模块:数与代数、几何与三角、概率统计、离散数学。
2.每个模块的学习时间为一年,每个模块的学习内容和学习目标如下:数与代数:学习数的概念、运算性质、代数方程和不等式等内容,培养学生的运算能力和逻辑思维。
几何与三角:学习几何图形的性质和关系,三角函数的定义和性质,以及简单的几何证明等。
概率统计:学习概率和统计的基本概念和方法,如抽样分析、概率分布、回归分析等。
离散数学:学习离散数学的基本概念和方法,如命题逻辑、谓词逻辑、图论等。
3.学生需要修满必修课程的4个模块,共计2个学分。
4.必修课程的学习目标是让学生掌握数学的基础知识和基本技能,培养学生的抽象思维和推理能力,提高学生的综合素养。
二、选修课程1.选修课程包括多个模块,学生可以根据自己的兴趣和需求选择适合自己的选修课程。
必修3复习提纲 第一章 算法初步一、基础精析要点1:算法的一些基本概念(1)算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤. (2)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. (3)程序框图的三种基本逻辑结构是顺序结构、条件结构、循环结构. (4)算法的描述方式有:自然语言、程序框图、程序语言. 例题1:下列给出的赋值语句中正确的是( B )A 4M =B M M =-C 3B A ==D 0x y +=练习1:看下面的四段话,其中不是解决问题的算法的是( ) A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x 2-1=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再由于3+3=6,6+4=10,10+5=15,最终结果为15 要点2:程序框图(一)构成程序框的图形符号及其作用(二)算法的三种基本逻辑结构练习2:算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( D )A.一个算法只能含有一种逻辑结构B. 一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合要点3:算法的基本语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①IF—THEN格式(单支结构)②IF—THEN—ELSE格式(双支结构)(3)循环语句①UNTIL语句②WHILE语句例2:右图程序框图表示的算法输出的结果是________.要点4:辗转相除法与更相减损术求最大公约数(1)辗转相除法:对于给定的两个正整数,用大数除以小数,若余数不为0,则将小数和余数构成新的一对数,继续上面的除法,反复执行此步骤,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数.(2)更相减损术:对于给定的两个正整数,若它们都是偶数,则将它们反复除以2(假设进行了k次),直到它们至少有一个不是偶数后,将大数减小数,然后将差和较小的数构成一对新数,继续上面的减法,反复执行此步骤,直到差和较小的数相等,此时相等的数或这个数与约简的数的乘积即为所求两数的最大公约数.例3:分别用辗转相除法和更相减损术求三个数72,120,168的最大公约数.解法1:用辗转相除法先求120,168的最大公约数,=⨯+=⨯+=⨯因为168120148,12048224,48242所以120,168的最大公约数是24.再求72,24的最大公约数,=⨯,所以72,24的最大公约数为24,因为72243即72,120,168的最大公约数为24.解法2:用更相减损术先求120,168的最大公约数,168-120=48,120-48=72,72-48=24,48-24=24所以120,168的最大公约数为24. 再求72,24的最大公约数, 72-24=48,48-24=24 72,24的最大公约数为24, 即72,120,168的最大公约数为24. 要点4:秦九韶(shao 第二声)算法设1110()n n n n f x a x a x a x a --=++++ ,改写为如下形式:()f x =1210(())).n n n a x a x a x a x a --++++ 设0101,n n v a v v x a -==+21232310n n n n v v x a v v x a v v x a ---=+=+=+例4:用秦九韶算法计算多项式654235683512)(x x x x x x f +++-+=在4-=x 时的值时,3V 的值为 ( )A. -144B. -136C. -57D. 34练习3:用秦九韶算法计算多项式362)(23+++=x x x x f 在4-=x 时的值时分别要用多少次乘法和加法?要点5:进位制(1)k 进制数的基数为k ,k 进制数是由k ⋅⋅⋅10、-1之间的数字构成的. (2)将十进制的数转化为k 进制数的方法是除k 取余法(倒序取余数).(3)110110(0,0,,)n n n n k a a a a a k a a a k --<<≤< 把进制数化为十进制数的方法为1110()110n n n n k n n a a a a a k a k a k a ---=++++ .例5:将下列数进行转换 (1) )10(3________10202=)( (2) )8(10________101=)(解: 420(3)(10)(1)10202132323101=⨯+⨯+⨯=(2)用8反复去除101,直到商为0止,所得的余数(从末位读起)就是十进制数101的 8进制表示8101812581401余数 所以(10)(8)101145=评注:将k 进制的数转化为k '进制的数的方法是先将k 进制的数转化为十进制的数,再将这个数转化为k '进制的数.第二章 统计一、基础精析要点1:随机抽样(1)简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.(2) 系统抽样:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.(3) 分层抽样:一般,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样. 例1:为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )A.总体是240 B.个体 C.样本是40名学生 D.样本容量是40 例2:为了了解参加某种知识竞赛的1 000名学生的成绩,若采用系统抽样方法较恰当?简述抽样过程.解 :(1)随机地将这1 000名学生编号为1,2 ,3,…,1000. (2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18. (4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例3:一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取? 解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为51500100 ,则在不到35岁的职工中抽125×51=25人;在35岁至49岁的职工中抽280×51=56人;在50岁以上的职工中抽95×51=19人.(3)在各层分别按抽签法或随机数表法抽取样本. (4)综合每层抽样,组成样本. 要点2:频率分布(1)频率分布是指一个样本数据在各个小范围内所占比例的大小。
一般用频率分布直方图反映样本的频率分布。
(2)频率分布直方图及其画法:①计算一组数据中最大值与最小值的差,即求极差②决定组距与组数 ③将数据分组④列频率分布表⑤画频率分布直方图注意:①频率分布直方图中,每个小矩形的高表示的不是频率,是频率与组距之比 ②频率分布直方图中,每个小矩形的面积表示频率,其和是1。
(3)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (4)总体密度曲线.:在样本频率分布直方图中,随着样本容量的增加,作图时所分组数的增加,组距减少,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确。
例4:已知某班50个同学的身高数据的分组以及各组的频数如下:[153,155),2;[155,157),7;[157,159),9;[159,161),11; [161,163),10;[163,165),6;[165,167),4;[167,169),1。
(1)列出样本的频率分布表;(2)画出频率分布直方图及频率分布折线图。
(3)估计这50个同学的身高的中位数和平均数。
要点3:茎叶图(1)茎叶图:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(2)画茎叶图的步骤如下:①将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎为十位上的数字,叶为个位上的数字;②将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;③将各个数据的叶按大小次序写在其茎右(左)侧.(3)注意:①用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.②茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例5:从参加某次考试的学生中,随机抽取20名,成绩如下:44,52,48,57,71,74,59,74,75,82,61,62,68,70,71,83,63,63,84,90。
试作出上述数据茎叶图,通过茎叶图,你能得出什么结论?要点4:众数、中位数、平均数、标准差(1)众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)(2)方差、标准差:①方差:])()()[(1222212x x x x x x ns n -++-+-=②标准差:s=])()()[(122221x x x x x x nn -++-+- . 注:标准差较大,数据的离散程度(波动)较大;标准差较小,数据的离散程度(波动)较小。
例6:在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:试判断选谁参加某项重大比赛更合适? 答案:33734722=>=乙甲s s ,乙的成绩比甲稳定,应选乙参加比赛更合适. 要点5:相关关系的概念(1)相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.(2) 两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关) 要点6:两个变量的相关关系(1)散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(2)正相关、负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)(3)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系;如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系。