当前位置:文档之家› 切换分析

切换分析

切换分析
切换分析

LTE切换分析

一、切换事件说明

Event A1 A1测量报告服务小区的RSRP值比绝对门限阈值高时,输出A1测量报告。

Event A2 A2测量报告服务小区的RSRP值比绝对门限阈值低时,输出A2测量报告。

Event A3 A3测量报告邻区的RSRP值比服务小区的RSRP值高时,输出A3测量报告。

Event A4 A4测量报告邻区的RSRP值比绝对门限阈值高时,输出A4测量报告。

Event A5 A5测量报告服务小区的RSRP值比绝对门限阈值1低且邻区的RSRP值比绝对门限阈值2高时,输出A5测量报告。

Event B1 B1测量报告邻区的RSRP值比绝对门限阈值高时,输出B1测量报告。

Event B2 B2测量报告服务小区的RSRP值比绝对门限阈值1低且邻区的RSRP值比绝对门限阈值2高时,输出B2测量报告。

二、切换公式详解:

事件A3的触发,即邻区质量高于服务小区一定偏置值。参照3GPP协议36.331规定事件A3的判决公式。

触发条件:Mn+Ofn+Ocn-Hys>Ms+Ofs+Ocs+Off

取消条件:Mn+Ofn+Ocn+Hys

公式中的变量有如下定义:

Mn是邻区测量结果。

Ofn是邻区频率的特定频率偏置,采用默认值0,同频切换可以不考虑。

Ocn是邻区的特定小区偏置,由参数CellIndividualOffset(CIO)决定。当该值不为零,此参数在测量控制消息中下发;否则当该值为零时不下发,该参数较多地用于提前

切换或推迟切换。{无线参数说明:小区偏移量:CellIndividualOffset,该参数表示同频

邻区的小区偏移量。用于控制同频测量事件发生的难易程度,该值越大越容易触发同

频测量报告上报。参考3GPP TS 36.331。dB0(0dB),若加大该值,将降低A3事件触发的

难度,提前切换;若降低该值,则增加A3事件触发的难度,延缓切换。} Ms是服务小区的测量结果。

Ofs是服务小区的特定频率偏置,采用默认值0,同频切换可以不考虑。

Ocs是服务小区的特定小区偏置,该值通常为零。

Hys是事件迟滞参数,在测量控制消息中下发。{无线参数说明:同频切换幅度迟滞: IntraFreqHoA3Hyst, 该参数表示同频切换测量事件的迟滞,可减少由于无线信号波动导

致的同频切换事件的触发次数,降低乒乓切换以及误判,该值越大越容易防止乒乓和误

判。异频A3幅度迟滞与该参数取值相同。参见协议3GPP TS 36.331。2,增大迟滞Hyst,

将增加A3事件触发的难度,延缓切换,影响用户感受;减小该值,将使得A3事件更容

易被触发,容易导致误判和乒乓切换。}

Off是事件偏置参数,该参数针对事件设置,用于调节切换的难易程度,该值与测量值相加用于事件触发和取消的评估。此参数在测量控制消息的测量对象中下发,可取正值或负值,当取正值时,此时增加事件触发的难度,延缓切换;当取负值时,

此时降低事件触发的难度,提前进行切换。{无线参数说明:同频切换偏置:

IntraFreqHoA3Offset, 该参数表示同频切换中邻区质量高于服务小区的偏置值。该值越

大,表示需要目标小区有更好的服务质量才会发起切换。参见协议3GPP TS 36.331。2,

若为正,将增加A3事件触发的难度,延缓切换;若为负,则降低A3事件触发的难度,

提前进行切换。}

{同频切换时间迟滞: IntraFreqHoA3TimeToTrig, 该参数表示同频切换测量事件的时间迟滞。

当同频切换事件满足触发条件时并不能立即上报,而是当该事件在时间迟滞内,一直满足上报条件,才触发上报该事件测量报告。

该参数可以减少偶然性触发的事件上报,并降低平均切换次数和误切换次数,防止不必要切换的发生。异频A3时间迟滞与该参数取值相同。320ms(320毫秒),延迟触发时间的设置可以有效减少平均切换次数和误切换次数,防止不必要切换的发生。延迟触发时间越大,平均切换次数越小,但延迟触发时间的增大会增加掉话的风险。}

三、切换详细流程

● 1.A3或A5事件触发。

2.Source eNB 向UE发送mearsurement control MSG

3.Source eNB 向UE发送UL allocation MSG

4.UE向Source eNB发送Measurement report MSG

5.Source eNB内部进行HO decision

6.Source eNB向Target eNB发送Handover request MSG

7.Target eNB内部进行Admission control

8.Target eNB向Source eNB回复Handover request ack MSG

9.Source eNB向UE回复DL allocation MSG

10.Source eNB向UE发送RRC Connection reconfiguration MSG

11.UE与Source eNB进行Detach,并开始同步到Target eNB

12.Source eNB进行缓存控制并向Target eNB传送数据包以及进行SN status transfer(序

列数转移)

13.Source eNB向Target eNB进行数据转移传送

14.UE与Target eNB同步完成

15.Target eNB向UE发送UL Allocation+TA UE MSG

16.UE向Target eNB发送RRC connection complete MSG

17.UE与Target eNB,Target eNB与S-GW之间进行数据交互

18.Target eNB向MME发起Path switch request

19.MME向S-GW发起user plane update request

20.S-GW与Srce eNB进行Sitch DL Path,并发起End marker MSG

21.Source eNB收到End marker MSG后向Target eNB发送End marker MSG

22.S-GW向MME发起Path switch request response MSG

23.MME收到来之S-GW的响应消息后向Target eNB发送Path switch request Ack MSG

24.Target eNB向Source eNB发送UE context Release MSG

25.Source eNB释放资源。

从上面25个步骤,可以看到在发生切换时源eNB发送了哪些具体哪些参数和相关信息到目标eNB,而我们在测试时在layer3看到的消息只有3条,就是4、10、16

层3消息中4、10信令具体截图

4、Measurement report

该信令中可以查看到切换目标小区的物理小区ID(PCI)

10、RRC Connection reconfiguration

RRC Connection reconfiguration为切换进行的命令,有正在进行切换的小区的的小区物理小区

ID(PCI),一般情况下只有RRC Connection reconfiguration中的物理小区PCI与Measurement report 中的物理小区ID一致才能正常切换。

四、异频切换A1、A2、A3、A4参数说明

1、如果用A4事件触发异频切换的话,涉及到异频的参数有:A1、A

2、A4,异频切换迟滞,如果用A3事件触发异频切换的话,涉及到异频的参数有:基于A3的A1、基于A3的A2、A3,异频切换迟滞,异频A3偏置。还有一些:服务小区偏置、频率偏置(据华为说目前还没有生效)、邻小区偏移量等参数对A3和A4都是适用的;

2、A1:主服务小区高于此门限,就停止异频测量。例如:今天有同事反应说D到F异频切换不了,我让他反馈D频主服务小区的信号强度,他说是-70dB左右,而我设置的A1是-71,这时服务小区的信号强度大于A1门限,终端自动停止异频测量,在邻区列表中当然看不到异频邻区信息,也肯定做不了异频切换;

3、A2:主服务小区低于此门限,就启动异频测量。所以异频切换需要让主服务小区信号较弱,这样才有可能进行异频测量,也才可能保证异频切换的顺利进行;

4、A3:主服务小区信号强度+频率偏置+小区偏置+邻区偏移量-迟滞>邻小区信号强度+频率偏置+小区偏置+邻区偏移量,满足此条件才能进行A3事件。A3事件是相对门限,对覆盖控制较好,多用于同频切换。如果异频也用A3事件判决的话,A3事件门限设置就要综合考虑同频和异频切换两个方面的问题,会有一定的麻烦。所以,为了避免此类问题,异频

切换多用A4或A5进行判决。后期频率偏置生效后,可以通过设置频偏来修改A3事件的异频门限。那时,A3事件运用会更为广泛;

5:A4:邻区的信号强于此门限,就上报异频切换请求。只要主服务小区够弱(满足A2的上报条件,但也不能低的离谱),邻区信号够强(满足A4上报的条件),理论上就可以进行异频切换了。

【异频切换门限设置】

具体的切换门限要根据现场实际情况来设置,这个只是我给出的参考值。该门限简单地来说,就是:在D频小区信号弱于-90dB的前提下,同时F频小区信号比D频小区强2dB,理论上就可以通过A3进行D到F的异频切换;载F频小区信号弱于-75dB的前提下,同时D频小区信号强于-90dB,理论上就可以通过A4进行F到D的异频切换了。由于D频段目前只是个别插花站点,频点较为干净,而且没有模3干扰问题。所以,在D频点信号不弱的时候,尽可能用D频来进行覆盖。这样以来,D频站点的覆盖范围就比较大,邻区方面需要酌情增加配置。

黑盒测试基本方法状态迁移法

状态迁移法 一、概念 1.什么是状态迁移法 在定义状态迁移法之前,先介绍一下程序的功能说明。一个程序的功能说明通常由动态说明和静态说明组成。动态说明描述了输入数据的次序或转移的次序。静态说明描述了输入条件与输出条件之间的对应关系。对于较复杂的程序,由于存在大量的组合情况,因此,仅用静态说明组成的规格说明对于测试来说往往是不够的,必须用动态说明来补充功能说明。 功能图方法是用功能图形式化地表示程序的功能说明,并机械地生成功能图的测试用例。功能图模型由状态迁移图和逻辑功能模型构成: (1)状态迁移图用于表示输入数据序列以及相应的输出数据。用状态和 迁移来描述一个状态指出数据输入的位置(或时间),而迁移则指明状态 的改变,同时要依靠判定表或因果图表示的逻辑功能。在状态迁移图中,由输入数据和当前状态决定输出数据和后续状态。 (2)逻辑功能模型用于表示在状态中输入条件和输出条件之间的对应关 系。逻辑功能模型只适合于描述静态说明,输出数据仅由输入数据决定。 (3)测试用例则是由测试中经过的一系列状态和在每个状态中必须依靠 输入/输出数据满足的一对条件组成。 如何从状态迁移图中选取用例我们采用节点代替状态,弧线代替迁移,那么状态迁移图就转换成为一个程序的控制流程图,问题也就随之转换为路径测试的问题了。所以,功能图方法其实是是一种黑盒/白盒混合使用的用例设计方法。比如在功能图方法中,用到的逻辑覆盖与路径测试的概念和方法,就是属于白盒测试方法中的内容。(逻辑覆盖是以程序内部的逻辑结构为基础的测试用例设计方法,该方法要求测试人员对程序的逻辑结构有清楚的了解。由于覆盖测试的目标不同,逻辑覆盖可分为:语句覆盖,判定覆盖,判定-条件覆盖,条件组合覆盖及路径覆盖。) 注意:测试人员应当注意区分黑盒测试中系统功能或者系统水平上的逻辑覆

按键状态切换分析

本章所描述的按键程序要达到的目的:检测按键按下,短按,长按,释放。即通过按键的返回值我们可以获取到如下的信息:按键按下(短按),按键长按,按键连_发,按键释放。不知道大家还记得小时候玩过的电子钟没有,就是外形类似于CALL机(CALL )的那种,有一个小液晶屏,还有四个按键,功能是时钟,闹钟以及秒表。在调整时间的时候,短按+键每次调整值加一,长按的时候调整值连续增加。小的时候很好奇,这样的功能到底是如何实现的呢,今天就让我们来剖析它的原理吧。J机,好像是很古老的东西了 状态在生活中随处可见。譬如早上的时候,闹钟把你叫醒了,这个时候,你便处于清醒的状态,马上你就穿衣起床洗漱吃早餐,这一系列事情就是你在这个状态做的事情。做完这些后你会去等车或者开车去上班,这个时候你就处在上班途中的状态…..中午下班时间到了,你就处于中午下班的状态,诸如此类等等,在每一个状态我们都会做一些不同的事情,而总会有外界条件促使我们转换到另外一种状态,譬如闹钟叫醒我们了,下班时间到了等等。对于状态的定义出发点不同,考虑的方向不同,或者会有些许细节上面的差异,但是大的状态总是相同的。生活中的事物同样遵循同样的规律,譬如,用一个智能充电器给你的手机电池充电,刚开始,它是处于快速充电状态,随着电量的增加,电压的升高,当达到规定的电压时候,它会转换到恒压充电。总而言之,细心观察,你会发现生活中的总总都可以归结为一个个的状态,而状态的变换或者转移总是由某些条件引起同时伴随着一些动作的发生。我们的按键亦遵循同样的规律,下面让我们来简单的描绘一下它的状态流程转移图。

(原文件名:1.jpg)引用图片 下面对上面的流程图进行简要的分析。 首先按键程序进入初始状态S1,在这个状态下,检测按键是否按下,如果有按下,则进入按键消抖状态2,在下一次执行按键程序时候,直接由按键消抖状态进入按键按下状态3,在此状态下检测按键是否按下,如果没有按键按下,则返回初始状态S1,如果有则可以返回键值,同时进入长按状态S4,在长按状态下每次进入按键程序时候对按键时间计数,当计数值超过设定阈值时候,则表明长

东莞LTE切换专题分析报告

东莞LTE切换专题分析报告 1、概述 在无线网络系统中,终端在不同小区间移动,为了保持业务的连续性,网络需要实时监测UE并控制在适当时刻命令UE做跨小区切换。本文主要结合东莞移动LTE现网系统内切换指标情况,根据现网数据统计分析,重点介绍了LTE系统内切换流程,切换类型、分析优化、及典型案例等。 2、切换的含义和流程 LTE系统的整个切换过程完全由网络侧(eNB)控制,所以UE 周期性上报相关的无线质量信息给eNB来判断,当eNB收到测量或切换事件上报时,会下发切换命名给UE,UE收到切换命令后,中断与源小区的交互,按切换命令切换到新的目标小区,并通过信令交互通知目标小区,以完成切换过程。切换过程就是终端在移动过程中与网络连接交互发生变化的过程。

2.1 切换门限 为了控制切换信令的准确性和及时性,网络通过一些参数来控制切换,同频切换采用A3事件来触发切换,即目标小区信号质量高于本小区一个门限且维持一段时间就会触发,当终端满足Mn+Ofn+Ocn-Hys>Ms+Ofs+Ocs+Off且维持Time to Trigger个时段后上报测量报告。 Mn:邻小区测量值 Ofn:邻小区频率偏移 Ocn:邻小区偏置 Hys:迟滞值 Ms:服务小区测量值 Ofs:服务小区频率偏移 Ocs:服务小区偏置 Off:偏置值 异频切换采用A1,A2来触发异频测量,A3,A4,A5来进行切换判决触发。现网采用A3,A4算法来判决切换触发。A1门限为停止测量门限,即UE测量到的服务小区RSRP值如果大于该门限,则UE

停止异频测量;A2门限为开启测量门限,即UE测量到的服务小区RSRP 值如果小于该门限,则UE开启异频测量;A4门限为切换判决门限,即UE测量到的异频邻区RSRP值如果大于该门限,则UE开始向该异频邻区切换。触发条件: Mn+Ofn+Ocn-Hys>Thresh LTE系统内切换一般分为切换准备、切换执行、切换完成三步。 切换准备:UE根据预定的测量,向源eNB上报测量报告,源eNB 根据报告及RRM信息决定UE是否需要切换。当需要切换时,源eNB 向目标eNB发送切换请求,目标eNB根据收到的QoS信息执行接纳控制,并返回至ACK。 切换执行:源eNB向UE发送切换指令,UE接到后进行切换并同步到目标eNB,网络对同步进行响应,当UE成功接入目标eNB后,向目标eNB发送切换确认消息。 切换完成:MME向S-GW发送用户面更新请求,用户面切换下行路径到目标侧,目标eNB通知源eNB释放原先占用的资源。切换过程完成。 2.2 切换类型 切换可分为eNB站内切换,X2口切换以及S1口切换,以下分别进行介绍:

基于语料库的话轮转换分析

龙源期刊网 https://www.doczj.com/doc/05635319.html, 基于语料库的话轮转换分析 作者:丁会敏刘著妍 来源:《新西部·中旬刊》2015年第10期 【摘要】本文从话轮转换的角度入手,自建小型语料库,并以AntConc为辅助工具,分析《落花生》三个英译本中话轮语言特征,并且采用定性定量结合的方法,对比译本中话轮部分在感情色彩、语言表达等方面的差异,分析三个英译本中话轮转换的效果差异,并作出一定的翻译批评,以期从话轮转换和翻译批评相结合的角度,为以后的研究工作提供新视角。 【关键词】语料库;话轮转换;《落花生》英译本;AntConc 近年来,语料库在翻译研究中得到了广泛应用,但其与话轮转换的结合还不多见。本文自建小型平行语料库,以Antconc为辅助工具,分析了《落花生》三个英译本,以定性定量相结合的方法,对语言本身进行更加客观的分析解释,旨在比较三个译本中话轮转换效果。 一、基于平行语料库的话轮转换研究 近些年来语料库获得较快发展,也普遍应用于翻译研究中。但是“由于研究目的不同,很难找到现成的语料库供研究者直接使用”(许伟 2006:54),所以本文选取《落花生》三个英译本,自建小型语料库,并使用语料库软件分析文本,为定量分析提供可靠依据。1974年Sacks, Schegloff和Jefferson发表《会话中一个最简单的话轮转换规则系统》,开创话轮转换研究先河,使人们开始关注研究会话的转换规则及其在日常生活中的重要作用。近年来话轮转换方面的研究大多只关注原作,以期达到更好的解读原作的效果,对译作的研究相对较少。 二、《落花生》三个英译本话轮语言特征分析 本节摘取三个英译本中会话部分,运用AntConc进行分析,从高频词汇和类符型符比两个方面,探讨三个译本在话轮转换中不同语言特征。 前十个高频词汇按出现的频率从高到低依次排列如下: 杨戴:to(7), all(6), the(6), you(6), be(5), it(5), father(4),is (4), peanut(4), s(4) 刘: is(12), it(12), you(8), good(5), the(5), and(4), father(4),for(4), i(4), not(4)

实验一 进程状态转换

实验一进程的状态及其转换 一、实验目的: 自行编制模拟程序,通过形象化的状态显示,加深理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。 二、实验内容及要求: 1)设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。 2)独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状 态或其它)以及PCB的组织形式可自行选择。 3)合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控 制信息、资源需求及现场信息。 4)设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB内容、 组织结构的变化。 三、程序流程图:

四、使用的数据结构及说明: 在本实验中,主要用到的数据结构是PCB的结构,其中PCB的数据结构如下: struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; 其中,P_Id,和P_Name用来标示一个进程,而P_State用来标示进程的五种状态:Create_state,Ready_state,Block_state,Run_state,Exit_state。P_Runtime标示要完成一个进程所需要的时间。P_Requiry标示一个进程的执行所需要的其他条件,当其他的条件满足,则P_Requiry置1,否则置0。Struct PCB * next 用来指向同一队列中的下一个PCB 块。 五、参考程序源代码: #include"stdlib.h" #include"stdio.h" #include"string.h" #include /*全局结构体及变量定义*/ struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; struct PCB * Create_state; //创建状态 struct PCB * Run_state; //运行状态 struct PCB * Ready_state; //就绪状态 struct PCB * Block_state; //阻塞状态 struct PCB * Exit_state; //退出状态 int signal4=0; //标示进程4的完成状态 int signal5=0; //标示进程5的完成状态 void InsertQueue(struct PCB **head,struct PCB *node) //将进程插入到队列的尾部

编译原理词法分析--A__状态转换图-直接转向法-伪代码描述

int code, value; strToken := ““; GetChar(); //将下一字符读入ch中, 搜索指示器前移一个字符位置 GetBC(); //检查ch中的字符是否为空白,若是调用GetChar直至读入非空白字符if (IsLetter())//判断ch中的字符是否为字母 begin while (IsLetter() or IsDigit()) begin Concat(); //将ch中的字符连接到strToken之后 GetChar(); End Retract(); //将搜索指示器回退一个字符位置, 将ch置为空 code = Reserve(); //对strToken中的字符串查找保留字表,若是,返回编码;否则返回0 if (code = 0) begin value := InsertId(strToken); //将strToken中的标识符插入符号表,返回指针 return ($ID, value); end else return (code, -); end else if (IsDigit())//判断ch中的字符是否为数字 begin while (IsDigit)) begin Concat(); GetChar(); End Retract(); Value := InsertToken(); //将strToken中的标识符插入常数表,返回指针 return ($INT, value); end else if (ch = ‘=’)return ($ASSIGN, -); else if (ch = ‘+’)return ($PLUS, -); else if (ch = ‘*’) begin GetChar(); if (ch = ‘*’) return ($POWER,-); Retract(); return ($STAR,-); end else if (ch = ‘;’)return ($SEMICOLON, -); else if (ch = ‘(’)return ($LPAR, -);

话轮转换分析在《推销员之死》中的解释力

话轮转换分析在《推销员之死》中的解释力摘要:话轮转换被逐渐认为是研究戏剧和电影对白的一种热门方法。本文以反映美国资本化社会的世界名著《推销员之死》的电影对白为研究对象,旨在通过科学和逻辑性的研究揭示推销员的死因来证明话轮转换分析在文学作品中的解释力。 关键词:话轮转换;权势;人物性格 abstract: turn-taking analysis tends to be considered as a popular method to study the drama and movie dialogue. death of a salesman is one of the world famous literary works; it represents the capitalized society in the american. this paper aims at proving the explanatory force of turn-taking in the literary work by giving a scientific and logic analysis to reveal the reason of the protagonist in movie version of death of a salesman. key words: turn-taking analysis; power; character 1 introduction the previous research on the literary works tends to study the characters and plot by analyzing the background of the story or the whole text, such as close-reading method in european-american literature criticism. it is not widely to find the research on the characters in the literary work from the theories in pragmatics, especially, to give the

案例-切换问题优化

切换问题优化案例 摘要:切换是LTE系统中一个重要事件,对于保持终端的移动性起到重要作用。在数据网中,切换失败可能影响不是很大,但是在VoLTE网络中,切换失败就意味着可能掉话。 关键字:切换掉话 【故障现象】: 1、车辆在北一环与魏武大道交口附近路段行驶,UE连接BZ-市区-城北精神病医院-HFTA-439139-0,RSRP值基本在-100dBm以下,覆盖不好 2、车辆在汤陵南路由西向东行驶,UE连接BZ-市区-金色国际城-HFTA-439133-3,RSRP 值基本在-100dBm以下,无法切换至距离较近的BZ-市区-汤陵公园-HFTA-439132-5 3、BZ-市区-汤陵公园-HFTA-439132-5 4、BZ-市区-汤陵公园-HFTA-439132-55,导致此路段覆盖不好 3、车辆在交通路路由西向东行驶,UE连接BZ-市区-谯陵派出所-HFTA-439083-0,RSRP值

基本在-100dBm左右,无法切换至距离较近的BZ-市区-老方圆-HFMA-439163-53、BZ-市区-木兰小区南-HFTA-439377-52,导致此路段覆盖不好 4、车辆在汤王大道由南向北行驶,UE连接在TDD小区(频点:41140,PCI:39),RSRP值基本在-105dBm以下,SINR也较差,无法及时切换至距离较近的FDD小区,导致此路段覆盖不好 【原因分析】: 1、后台查询发现BZ-市区-城北精神病医院-HFTA-439139-0与周边L1800小区有邻区 关系,但是由于是异频切换,触发机制采用A2+A4事件,未达到触发门限。 2、后台查询发现BZ-市区-金色国际城-HFTA-439133-3与BZ-市区-汤陵公园-HFTA- 439132-53有邻区关系,但是由于是异频切换,触发机制采用A2+A4事件。 3、后台查询发现BZ-市区-谯陵派出所-HFTA-439083-0与周边L1800有邻区关系,但 是由于是异频切换,触发机制采用A2+A4事件,未达到触发门限。 4、后台分析发现终端在BZ-市区-天润上层30栋-HFMA-439118-8上完成通话后,重选 至优先级较高的TDD小区(频点:41140,PCI:39)。

LTE切换为题处理案例及切换参数总结

切换问题处理及切换参数总结 目录: 简述: (1) 一、案例分析: (1) 1.1.问题描述: (1) 1.2.优化: (3) 二:切换参数总结: (3) 1.1.UE测量配置基本信道参数表 (4) 1.2.A3事件上报参数表 (4) 1.3.切换算法参数表 (5) 1.4.UE定时器及常量分析 (6) 1.5.ENB协议定时器分析 (8) 1.6.ENB实现定时器分析 (9) A1~A5,B1~B2事件总结: (10) 简述:地铁部分FDD线路分布问题导致覆盖盲区场景下,FDD切TDD。由FDD 站点覆盖快速衰落情景下,终端开启A2测量,信令窗口中频繁上报MR,无响应,切换失败导致重建。经由本次问题处理,对切换参数进行总结。 一、案例分析: 1.1.问题描述: 由芍药居至太阳宫段,FDD切TDD 终端占用1350(PCI=467) ENB=502165,地铁行驶过程中,信号快速衰落,终端开启A2测量,信令窗口频繁上报MR,无响应,切换失败导致RRC重建至1350(PCI=496)502163,经由此站切换至TDD38950(PCI=87)ENB=82354-42海淀十号线海淀黄庄站FDDNLS

1.测试结果:

1.2.优化: ●参数查询: A1:-92,A2 :-100,A5 :-90,-95 CIO:0db TTT: 640ms ●调整: 由于FDD衰落迅速,几次测试均有-92左右迅速衰落至-120,导致重建,所以建议将A2门限提高,同时为满足快衰场景下能够顺利切换,将CIO调为10,使其提前切换,TTT切换切换时间由640ms改为160ms 调整后参数:A1:-90,A2 :-92,A5 :-90,-95 CIO:10db TTT: 120ms ●调整后测试 二:切换参数总结: 当UE处于连接状态,网络通过切换过程实现对UE的移动性管理。切换过程包含移动性测量、控制面流程和用户面流程。

状态转移图及编程方法

第6章状态转移图及编程方法 教学目的及要求:通过教学,使学生明确状态的功能和状态转移图所表示的顺序控制过程,熟练掌握选择性分支与汇合、并行性分支与汇合的应用,掌握顺控系统设计的方法和技能。 教学方式:理论讲解、例题讲解。 演示操作:利用FX2N-64MR PLC实现对自动送料小车的控制。 重点难点:掌握单流程状态图的编程、选择性及并行性分支与汇合的编程。 问题的提出:状态转移图是使用什么语言编程,它与梯形图语言有什么区别。 6.1 状态转移图及状态的功能 6.1.1 状态转移图 用梯形图或指令表方式编程固然广为电气技术人员接受,但对于一个复杂的控制系统,尤其是顺序控制系统,由于内部的联锁、互动关系极其复杂,其梯形图往往长达数百行。另外,在梯形图上如果不加注释,这种梯形图的可读性也会大大降低。 为了解决这个问题,近年来,许多新生产的PLC在梯形图语言之外加上了符合IEC1131—3标准的SFC(Sequential Function Chart)语言,用于编制复杂的顺控程序。IEC1131—3中定义的SFC语言是一种通用的流程图语言。三菱的小型PLC在基本逻辑指令之外增加了两条简单的步进顺控指令(STL,意为Step Ladder;RET,意为返回),同时辅之以大量状态元件,就可以使用状态转移图方式编程。 称为“状态”的软元件是构成状态转移图的基本元素。FX2N共有1000个状态元件,其分类、编号、数量及用途如表6-1所示。 表6-1 FX2N的状态元件 类别元件编号个数用途及特点 初始状态S0~S9 10 用作状态转移图的起始状态 返回状态S10~S19 10 用IST指令时,用作返回原点的状态 通用状态S20~S499 480 用作SFC的中间状态 掉电保持状态S500~S899 400 具有停电保持功能,停电恢复后需继续执行的 场合,可用这些状态元件 信号报警状态S900~S999 100 用作故障诊断或报警元的状态 a状态的编号必须在指定范围选择。 b各状态元件的触点,在PLC内部可自由使用,次数不限。 c在不用步进顺控指令时,状态元件可作为辅助继电器在程序中使用。 d通过参数设置,可改变一般状态元件和掉电保持状态元件的地址分配。 6.1.2 FX2N系列PLC的步进顺控指令 FX2N系列PLC的步进指令有两条:步进接点指令STL和步进返回指令RET。 1、STL:步进接点指令(梯形图符号为)

状态转换测试法

状态转换测试法(State Transition Testing) 状态转换测试法应用于以下模式:被测组件拥有多个状态(state)各个状态之间的转换(transition)由事件(event)来触发,各个状态之间的转换还可能导致一些动作(action)的产生。 在该种模式下被测组件应该包括状态、转换、事件、动作及它们之间的联系。其中各个状态之间是正交(disjoint)的。各个状态是可以被明确识别的,而且其数量是有限的。事件用于触发各状态之间的转换。而事件的触发将由组件的输入产生。作为结果,状态的转换可能导致一些动作的产生,从而可能进一步产生输出。 在该种模式下通常用状态转换图、状态转换模型或状态转换来描述被测组件各状态之间的转换。 在该种设计模式下测试用例将执行(覆盖)各个状态之间的转换。每条测试用例可以覆盖多个转换。但每条用例必须包括。 ?该组件的起始状态。 ?对该组件的输入。 ?期望输出。 ?期望的最终状态。 对于每条测试用例的期望状态,我们必须详细描述以下内容。 ?起始状态。 ?触发该状态转换至下一状态的事件。 ?该转换所产生的期望动作。 ?转换后的期望状态。 在这种模式下的测试用例可以被设计用来测试各状态之间的有效转换,还可以被设计用来测试那些未在组件测试文档中明示的转换。 该黑盒技术是基于被测组件涉及状态的转换为模式。

下图为一个组件由事件触发而从一个状态转换到另一个状态,并产生输出。 一个组件由事件触发而从一个状态转换到另一个状态 根据设计文档描述得出下图

转换后的表格 这一组7条用例覆盖了该组件设计文档中所描述的所有状态转换,但都只执行了一个状态,这一级别覆盖方式称为0-switch覆盖(最基础的覆盖),可以找出显而易见的错误转换或输出,但无法测试到需要进行一系列状态转换才能出现的问题。因此可以提高覆盖等级,把测试用例设计为1-switch覆盖以在一个测试用例中执行多个状态转换。 设计该组件的1-switch覆盖的测试用例时,从4个状态中的某一个状态出发,然后进行两次状态的转换并覆盖所有的可能路径,如下表: 进行再次状态的转换并覆盖所有可能的路径

精品案例_数据修改导致切换差案例

数据修改导致切换差案例第1页, 共6页

目录 一、问题描述 (3) 二、分析过程 (4) 三、解决措施 (5) 四、经验总结 (6) 第2页, 共6页

数据修改导致切换差案例 一、问题描述 9月27日,商检大楼,欧尚超市及方兴假日出现S1切换指标劣化,查询目标小区均为共建共享基站水游城西北,并出现异常小区: 地市网络类型基站名称小区名称区域覆盖统计时间异常类型异常等级 达到门限告警时段预警时段 蚌埠市LTE BB-市区-长征路局 BB-蚌山区-方兴假日-ZFTA-439919-50市区2019-09-27S1切换成功率告警752蚌埠市LTE BB-市区-长征路局 BB-蚌山区-方兴假日-ZFTA-439919-52市区2019-09-27S1切换成功率告警861蚌埠市LTE BB-市区-中山街Z BB-禹会区-商检大楼-ZFTA-440085-53市区2019-09-27S1切换成功率告警1493蚌埠市LTE BB-市区-中山街Z BB-禹会区-商检大楼-ZFTA-440085-55市区2019-09-27S1切换成功率告警1475蚌埠市LTE BB-市区-中山街局 BB-禹会区-蚌埠欧尚超市-ZFTA-440067-53市区2019-09-27S1切换成功率告警761蚌埠市LTE BB-市区-中山街局 BB-禹会区-蚌埠欧尚超市-ZFTA-440067-55市区2019-09-27S1切换成功率告警761蚌埠市LTE BB-市区-中山街局 BB-禹会区-蚌埠欧尚超市-ZFTA-440067-54市区2019-09-27S1切换成功率告警761 第3页, 共6页

23G切换成功率提升专题案例

23G切换成功率提升专题案例 一、问题描述 温州TD网络自2月份以来,经过对语音业务3G到2G切换的持续优化,该指标有一定的提升。下图为近两个月以来3G到2G切换成功率指标演进图。 图1 最近两个月全网异系统切换成功率趋势图 由上图可知,语音业务3G到2G切换成功率提升明显,由最初平均97.6%提升到最近的98.6%,提升了近1% 二、问题分析 1.TOPN小区分析 上图为电路域切换失败小区个数统计,可以看出TOPN小区随机出现,失败小区较均

匀分布于全网,因此TOPN小区离散化对全网指标提升造成了很大的难度。 2.失败原因分析 失败原因统计 对3月1日-3月15日电路域系统间切换失败按原因提取指标,如下图所示: 发现原因为<物理信道失败>的电路域系统间切换失败次数较多,占总失败次数的93%。因此我们需要集中针对物理信道失败原因进行深入的分析和解决。 异系统切换信令流程

信令说明: ◆RNC收到触发异系统测量报告后,发起handoverFromUTRANCommandGSM消息, 终端收到该消息后会在2G侧接收广播及接入过程,若接收广播失败或同步过程失 败,则会向3G网络侧响应handoverFromUTRANFailure,原因值为<物理信道失败> 的电路域系统间小区间切换出失败。 ◆由此可知物理信道失败的主要原因在UE和GSM小区无法正常同步造成。 三、优化方案 1.邻区优化 由于GSM信号覆盖较好和减少终端对异系统邻区小区的测量,一般GSM的邻小区配

置为6个左右,温州平均配置2G邻区为7个左右,随着增补站点的不断开通,根据实际情况对温州TD网络23G邻区进行优化: 每日核查3g配置2g邻区信息准确性,及时修改参数配置错误; 2.邻区梳理 主要包括删除过多、不合理的邻区,添加更优小区为邻区关系。对于过远邻区、背向无关邻区,需要集中梳理和删除;截止目前,对全网共462条邻区关系进行核查和修改。 附《TD小区异系统邻区调整记录》: 3.异系统同频邻区核查 联芯芯片手机对G网邻区测量机制缺陷,对于G网同频小区无法区分,统一上报为相同电平,导致测量不准确和在同频异BSIC邻区的处理上存在问题。导致切换失败。 由于温州现网站点较密,BCCH复用距离较短,造成现网异系统同BCCH邻区高达五百多个。 附《异系统邻区中同BCCH的小区》: 根据现网情况,我们加大了对TOP N小区同BCCH异BSIC邻区的优化力度。一方面每周定期提供同频邻区TOP20,提交G网测进行频点修改,另一方面,如果邻区信号差异较大,从网络侧可以采用删除弱信号邻区的办法进行规避和GSM1800小区替换。 附:《异系统邻区为1800小区汇总》 4.异系统切换参数优化 异系统判决门限调整 进行异系统切换判决时需要同时满足本系统判决门限和异系统判决门限要求,才能发起切换请求。适度提高异系统切换判决门限,使切换目标GSM小区的信号质量门限提高,有助于提高UE与GSM小区同步成功的概率。

进程状态转换

3.2.4 被挂起的进程 交换的需要 前面描述的三个基本状态(就绪态、运行态和阻塞态)提供了一种为进程行为建立模型的系统方法,并指导操作系统的实现。许多实际的操作系统都是按照这样的三种状态进行具体构造的。但是,可以证明往模型中增加其他状态也是合理的。为了说明加入新状态的好处,考虑一个没有使用虚拟内存的系统,每个被执行的进程必须完全载入内存,因此,图3.8b 中,所有队列中的所有进程必须驻留在内存中。 所有这些设计机制的原因都是由于I/O 活动比计算速度慢很多,因此在单道程序系统中的处理器在大多数时候是空闲的。但是图3.8b 的方案并没有完全解决这个问题。在这种情况下,内存保存有多个进程,当一个进程正在等待时,处理器可以转移到另一个进程,但是处理器比I/O 要快得多,以至于内存中所有的进程都在等待I/O 的情况很常见。因此,即使是多道程序设计,大多数时候处理器仍然可能处于空闲状态。 一种解决方法是内存可以被扩充以适应更多的进程,但是这种方法有两个缺陷。首先是内存的价格问题,当内存大小增加到兆位及千兆位时,价格也会随之增加;再者,程序对内存空间需求的增长速度比内存价格下降的速度快。因此,更大的内存往往导致更大的进程,而不是更多的进程。 另一种解决方案是交换,包括把内存中某个进程的一部分或全部移到磁盘中。当内存中没有处于就绪状态的进程时,操作系统就把被阻塞的进程换出到磁盘中的“挂起队列”(suspendqueue),这是暂时保存从内存中被“驱逐”出的进程队列,或者说是被挂起的进程队列。操作系统在此之后取出挂起队列中的另一个进程,或者接受一个新进程的请求,将其纳入内存运行。 “交换”(swapping)是一个I/O 操作,因而也可能使问题更加恶化。但是由于磁盘I/O 一般是系统中最快的I/O(相对于磁带或打印机I/O),所以交换通常会提高性能。 为使用前面描述的交换,在我们的进程行为模型(见图3.9a)中必须增加另一个状态:挂起态。当内存中的所有进程都处于阻塞态时,操作系统可以把其中的一个进程置于挂起态,并将它转移到磁盘,内存中释放的空间可被调入的另一个进程使用。

状态转换图总图

PCwrite PCSource=00 ALUSrcA=00 ALUSrcB=01 IorD=0 IRwrite MemRead ALUop=0000 开始取指令 ALUSrcA=00 ALUSrcB=11 ALUop=0000 指令译码寄存器取数 ALUSrcA=01 ALUSrcB=10 ALUop=0000 Op=’LW ’ or Op=’SW ’ MemRead IorD=1 1 储存器访问 Op=’SW ’ MemWrite IorD=1 Op=’LW ’ 储存读完成 MemRead IorD=1 Op=’J ’ PCwrite PCSource =10 Op=BEQ ALUSrcA=01 ALUSrcB=00 ALUop=01 PCWriteCond PCSource=01 CondControl=00 RegWrite Regist=0 MemtoReg =0 储存地址计算 Op=BLTZ ALUSrcA=01 ALUSrcB=00 ALUop=0001 PCSource=01 PCWriteCond CondControl=01 Op=BGTZ ALUSrcA=01 ALUSrcB=00 ALUop=0111 PCSource=01 PCWriteCond CondControl=10 Op=’SLTI ’ ALUSrcA=01 ALUSrcB=10 ALUop=0101 Op=ADD-Sub-Xor-And-Or-Nor-SLT-ALLV-SRA V ALUSrcA=01 ALUSrcB=00 ALUop=0011 R 型完成 Op=SLT ALUSrcA=01 ALUSrcB=00 ALUop=0011 RegDst=1 RegWrite MemtoReg=0 ALUSrcA=00 ALUSrcB=00 ALUop=0011 Op=SLL-SRL-SRA ‘SRA’ or ’SRL ’ Op=’Jr ’ ALUSrcA=01 ALUSrcB=00 ALUop=0011 PCSource=01 PCWrite ALUSrcA=01 ALUSrcB=10 ALUop=1000 ALUSrcA=01 ALUSrcB=10 ALUop=1100 ALUSrcA=01 ALUSrcB=10 ALUop=1101 ALUSrcA=01 ALUSrcB=10 ALUop=1110 OP = ‘ADDI’ OP = ‘ADI’ OP = ‘ORI’ OP = ‘XORI’ 此指令周期结束, 进入下一指令周期(取指)

实验1.1 根据状态转换图手工构造词法分析程序..

编译原理实验报告 实验类型 : 单元实验 基础实验 / 选做实验 实验名称 : 实验1.1 根据状态转换图手工构造词法分析程序 姓名: ______________ 学号: ____________ 班级: _________________

一、原创性声明 参考代码: 参考了两处代码,第一部分是关键字的定义,自己想的没有这位学长写的全面,所以就直接拿过来用了;第二部分是参考学长的文件读写操作部分。 代码来源:百度文库《编译原理课程设计词法分析器文档》作者是烟大张金荣学长。 二、实验要求 1. 手工构造一个简单的词法分析程序。 -能够识别标识符、整数、关键字、算符、界符 -可输出至文件,也可输出至屏幕 ★ 1. 使用缓冲技术(单缓冲或双缓冲) 2. 词法分析器作为一个子程序被语法分析器调用。 每次调用返回一个单词 同时将单词及属性存入符号表 ★★根据状态转换图手工构造词法分析程序。从以下方法中选一: ?直接转向法 ?表驱动法 三、完成情况 ●功能1 : 基本内容 ?功能描述: -能够识别标识符、整数、关键字、算符、界符 -可输出至文件,也可输出至屏幕

?完成情况: 基本完成 ?Bug:能发现的bug都已修改, ?备注:标识符、整数、关键字、算符、界符都是自定义的,并不能识别所有的标识符、整 数、关键字、算符、界符 ●功能2 : 选做内容 功能描述: 使用缓冲技术(双缓冲) 根据状态转换图手工构造词法分析程序:直接转向法 ?完成情况: 基本完成 ?Bug: 能发现的bug都已修改, ?备注:代码中有几个方法是多余的: bool isIdentifier(char *s)/*是否是标识符*/ bool isNumber(char *s)/*是否为数字*/ 原本是想在main函数中调用这两个函数,使main函数结构更加简单明了,结果发现加不进去,会破坏代码的逻辑。 四、实现方案 状态转换图:

状态表示&状态转移(进阶篇)

动态规划总结 专题一状态表示 在用动态规划解题时,我么往往第一个考虑的是数组维数,其实数组维度(和状态表示)是有规律可循的: A.二维空间的DP: 一般采用二位数组——d[i,j]表示当i,j为某一边角时的极值(e:d[i,j]可以表示以i,j为右上角时所能构成的正方形的边长最大值——听不懂?接着往下看)。 还有一种表示方法:d[i,num]表示走到第i各阶段的第num个位置: 这种表示解决“多次访问同一图”类的DP题很有用。 B.阶段决策类的DP: 这里指阶段划分十分明显的题(0/1背包)。 一般采用d[i,j]表示执行到第i各阶段,剩余代价为j时,所能取得的最高分。(如果限制条件多,可增加维度)。

C.树形关系类的DP: 一般用d[i]来表示以i为根节点的最优值,可以加维来保证正确性。 D.线性关系类的DP: 这一类的DP最简单,是每一个OIER的必备基础,在这里就不废话了。 专题二状态转移 (专题二与专题一的分类标准不同,因为dugushuiyi说这样分更好,感谢他) A.线性转移 一般公式:d[i]=operation(d[j]+w[j,i])(w[i]为由j转移到i的消耗){operation为求最值} B.阶段性转移 一般公式: d[i,j]:= operation(d[i-1,k]+w[k,j],d[i-2,……) 如果只涉及到前面的有限个阶段,可以使用滚动数组。 D[I mod n,j]= operation(d[(i-1)mod n,k]+w[k,j],d[(i-2)mod n,……) C.树性转移 一般公式: D[i,j]=max(d[lson[i],k1]+w[j,k1],d[rson[i],k2]+w[j,k2])遍历顺序一般为后序遍历顺序。

lte切换失败案例

一、案例问题描述 对LTE全网切换成功率进行TOP小区处理及分析,发现竹园D3切换成功率 一直很低。见下表: ENB内同频、异频切换正常,ENB间同频切换正常,但ENB间异頻切换率在29%~59%之间,其中按接口类型统计S1口的切换全部失败。 二、切换分析流程 三、问题处理过程 1)查询小区告警信息,未发现存在影响性能的告警。 2)查询小区相应时间段内的干扰情况,未发现不存在强干扰问题。 3)查询两两小区间的切换对,查看是否由个别邻区的关系影响了小区的切换成功率:

查询两两小区间切换对时,发现该基站竹园D2和竹园D3切出到卢屋广场F 基站的三个小区都是全部失败,其他切换对是正常的。因此问题定位到邻区级和目标基站级。 4)通过跟踪本小区与目标小区的S1口信令,HANDOVER REQUEST及HANDOVERPREPARATON FAIL两条关键信令信息。其中查询 S1AP_HANDOVER_REQUEST的信令解码查询目标小区ENB的消息:

关键数据:目标NB-ID为0001,0000,1111,0001,0001B,应对的十六进制为10F11,即十进制为:69393。 5)查看S1AP_HANDOVER_PREPARATON_FAIL的信令解码,查看其失败原因: 解码的失败原因为:HO-failure-in-target-EPC-ENB-or-target-system(失败原因为目标EPC或者目标ENB问题)。根据S1AP_HANDOVER_PREPARATON_FAIL目标小区无法完成切换准备而导致切换失败。 6)查询源小区定义的外部邻区,其中卢屋广场F基站标识为69393共5位的基站NBID,现网配置基站标识的时候一般是6位数,怀疑是基站标识配置错误导致切换失败。 7)查询目标小区的基站标识信息: 发现目标小区的基站标识为693937,与竹园D基站定义的源小区的69393不同有错误。 四、优化效果 9月10日下午修改源小区错误的邻小区参数,从69393改为693937。提取小区切换指标对比:

网优中几种切换失败案例分析与解决

网优中几种切换失败案例分析与解决 摘要:在网优的日常优化中,经常发现由于切换失败而导致的呼叫建立失败、掉话等情况,为有效的解决此方面的问题,提高用户满意度,本文结合笔者一段时间来的优化经验,汇总了几种典型的切换失败案例及解决方案,供大家日常优化中参考。 关键词:CDMA WCDMA TD-SCDMA切换 正文:在网络的日常优化和维护中,我们不可避免的会碰到通话掉话的情况,排除硬件设备故障如基站倒站导致的信号覆盖不良或GCRU(GPS时钟接收单元)板故障导致时钟不同步等情况外,还有部分情况是由于切换失败导致话音指标降低继而引起的掉话,一般来说,这些情况归纳起来主要由如下几方面的原因:a、邻小区列表设置不合理:主要有未添加邻区和优先级设置不合理。b、导频检测参数设置不当引起的切换失败:主要由T-ADD、T-DROP等参数设置不合理,导致部分邻区未能及时进入有效集。c、移动台搜索窗设置不合理引起的切换失败:主要有srch-win-a、srch-win-n等参数设置不当导致强信号未能落入手机的搜索窗而成为干扰信号;d、系统参数如demod-win-length等设置不当引起的切换失败;本文就将结合笔者的理解和实际的案例对上述几种问题进行介绍。 1、关于邻小区列表设置的问题 1.1问题表征现象 手机在通话过程中可以成功的从A小区切换到B小区,但无法从B小区切换到A小区;手机距离某小区C很近,但在手机的导频激活集中看不到C小区的PN码。这样随着手机向目标小区移近,手机导频激活集中的EC/IO将逐渐降低、FER逐渐增大,继而引起掉话。 1.2问题原因分析 一般情况下,CDMA手机有四个寄存器,分别存放6个激活导频集、5个候选导频集和20个相邻导频集。虽然在目前的系统中,部分厂家的数据库最多可提供多达45个相邻小区,但系统通过Neighbor List Updat消息经空中接口向手

LTE切换专题分析指导文档V2.0

东莞LTE切换专题分析指导 1、概述 在无线网络系统中,终端在不同小区间移动,为了保持业务的连续性,网络需要实时监测UE并控制在适当时刻命令UE做跨小区切换。本文主要结合东莞移动LTE现网系统内切换指标情况,根据现网数据统计分析,重点介绍了LTE系统内切换流程,切换类型、分析优化、及典型案例等。 2、切换的含义和流程 LTE系统的整个切换过程完全由网络侧(eNB)控制,所以UE周期性上报相关的无线质量信息给eNB来判断,当eNB收到测量或切换事件上报时,会下发切换命名给UE,UE收到切换命令后,中断与源小区的交互,按切换命令切换到新的目标小区,并通过信令交互通知目标小区,以完成切换过程。切换过程就是终端在移动过程中与网络连接交互发生变化的过程。 2.1 切换门限 为了控制切换信令的准确性和及时性,网络通过一些参数来控制切换,同频切换采用A3事件来触发切换,即目标小区信号质量高于本小区一个门限且维持一段时间就会触发,当终端满足Mn+Ofn+Ocn-Hys>Ms+Ofs+Ocs+Off且维持Time to Trigger个时段后上报测量报告。 Mn:邻小区测量值 Ofn:邻小区频率偏移 Ocn:邻小区偏置 Hys:迟滞值 Ms:服务小区测量值

Ofs:服务小区频率偏移 Ocs:服务小区偏置 Off:偏置值 异频切换采用A1,A2来触发异频测量,A3,A4,A5来进行切换判决触发。现网采用A3,A4算法来判决切换触发。A1门限为停止测量门限,即UE测量到的服务小区RSRP值如果大于该门限,则UE停止异频测量;A2门限为开启测量门限,即UE测量到的服务小区RSRP 值如果小于该门限,则UE开启异频测量;A4门限为切换判决门限,即UE测量到的异频邻区RSRP值如果大于该门限,则UE开始向该异频邻区切换。触发条件: Mn+Ofn+Ocn-Hys>Thresh LTE系统内切换一般分为切换准备、切换执行、切换完成三步。 切换准备:UE根据预定的测量,向源eNB上报测量报告,源eNB根据报告及RRM信息决定UE是否需要切换。当需要切换时,源eNB向目标eNB发送切换请求,目标eNB根据收到的QoS信息执行接纳控制,并返回至ACK。 切换执行:源eNB向UE发送切换指令,UE接到后进行切换并同步到目标eNB,网络对同步进行响应,当UE成功接入目标eNB后,向目标eNB发送切换确认消息。 切换完成:MME向S-GW发送用户面更新请求,用户面切换下行路径到目标侧,目标eNB通知源eNB释放原先占用的资源。切换过程完成。 2.2 切换类型 切换可分为eNB站内切换,X2口切换以及S1口切换,以下分别进行介绍:

相关主题
文本预览
相关文档 最新文档