当前位置:文档之家› 应变片实验指导书

应变片实验指导书

应变片实验指导书
应变片实验指导书

基桩低应变法检测作业指导书

一、检测原理 低应变法目前国内普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。 因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。 二、编制依据及目的 1、编制依据 ⑴国家及部委颁发的相关规范、规程和标准; 《公路工程基桩动测技术规程》(JTG/T F81-01-2004) 《建筑基桩检测技术规范》(JGJ 106-2014) 《建筑桩基技术规范》(JGJ94-2008) 《建筑地基基础设计规范》(GB50007-2011) 《基桩动测仪》(JG/T 3055) ⑵ISO-9001质量标准运行要求。 2、编制目的 通过编制本作业指导书,使地基所全体人员能熟练掌握低应变反射波法进行基桩检测,起到规范检测人员检测方法及程序的作用。 三、适用范围 低应变反射波法适用范围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG桩。

四、检测流程 基桩检测流程图见图1所示。 五、检测方法及工艺要求 (一)检测前的准备工作 1、受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。 2、施工单位按附表1格式填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。 3、施工单位按附表2向检测单位提供基桩工程相关参数和资料。 4、检测前,施工单位做好以下准备工作: ⑴剔除桩头,使桩顶标高为设计的桩顶标高。 ⑵要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。

应变片粘贴实用技巧

应变片粘贴实用技巧 ------卡尔. 霍夫曼

目录 1 绪论 2 应变片的安装 2.1 贴片工的职责和作用 2.2 粘贴剂的种类 2.2.1 各种HBM应变片粘贴剂的特性2.3 粘贴剂的使用 2.3.1 在金属表面粘贴的准备工作 2.3.2 在非金属表面粘贴的准备工作 2.3.3 应变片在医学领域的使用 2.3.4 应变片的准备 2.3.5 粘贴过程 2.3.6 预防措施 3 电缆连接 3.1 焊接工具、焊接材料和配线 3.1.1 焊接烙铁 3.1.2 烙铁头 3.1.3 焊料(软焊料) 3.1.4 熔融 3.1.5 焊接终端 3.1.6 导线材料 3.2 实用技巧 3.2.1 焊接技巧 3.2.2 电缆连接技巧 4 中间检查 4.1 视觉检查 4.2 应变片电的连续性 4.3 连接电缆的电阻 4.4 应变片的绝缘电阻 4.5 连接电缆的绝缘电阻 5 已安装的应变片的防护 5.1 已安装的应变片防护层的使用技巧 5.2 常用的防护材料 6 参考文献

1 绪论 2 应变片的安装 2.1 贴片工的职责和作用 为了正确测量传递的样件的变形,贴片工需要将应变片紧紧地贴在样件上。根据不同的条件、影响因素和适用性,需要不同的贴片工和不同的粘贴方法。粘贴起着重要的作用。考虑到应变片粘贴的适用性,这种连接方法就有些特别优点: ●连接各种材料,甚至不同材料的可能性。根据不同的接合剂,粘贴在室温 或高温环境中进行。 ● 2.2 粘贴剂的种类 2.2.1 各种HBM应变片粘贴剂的特性 2.3 粘合剂的使用 2.3.1 在金属表面粘贴的准备工作 2.3.2 在非金属表面粘贴的准备工作 2.3.3 应变片在医学领域的使用 2.3.4 应变片的准备 2.3.5 粘贴过程 2.3.6 预防措施 3 电缆连接 3.1 焊接工具、焊接材料和配线 3.1.1 焊接烙铁 3.1.2 烙铁头 3.1.3 焊料(软焊料) 3.1.4 熔融 3.1.5 焊接终端 3.1.6 导线材料 3.2 实用技巧 3.2.1 焊接技巧 3.2.2 电缆连接技巧 4 中间检查 4.1 视觉检查 应变片和电缆连接应该用6X放大率的放大镜检查,检查如下:

电阻应变片粘贴实验报告

实验报告(三)电阻应变片的粘贴 实验目的: 1、初步掌握电阻应变片的粘贴技术; 2、初步掌握焊线和检查。 实验设备和器材: 1、电阻应变片 2、试件 3、砂布 4、丙酮(或酒精)等清洗器材 5、502粘接剂 6、测量导线 7、电烙铁 电阻应变片的工作原理: 1、电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化象。 2、当试件受力在该处沿电阻丝方向发生线变形时,电阻丝也随着一起变形(伸长或缩短),因而使电阻丝的电阻发生改变(增大或缩小)。 实验步骤:

1、定出试件被测位置,画出贴片定位线。 2、在贴片处用细砂布按45°方向交叉打磨。 3、然后用浸有丙酮(或酒精)的棉球将打磨处擦洗干净(钢试件用丙酮棉球,铝试件用酒精棉球)直至棉球洁白为止。 4、一手拿住应变片引线,一手拿502胶,在应变片基底底面涂上502胶(挤上一滴502胶即可)。 5、立即将应变片底面向下放在试件被测位置上,并使应变片基准对准定位线。将一小片薄膜盖在应变片上,用手指柔和滚压挤出多余的胶,然后手指静压一分钟,使应变片和试件完全粘合后再放开。从应变片无引线的一端向有引线的一端揭掉薄膜。 6、在紧连应变片的下部贴上绝缘胶布,胶布下面用胶水粘接一片连接片(焊片)。 7、将应变片的引线和连接应变仪的导线相连并焊接在连接片上,以便固定。用绝缘胶布将导线固定在梁上。 实验心得体会(必须写,不少于300字) 经过今天的这次试验我知道了电阻应变片是根据电阻应变效应作成的传感器。在发生机械变形时,电阻应变片的电阻会发生变化。使用时,用粘合剂将应变计贴在被测试件表面上,试件变形时,应变

-应变片单臂电桥性能实验

周康海洋技术1121班学号:2 实验一应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得 (1—1) 当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。对式(1—1)全微分得电阻变化率 dR/R为: (1—2) 式中:dL/L为导体的轴向应变量ε L ; dr/r为导体的横向应变量ε r 由材料力学得:ε L = - με r (1—3) 4) 2、应变灵敏度 它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取 (1—5) 其灵敏度系数为: K= 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。金属导体的电阻应变灵敏度一般在2左右。 3、贴片式应变片应用 在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。 *本实验以金属箔式应变片为研究对象。 4、箔式应变片的基本结构 金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,如图1—1所示。 (a) 丝式应变片 (b) 箔式应变片 图1—1应 (a)、单臂 Uo=U①-U③ =〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E ={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/〔(R5+R1+△R1)(R7+R6)〕}E 设R1=R5=R6=R7,且△R1/R1=ΔR/R<<1,ΔR/R=Kε,K为灵敏度系数。 则Uo≈(1/4)(△R1/R1)E=(1/4)(△R/R)E=(1/4)KεE

基桩低应变法检测实施细则

1目的 为正确使用静力载荷测试仪,保证平板载荷试验操作过程的正确和结果的精确,制定本细则。 2适应范围 本细则适用于检测浅部天然地基、处理土地基和复合地基的承载力,平板载荷试验可确定承压板下应力主要影响范围内天然地基、处理土地基和复合地基的承载力特征值和变形参数。 3编制依据 本细则依据《建筑地基基础检测规范》DBJ15-60-2008编制。 4 仪器设备 4.1主要仪器设备名称:JCQ静载荷测试仪、力传感器、MS-50位移传感器(位移表)、油泵、千斤顶、承压板和和加载反力装臵(荷重),具体数量和型号规格应根据试验荷载要求和工程实际情况确定,采用自动操作记录。 4.2承压板应有足够刚度。承压板可采用圆形、正方形、矩形钢板或钢筋混凝土板。天然地基和处理土地基的承压板尺寸应根据所需评估的地基土的应力主要影响深度范围确定,承压板面积不应小于0.5m2(软土不应小于 1.0m2)。复合地基的承压板面积应等于受检桩(1 根或1 根以上)所承担的面积,承压板形状宜根据受检桩的分布确定。 4.3试验加载应采用油压千斤顶,千斤顶应位于桩的合力中心。当采用两台及两台以上千斤顶加载时,应符合下列规定: ⑴千斤顶的规格、型号相同; ⑵千斤顶的合力中心、承压板中心应在同一铅垂线上; ⑶千斤顶应并联同步工作。 4.4加载反力装臵宜选择压重平台等反力装臵,并应符合下列规定:

⑴加载反力装臵能提供的反力不得小于最大试验荷载的 1.2 倍; ⑵应对加载反力装臵的主要受力构件进行强度和变形验算; ⑶压重应在检测前一次加足,并均匀稳固地放臵于平台上; ⑷压重平台支墩施加于地基土上的压应力不宜大于地基土承载力特征值的 1.5 倍。 4.5荷载测量可用放臵在千斤顶上的荷重传感器直接测定,或采用并联于千斤顶油路的压力表或压力传感器测定油压,根据千斤顶校准结果换算荷载。 4.6宜采用位移传感器或大量程百分表进行承压板沉降测量,其安装应符合下列规定: ⑴承压板面积大于等于 1 m2时,应在其两个方向对称安臵 4 个位移测量仪表,承压板面积小于1 m2时,可对称安臵 2 个位移测量仪表。 ⑵位移测量仪表应安装在承压板上。各位移测量仪表在承压板上的安装点距承压板边缘的距离应一致,宜为25~50mm。 ⑶应牢固设臵基准桩,基准桩和基准梁应具有一定的刚度,梁的一端应固定在基准桩上,另一端应简支于基准桩上; ⑷基准桩、基准梁和固定沉降测量仪表的夹具应避免太阳照射、振动及其他外界因素的影响。 4.7试验仪器设备性能指标应符合下列规定: ⑴压力传感器的测量误差不应大于1%,压力表精度应优于或等于0.4 级。 ⑵在最大试验荷载时,试验用油泵、油管的压力不应超过规定工作压力的80%。 ⑶荷重传感器、千斤顶、压力表或压力传感器的量程不应大于最大试验荷载的 2.5 倍,且不应小于最大试验荷载的 1.2 倍。 ⑷位移测量仪表的测量误差不大于0.1%FS,分辨力优于或等于0.01mm。 4.8试验试坑宽度或直径不应小于承压板宽度或直径的三倍。试坑试验标高应与地基土基底设计标高、或复合地基桩顶设计标高一致。天然地基和处理土地基试验时,承压板底面下宜用中粗砂找平,其厚度不超过20mm;复合地基试验时,承压板底面下应铺设中粗砂垫层,当设计无要求时,其厚度取50~150mm,桩身强度高时取大值。 4.9承压板、压重平台支墩和基准桩之间的距离应符合表1的规定。

应变片单臂半桥全桥性能比较实验

应变片单臂半桥全桥性 能比较实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

应变片单臂、半桥、全桥性能比较实验应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应 (a) 丝式应变片 (b) 箔式应变片 应变片结构图 (a)单臂(b)半桥(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍,全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大器增益不变。 单臂:在应变片测量原理图中R1、R2、R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3、RX为金属箔式应变片。R3与RX符号相反。

全桥:在应变片测量原理图中R1、R2、R3、RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一、调零: 1、按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4使电压表在 200mv时显示为零。 二、单臂实验: 1、按图接线后用RW1调零。 2、把10个20克的法码放到托盘上调增益RW3使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 应变片单臂电桥实验接线示意图 三、半桥实验: 1、按图接线。 应变片半桥实验接线示意图 2、用RW1调零(增益RW3和放大器调零RW4保持在单臂实验壮态不变) 。

基桩检测作业指导书

低应变法作业指导书 1适用范围 1、本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。 本方法的有效检测桩长范围应通过现场试验确定。 2仪器设备 1、检测仪器的主要技术性能指标应符合《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。 2、瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为10~2000Hz的电磁式稳态激振器。 3现场检测 1、受检桩应符合下列规定: (1)桩身强度应符合建筑桩基检测技术规范第3.2.6条第1款的规定。 (2)桩头的材质、强度、截面尺寸应与桩身基本等同。 (3)桩顶面应平整、密实、并与桩轴线基本垂直。 2、测试参数设定应符合下列规定: (1)时域信号分析的时间段长度应在2L/c时刻后延续不少于5ms;幅频信号分析的频率范围上限不应小于2000Hz。 (2)设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。(3)桩身波速可根据本地区同类型桩的测试值初步设定。 (4)采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点。 (5)传感器的设定值应按计量检定结果设定。 3、测量传感器安装和激振操作应符合下列规定: (1)传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。 (2)实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90°,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 (3)激振点与测量传感器安装位置应避开钢筋笼的主筋影响。 (4)激振方向应沿桩轴线方向。 (5)瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用宽脉冲

实验一 金属箔式应变片实验报告

厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三 金属箔式应变片 ——单臂、半桥、全桥 实验台号: 专 业: 物联网工程 年 级: 2014级 班 级: 1班 学生学号: ITT4004 学生姓名: 黄曾斌 实验时间: 2016 年 5 月 20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

1作业指导书(基桩低应变动力检测).

作业指导书 (基桩低应变动力检测 编写:吕宜媛、何秀备 审核:马鹏 批准:钟聪达 版号:第1版 文件编号:HDJC/SG-01-2002 生效日期:2003年1月1日 目录 1适用范围 2检测依据标准 3检测的目的 4检测原理 5仪器设备 6检测准备 7检测技术

8现场检测 9资料整理与成果分析 10报告编写 1适用范围 适用于建筑、道路、桥梁、水电、港口等桩基工程 2检测依据标准 中华人民共和国行业标准《基桩低应变动力检测规程》(JGJ/T93-95); 浙江省标准《基桩低应变动力检测技术规程》(DBJ10-4-98)。 3检测的目的 (1)评价桩体结构完整性; (2)测定桩长(或桩体弹性波速度)及砼强度等级。 4检测原理 本次基桩质量检测的方法采用低应变反射波法,这是我国建设部1995年颁发的《基桩低应变动力检测规程》中规定的一种方法,也是近年来国内外广泛采用的测桩新技术之一,用该方法可全面、快速、经济、准确地检测基桩质量,特别对检测缩径、夹泥、空洞、断桩等颇为灵敏,从而弥补了静荷载试验的不足。 反射波法的检测原理是以一维弹性杆件的应力波理论为基础的。由一维波动理论可知,应力波从一种介质向另一种介质传播时,其波阻抗比N、反射系数F为: N=(ρVcA1/(ρVcA2

F=(1-N/(1+N 式中ρ ——桩身材料(砼密度(kN/m3); Vc ——桩中应力波传播速度(m/s); A——桩身的横截面积(m2)。 由于应力波的反射是由材料的波阻抗比发生变化而引起的,故由上式可知,若桩身介质密度ρ或桩身横载面A发生变化时,则会使入射波产生反射。 测试时,在桩顶锤激力的作用下,产生一弹性压缩波,此波以波速Vc沿桩身向下传播,当遇到桩身截面变化或者桩身介质密度变化时,入射波将产生反射和透射,反射信号由安装在桩顶的检波器接收,通过RSM-24FD桩基动测仪采集信号,再送到微机由多功能专用软件进行综合分析,根据处理后的时域波形图和频谱图,则可判断桩身是否有缺陷及缺陷的类型、位置和缺陷程度,由桩端反射波到达检波器的时间△T可算出桩身介质的波速。桩身介质的波速Vc和桩身缺陷的深度Li,分别按下列公式计算: Vc=2×L/△T Li=0.5×Vcm×△Ti 式中 L ——桩长(m); Vc ——基桩桩身材料的波速(m/s); Vcm ——同一工地内桩身材料的平均波速(m/s); △Ti ——桩身缺陷Li部位的反射波到达时间(S)。 5仪器设备 (1)仪器一般由传感器、数据采集(放大、滤波、记录)、处理和监视系统,以及专用附件组成。 (2)采集放大部分的增益一般应大于60dB,其频带宽度应宽于10~10000Hz,滤波频率可调。终端具有波形监视设备及模拟记录或数字磁记录装置。 (3)多道数据采集系统,其放大器应具有良好一致性。其振幅一致性偏差应小于3%,相位一致性偏差应小于0.1ms,折合输入端的噪声水平应低于1μV (Vpp)。

应变片实验报告

传感器实验--- 金属箔式应变片:单臂、半桥、全桥比较 【实验目的】 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 验证单臂、半桥、全桥的性能及相互之间关系。 【所需单元及部件】 直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压 /频率表、电 源,重物加在短小的圆盘上。 【旋钮初始位置】 直流稳压电源打到 +2V 挡,电压/频率表打到2V 挡,差动放大增益最大。 【应变片的工作原理】 当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变 效应。 设有一根长度为 L 、截面积为S 、电阻率为p 的金属丝,在未受力时,原始电阻为 当金属电阻丝受到轴向拉力 F 作用时,将伸长 横截面积相应减小 A S ,电阻率因晶格变化 等因素的影响而改变 Ap 故引起电阻值变化 AR 。对式(1 — 1)全微分,并用相对变化量来表示, 则有: 【测量电路】 应变片测量应变是通过敏感栅的电阻相对变化而得到的。通常金属电阻应变片灵敏度系数 K 很 小,机械应变一般在 10X10-6?3000X 10-6之间,可见,电阻相对变化是很小的。例如,某传感器弹性 元件在额定载荷下产生应变 1000 10 -6 ,应变片的电阻值为120 ,灵敏度系数 K=2,则电阻的 R 相对变化量为 K 2 1000 10 -6 =0.002,电阻变化率只有 0.2%。这样小的电阻变化,用一 R 般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。最常用的电路 为电桥电路。 R L S R L S (1-2)

直流电桥的电压输出 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为 无穷大,这时电桥以电压的形式输出。输出电压即为电桥输出端的开路电压,其表达式为 R 1 R 3 R 2 R 4 (R I R 2X R 3 R 4) 设电桥为单臂工-作状态,即R i 为应变片,其余桥臂均为固定电阻。 当R i 感受应变产生电阻增 衡引起的输出电压为 根据式(1-4)可得到输出电压为 duoo oLho (a )单臂 (b )半桥 (c )全桥 图1-1应变电桥 (1-3) R i 时,由初始平衡条件 R 1R 3 R 2R 4 得負 t ,代入式(1-3),则电桥由于 R 1产生不平 R 2 (R 1 R 2)2 R 1U R 1 R 2 (R 1 R 2)2 R 1 L U (1-4) 对于输出对称电桥,此时 R 1 R 2 R ,R 3 R 4 R',当R 1臂的电阻产生变化 R 1 R ,

金属箔式应变片性能实验报告

实验报告 姓名:学号:班级: 实验项目名称:实验一金属箔式应变片性能——单臂电桥,半桥 实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。 实验原理: 单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。 电桥的灵敏度:电桥的输出电压(或输出电流) 与被测应变在电桥的一个桥臂上引起的电阻变化率之 间的比值,称为电桥的灵敏度。如图是直流电桥,它 的四个桥臂由电阻R1、R2、R3、R4组成,U。是供桥电 压,输出电压为: 当R1×R3=R2×R4则输出电压U为零,电桥处于平 衡状态。 如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U发生变化。当臂工作时,电桥只有R4桥臂为应变片,电阻变为R+R,其余各臂仍为固定阻值R,代入上式有 组桥时,R1和R3,R2和R4受力方向一致。 实验步骤(电路图): (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 图1金属箔式应变片性能—单臂电桥电路 (4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。建议每旋动测微头一周即ΔX=0.5mm 记一个数值填入下表: (6)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F /V表显示的电压相应变化)。 (7) 将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示表显示为零,重复(5)过程同样测得读数,填入下表: 实验结果及分析: 单臂电桥结果: 位移(mm)-1.0 -0.5 0.5 1.0 1.5 电压(mv)-0.057 -0.044 0.012 0.025 0.036 灵敏度计算:电压变化的平均值=0.013mv S=ΔV/ΔX=0.026mv/mm 结果分析:半桥的灵敏度是单臂电桥灵敏度的2倍。 实验中的注意事项及实验感想、收获或建议等:

钻芯法检测桩身完整性作业指导书

1、目的: 用以规范钻芯法测砼灌注桩桩长、桩身砼强度、桩底沉渣厚度及预应力砼管桩状身砼强度试验方法。 2、检测依据: 2.1 JGJ106-2014《建筑基桩检测技术规范》 2.2 DB42/269-2003《建筑地基基础检测技术规范》 2.3 DB42/489-2008《预应力砼管桩基础技术规范》 2.4 GB/T19496-2004《钻芯检测离心高强砼抗压强度试验方法》 2.5 GB/T50081-2002《普通砼力学性能试验方法》 3、仪器设备: 3.1WE-300B液压式万能材料试验机 3.2钢直尺:量程0-500,精度0.5mm; 3.3游标卡尺:量程0-150mm,精度0.02mm; 3.4XHZB200砼钻孔取样机 4、环境要求: 4.1 周围无振动 4.2 温度5~350C,相对湿度小于90%。 5、检测程序: 5.1钻芯法砼灌注桩桩身长度、桩身砼强度及桩底沉渣厚度检测: 5.1.1 抽检数量:总桩数的10%。 5.1.2 检测前准备: 5.1.2.1接到检测通知后,应对所使用的仪器设备进行调试,使设备始终处于良好的使用状态和受控状态; 5.1.2.2填写好设备前使用记录。 5.1.3 受检桩的钻芯孔数、开孔位置及钻取方法应符合下列规定: 5.1.3.1桩身直径小于1.2m的钻孔数量可为1个~2个孔,桩身直径1.2m~1.6m的桩的钻孔数量宜为2个孔,桩身直径大于1.6m的桩的钻孔数量宜为3个孔。 5.1.3.2当钻芯孔为1个时,宜距桩中心10cm~15cm的位置开孔,当钻芯孔为2个或2个以上时,开孔位置宜距桩中心0.15d~0.25d范围内均匀对称布置(d为桩身直径)。 5.1.3.3对桩端持力层的钻探,每根受检不应少于1个孔。 5.1.3.4当选择钻芯法对桩身质量、桩底沉渣、桩端持力层进行验证检测时,受检桩的钻芯孔数可为1孔。 5.1.3.5钻孔设备安装必须周正、稳固、底座水平。钻机在钻芯过程中不得发生倾斜、移位,钻芯孔垂直度偏差不得大于0.5%。 5.1.3.6每回次钻孔进尺宜控制在1.5m内;钻至桩底时,宜采用减压、慢速钻进、干钻等适宜的方法和工艺,钻取沉渣并测定沉渣厚度。

电阻应变片的粘贴技术

电阻应变片的粘贴技术 一、实验目的 1.初步掌握常温用电阻应变片的粘贴技术。 2.初步掌握接线、检查等准备工作。 二、实验设备和器材 1.常温用电阻应变片 2.数字式万用表。 3.502粘结剂。 4.电烙铁、镊子、沙纸。 5.等强度梁试件,温度补偿块。 6.丙酮、药棉等。 7.测量导线若干。 三、实验方法和步骤 1.检查应变片的外观和电阻(电阻为200Ω±0.5Ω)。 2.测点表面的清洁处理:为使应变计与被测试件贴得牢,对测点表面要进行清洁处理。首先把测点表面用砂纸打磨;使测点表面平整、光洁。用棉花球蘸丙酮擦洗表面的油污,到棉花球不黑为止。再用划针在测片位置处划出应变计的座标线。 3.贴片:在测点位置和应变片的底基面上,涂上薄薄一层胶水,用镊子夹住应变片,把应变片轴线对准座标线,上面盖一层聚乙烯塑料膜作为隔层,用手指在应变计的长度方向滚压,挤出片下汽泡和多余的胶水,手指保持不动约1分钟后再放开,注意按住时不要使应变片移动,轻轻掀开薄膜检查有无气泡、翘曲、脱胶等现象。 4.贴接线端子片、焊接:将端子片基地和待贴位置处涂抹上一层胶水,等贴牢后将应变片的两个引出线分别焊接到端子片上,再将两根导线分别焊接到另外的两个端子上,注意不能出现短路的情况。 5.检查应变片是否通路,并测量阻值。 四.实验结果 1.电阻理论值为120Ω,测量电阻值均符合要求。

一、应变计的选择 1、1/4桥 λε,仪器调零困难。同时也受温度的影响,用手握住导线的变化就能有100εμ2根线的1/4桥:长的引线会引入电阻导致电桥不平衡,6m长的导线导致电桥不平衡量为29000 以上。 λ,仪器调零容易。也不受导线温度的影响。εμ3根线的1/4桥:6m长的导线导致电桥不平衡量为400 2、应变计的长度选择:要基于应力的分布。 λ应变测量的是局部区域的平均,而非某点的微应变。当应力是线性分布,应变计的长度无影响。 λ应力集中时,最好用非常小的应变计贴在应力集中处,应变计应比应力集中点稍大一点。 λ各向异性材料(如混凝土、碳纤维复合材料等),用长应变计在较大区域得到平均值。 3、应变片样式 λ单向应变计:需要知道主应力方向; T型应变计:也需要知道主应力方向;λ 三片应变花:不知道主应力方向时,可随意贴,通过计算可得出最大最小主应力和方向。λ 剪切式应变计:用于剪切和扭转。λ 4、应变计电阻选择 常用的有120Ω、350Ω和1000Ω。 电阻120Ω350Ω 优 点应变计尺寸小电流低,发热功率低 成本稍低可大电压激励,信号噪声小

应变片性能实验

实验一 应变传感器的性能研究 一、实验类型:验证性实验。 二、实验目的 1. 观察了解箔式应变片的结构及粘贴方式; 2. 测试应变梁变形的应变输出; 3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。 三、实验内容 1. 设计并实现应变传感器的测试桥路; 2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。 四、实验原理 1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑?= R R R ;当二个应变片组成差动状态工作,则有 2R R R ?= ∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4R R R ?= ∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。 2. 已知单臂、半桥和全桥的 R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。根据戴维南定理可以 得出测试电桥的输出电压近似等于1/4E R ??∑,电桥灵敏度//Ku V R R =?,于是对应 于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。 五、实验要求 1. 熟悉CSY 系统传感器实验系统; 2. 能自行设计实现应变式传感器的测量桥路; 3. 掌握应变式传感器的各种测量电路的性能。 六、实验仪器设备 主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

金属箔式应变片半桥性能实验报告

南京信息工程大学传感器实验(实习)报告 实验(实习)名称金属箔式应变片半桥性能实验实验(实习)日期12.2得分指导老师 系专业班级姓名学号 实验目的:比较半桥与单臂电桥的不同性能、了解其特点。 实验内容: 基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。 实验步骤: 1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实 验模板放大器的调零电位器R W4,使电压表显示为零。 图2 应变式传感器半桥接线图 2、拆去放大器输入端口的短接线,根据图2接线。注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。实验完

毕,关闭电源。 实验结果: 表2 解:S=200/80=2.5 δ=Δm/y FS×100%=1/200x100%=0.5%

实验三__应变片全桥性能实验

实验三应变片全桥性能实验 一、实验目的:了解应变片全桥工作特点及性能。掌握测量方法。 二、基本原理:应变片基本原理参阅实验一。应变片全桥特性实验原理如图3—1所示。应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。其输出灵敏度比半桥又提高了一倍,非线性得到改善。 图3—1应变片全桥性能实验接线示意图 三、需用器件和单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。 四、实验步骤: 将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。实验完毕,关闭电源 五、实验结果及分析 位移(mm)0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 电压(mv)0 -0.03 -0.07 -0.10 -0.14 -0.17 -0.20 位移(mm)-3.5 -4.0 -4.5 -5.0 -5.5 电压(mv)-0.23 -0.27 -0.30 -0.34 -0.37 位移(mm)0 0.5 1.0 1.5 2.0 2.5 3.0 电压(mv)0.01 0.05 0.09 0.13 0.18 0.23 0.27

位移(mm) 3.5 4.0 4.5 5.0 5.5 电压(mv)0.32 0.36 0.41 0.46 0.51 最小二乘法拟合如图所示 由此可知灵敏度为0.07935,经计算最大非线性误差为0.039mv,线性度为7.69%。 六、实验心得 实验中应变梁的自由端产生负位移后,重新回到位移原点时,其电压值并不为零,这体现了传感器的迟滞。迟滞误差在本次拟合中修正了。

沉桩作业指导书

上海沪芦高速公路10-C标 沉 桩 作 业 指 导 书 受控编号: 编制: 审核: 审批: 中铁四局集团沪芦10-C标项目经理部 2004年7月10日

作业指导书修改记录表 批准人: 2004年7月10

1、目的/适用范围 为了使沉桩施工整个过程处于受控状态,确保沉桩施工质量和安全。 本作业指导书适用于本标段所有桩基施工。 2、主要技术标准 (1)桩心横向偏移不得超过50mm,纵向不得超过40mm; (2)桩的倾斜度不得超过1%; (3)贯入度、桩尖标高不得小于设计值; (4)焊缝质量按二级标准施焊。 3、施工方法 3.1前言 本标段共有墩台154个,总桩数1696根,总延米数59520米,桩长为29.0~45.0m不等,共九种规格。同一承台内相邻桩的接头位臵错开≮1m,主线桥上节桩采用AB型桩,桩长应大于12m;中下节采用A型桩,最小桩长应大于8m。匝道桥、人民塘桥、白龙港桥都采用AB 型桩。 根据设计提供的地质勘探资料、桩位布臵、桩深和我公司的打桩经验,结合现场实际考察,本标段选用日产508柴油打桩机。 3.2准备工作 3.2.1进场验收 本标段所用φ600mmPHC管桩一律采用外购,制造厂家必须具有相应资质。产品进场必须带合格证,并严格按照下表(表6-2)进行外观验收,不合格者不予使用。 1)外形验收 预应力管桩外形尺寸验收标准

2) 外观验收: ⑴预应力混凝土管桩不得有裂缝。 ⑵桩表面上不得有深度超过5mm的蜂窝、麻面、气孔(气泡),且在每个面上所占面积的总和不超过该面面积的0.5%,并不得过分集中。 ⑶桩端面应平整,法兰盘焊缝不许开裂。 ⑷桩身混凝土不得有明显接茬及混凝土严重离析现象。 3.2.2沉桩工艺试验 正式沉桩施工前,根据不同的地质情况,采用不同型号、性能的桩锤,对φ600PHC管桩进行沉桩工艺试验。根据实测数据提出沉桩试验报告,为大批量沉桩施工提供重要依据。 1) 测试内容包括桩节段组成、节段焊缝操作及质量检查记录和沉桩记录即每米击数、最后2~3m每300mm锤击数、落锤高、桩垂直度、桩偏差、焊接时间等。 2) 沉桩工艺试验目的: (1) 检验桩沉入土中的深度能否达到设计要求。 (2) 选定沉桩的锤击性能、衬垫(锤垫、桩垫)及其参数。 (3) 实测沉桩锤击力。 (4) 桩身锤击应力、并指出最大拉压应力值及发生部位。 (5) 锤击次数、沉桩曲线图表。 (6) 桩的承载力。

应变片贴法注意事项

应变计粘贴、连接、防护方法简述 在电阻得各种安装方法中,粘贴法应用最多。应变计粘贴质量得好坏,就是决定应变测试成功与否得关键因素之一,因此,粘贴时必须严格按照粘贴得工艺流程进行操作。 一、应变计粘贴与防护得工艺流程: (1)应变计选择→(2)胶粘剂选择→(3)构件打磨→(4)表面清洗→ (5)画线定位→(6)应变计清洗→(7)涂敷底胶→(8)应变计粘贴→(9)加热固化→(10)贴片质量检查→(11)引线连接→(12)质量检查→(13)常温及温度性能补偿→(14)质量检查→(15)性能测试→(16)防护处理。 二、应变计粘贴工艺方法 使用不同粘结剂粘贴应变计得工艺就是有差异得,这里我们只对其中得一些共同性得内容加以介绍。 (1)应变计得准备 应变计得准备就是指应变计得选择、应变计检查与应变计表面处理。应变计得 选择我们在前面已经做了专门介绍,这里仅介绍其它两方面得内容。 a、应变计检查:包括外观检查与阻值检查 外观检查主要瞧基底与盖层有否破损,敏感栅有否锈斑,引线有无折断得危 险,敏感栅排列就是否整齐,有无短路、缺口、断栅、划伤与变形,基底就是否有气泡、皱折、坑点存在。 测量电阻应该精确到0、1Ω。 b、应变计表面处理 应变计在使用前,要用脱脂棉浸无水乙醇擦洗,注意两面都要清洗,对没有 盖层得应变计,要顺着敏感栅得方向轻轻擦洗,洗净后用红外线灯或其它烘干装置烘干备用。 (2)粘贴表面得处理 为了使应变计粘贴牢固,需要对粘贴表面进行机械、化学处理、处理范围约 为应变计面积得3-5倍。 首先除去油污、锈斑、氧化膜、镀层、涂料等,根据试件材料选用粒度为220-400#得砂纸进行打磨,并打出与贴片方向呈45°角得交叉条纹,然后用浸有丁酮或丙酮得脱脂棉球清洗打磨部位,并用无水乙醇清洗至棉球上不见任何污渍为止。注意,擦洗时要沿单一方向进行,不要来回交替擦拭。清洗干净得表面要避免再次污染(如用嘴吹气)及手触摸,待溶剂挥发表面完全干燥后立刻贴片。

传感器实验报告应变片测量

传感器实验报告 一、实验原理 利用电阻式应变片受到外力发生形变之后,金属丝的电阻也随之发生变化。通过测量应变片的电阻变化再反算回去应变片所受到的应变量。利用电桥将电阻变化转化成电压变化进行测量,电桥的输出电压经过应变放大仪之后输出到采集卡,labview 采集程序通过采集卡 读取到应变放大仪的输出。 1 4 电桥输出电压与导体的纵向应变ε之间的关系为: 1 4 v V K ε=??? (1.1) 其中K 为电阻应变片的灵敏系数,V 为供桥电压,v 为电桥输出电压。由上式可知通过测量电桥输出电压再代入电阻应变片的灵敏系数就可以求出导体的纵向应变,即应变片的纵向应变。 二、实验仪器 悬臂梁 一条 应变片 一片 焊盘 两个 502胶水 一瓶 电阻桥盒 一个 BZ2210应变仪 一台 采集卡 一个 电脑 一台 砝码 一盒 三、实验步骤 1、先用砂纸摩擦桥臂至光滑,再用无水乙醇擦拭桥臂; 2、拿出应变片和焊盘,将502胶水滴在应变片及焊盘背面,把其贴在桥臂上,并压紧应变片; 3、使用电烙铁将应变片和焊盘焊接起来,再将焊盘跟桥盒连接起来,这里采用的是1 桥的接法; 4、将桥盒的输出接入到应变放大仪的通道1; 5、应变仪的输出接到采集卡上; 6、运行labview 的采集程序进行测试;

7、改变砝码的重量,从采集程序记录得出的数据。 8、对所得的数据做数据处理。 四、实验数据

五、数据分析 1、线性度分析 取出实验数据的0~250g的部分做线性度分析,数据如表2所示。

对上述数据进行初步分析,第一组跟第三组数据都是呈线性的,而第二组数据在70g-100g 这里却有了0.0013的变化,变化较大,不符合理论值,所以在进行数据分析时排除第二组数据,仅适用第一、第三组数据进行数据分析。对第一、第三组数据使用MATLAB 进行分析,先将两组数据做曲线拟合,得到拟合曲线之后将x 代入拟合曲线中求出对应的值,再把两组数据的端点取出做直线,将两条线相减得到最大差值,分别求出两组数据的最大差值,再代入公式max =100%L FS L Y γ?± ? 求出每组数据的线性度。FS Y 指的是满量程输出,这里取重量为250g 的数据。 具体实现的MATLAB 代码: x=[0 10 20 30 40 50 70 100 120 150 170 200 250]; x0=[0 250]; y01=[2.8646 2.8734]; y03=[2.8736 2.8828]; y1=[2.8646 2.8646 2.8648 2.8652 2.8653 2.8687 2.8662 2.8677 2.8681 2.8696 2.8701 2.8715 2.8734];%第一组数据 y2=[2.8613 2.8615 2.8619 2.8623 2.8625 2.8629 2.8637 2.865 2.8657 2.8668 2.8836 2.8847 2.886];%第二组数据 y3=[2.8736 2.8739 2.8742 2.8745 2.8749 2.8752 2.876 2.8771 2.8778 2.879 2.8798 2.8807 2.8828];%第三组数据 p1=polyfit(x,y1,1); p2=polyfit(x,y2,1); p3=polyfit(x,y3,1); p4=polyfit(x0,y01,1); p5=polyfit(x0,y03,1);

相关主题
文本预览
相关文档 最新文档