当前位置:文档之家› 三星图像传感器

三星图像传感器

图像传感器综述.

图像传感器综述 通过前几篇文章,相信大家可能对数码图像和色彩有了一定的认识。从这篇文章开始,我们将会对大家拍摄使用的“武器”--数码相机进行全方位的介绍。首先我们来了解一下数码相机的核心部件--图像传感器。 一、图像传感器的历史 与传统相机不同,数码相机并不是使用胶片来感光,而是使用图像传感器来捕捉图像。图像传感器的历史可以说非常的悠久:早在1873年,当时科学家约瑟·美(Joseph May及伟洛比·史密夫(WilloughbySmith就发现了硒元素结晶体感光后能产生电流,这是电子影像发展的开始。以后陆续有组织和学者研究电子影像,发明了几种不同类型的图像传感器。其中重要的发明有20世纪50年代诞生的光学倍增管(Photo Multiplier Tube,简称PMT和70年代出现的电荷耦合装置(Charge Coupled Device,简称CCD。 20世纪末,又有三种新型的图像传感器问世了,它们分别是互补氧化金属半导体(Complementary Metal Oxide Semiconductor,简称CMOS、接触式图像传感器(Contact lmage Sensor,简称CIS和LBCAST传感器系统(Lateral Buried Charge Accumulator, Sensing Transistor Array。 二、PMT PMT是最早出现的图像传感器,从五十年代发展到现在,技术已经非常成熟,是目前性能最好的传感器。它就像一个圆柱体小灯泡,直径约一寸,长度约二寸;内置多个电极,将进入的光信号转化为电信号,即使很微弱的光线也可准确补捉。其最高动态范围可达4.2,相对于其它类型只能达到3.2-3.6的传感器,PMT要胜出不少;而且它非常耐用,可以运作十万小时以上。但是由于其造价相当高,只能应用于专业的印刷、出版业扫描仪及工程分析仪等。 类似小灯泡的传感器“PMT”

基于CCD图像传感器驱动电路的设计

基于CCD图像传感器驱动电路的设计 摘要:本文以TCD1501C型CCD图像传感器为例。介绍了其性能参数及外围驱动电路的设计,驱动时序参数可以通过VHDL程序灵活设置。该电路已成功开发并应用于某型非接触式位置测量产品中。 关键词:CCD 驱动时序放大器 1引言 电荷耦合器件(CCD)是20世纪60年代末期出现的新型半导体器件。目前随着CCD器件性能不断提高。CCD驱动器有两种:一种是在脉冲作用下CCD器件输出模拟信号,经后端增益调整电路进行电压或功率放大再送给用户:另一种是在此基础上还包含将其模拟量按一定的输出格式进行数字化的部分,然后将数字信息传输给用户,通常的线阵CCD摄像机就指后者,外加机械扫描装置即可成像[1]。所以根据不同应用领域和技术指标要求。选择不同型号的线阵CCD器件,设计方便灵活的驱动电路与之匹配是CCD应用中的关键技术之一。 2CCD工作原理 CCD是以电荷作为信号,而不同于其他大多数器件是以电流或者电压为信号,其基本功能是信号电荷的产生、存储、传输和检测。当光入射到CCD的光敏面时,CCD首先完成光电转换,即产生与入射光辐射量成线性关系的光电荷。CCD的工作原理是被摄物体反射光线到CCD器件上,CCD根据光的强弱积聚相应的电荷,产生与光电荷量成正比的弱电压信号,经过滤波、放大处理,通过驱动电路输出一个能表示敏感物体光强弱的电信号或标准的视频信号。基于上述将一维光学信息转变为电信息输出的原理,线阵CCD可以实现图像传感和尺寸测量的功能。 3驱动电路的实现 图像传感器TCD1501C的主要技术指标如下:像敏单元数为5 000;像元尺寸为7μm×7μm;像元中心距为7μm;像元总长为35mm;光谱响应范围为400nm-1000nm.光谱响应峰值波长为550nm,灵敏度为10.4V/lx.s~15.6V/lx.s。使CCD芯片正常工作的驱动电路主要有两大功能:一是产生CCD工作所需的多路时序脉冲;二是对CCD输出的原始模拟信号进行处理,包括增益放大、差分信号到单端信号的转换[2]。最后驱动器输出用户所需的模拟或视频信息。 3.1 基于VHDL的驱动时序设计 本部分的设计是基于Xilinx公司的CPLD XC9572一PC44-10,在ISE6.1环境下开发实现的。CCD器件需要复杂的三相或四相交叠驱动脉冲,多数面阵CCD 都是三相或四相驱动,多数线阵CCD都是二相驱动。CCD为容性负载,工作频

CCD图像传感器详解汇总

CCD图像传感器 CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。实验室用的数码相机、光学多道分析器等仪器,都用了CCD 作图象探测元件。 一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。 一.CCD的MOS结构及存贮电荷原理 CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。 当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。光越强,势阱中收集的电子越多,光弱则反之,这样就把光的强弱变成电荷的数量,实现了光与电的转换,而势阱中收集的电子处于存贮状态,即使停止光照一定时间内也不会损失,这就实现了对光照的记忆。

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

CMOS图像传感器的研究进展_李继军.

. net 光学制造 1内蒙古工业大学理学院, 内蒙古呼和浩特 0100512北京师范大学遥感与 GIS 研究中心遥感科学国家重点实验室, 北京 10087! " 5 Li Jijun 1 Du Yungang 1Zhang Lihua 1, 2 Liu Quanlong 1Chen Jianrui 1 1School of Science, Inner Mongolia University of Technology , Hohhot, Inner Mongolia 010051, China, 2State Key Laboratory of Remote Sensing Science, Research Center of Remote Sensing &GIS, Beijing Normal University ,Beijing 100875, China #$$$$$$$$$$$% &’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( 摘要 20世纪 90年代以来, 随着超大规模集成 (VLSI 技术的发展, CMOS 图像传感器显示出强劲的发展势头。简要介绍了 CMOS 图像传感器的结构及工作原理, 详细比较了 CMOS 图像传感器与 CCD 的性能特点, 讨论了 CMOS 图像传感器的关键技术问题,并给出了相应的解决途径,综述了 CMOS 图像传感器的国内外研 究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 关键词光电子学; 传感器; CMOS 图像传感器; CCD ; 关键技术问题 Abstract

Since the 1990s, with the development of very large scale integration (VLSI,CMOS image sensors have been developed rapidly. The structure and working principle of CMOS image sensors are introduced. The performances between CMOS image sensor and CCD are compared in detail. The key technical problems of CMOS image sensors are discussed, and the related solving ways are given. The development situation of CMOS image sensors at home and abroad is reviewed, and the development trends of CMOS image sensors are prospected. Key words optoelectronics; sensor; CMOS image sensor; CCD; key technical problem 中图分类号 O436 doi :10.3788/LOP20094604.0045 1引言 CMOS 图像传感器的研究始于 20世纪 60年代末, 受当时工艺技术的限制, 发展和应用有限。直到 20世纪 90年代初,随着大规模集成电路设计技术和信号处理技术的提高, CMOS 图像传感器才日益受到重视 [1~3], 成为固体图像传感器的研发热点。近几年来, 随着集成电路设计技术和工艺水平的长足进步 , CMOS 图像传感器的一些性能指标已接近甚至超过CCD 图像传感器 [4~6]。 本文简要介绍了 CMOS 图像传感器的结构及工作原理,详细比较了 CMOS 图像传感器与 CCD 的性 能特点,讨论了 CMOS 图像传感器的关键技术问题, 并给出了相应的解决途径, 综述了 CMOS 图像传感器的国内外研究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 2结构及工作原理 CMOS 图像传感器的总体结构如图 1所示

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

型CMOS图像传感器原理及设计

新型CMOS图像传感器原理及设计金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)图像传感器和电荷耦合元件(Charge Coupled Device,CCD)摄像器件在20年前几乎是同时起步的。CCD是应用在摄影摄像方面的高端技术元件,CMOS则应用于较低影像品质的产品中。 由于CCD器件有光照灵敏度高、噪音低、像素小等优点,所以在过去15年里它一直主宰着图像传感器市场。与之相反,CMOS图像传感器过去存在着像素大,信噪比小,分辨率低这些缺点,一直无法和CCD技术抗衡。但是随着大规模集成电路技术的不断发展,过去CMOS图像传感器制造工艺中不易解决的技术难关现已都能找到相应解决的途径,从而大大改善了CMOS图像传感器的图像质量。 1 CMOS有源像素传感器 近来CMOS图像传感器受到重视首要原因在于过去大大低于CCD的灵敏度问题逐步得到解决。因为与CCD相比,CMOS传感器具有更好的量产性,而且容易实现包括其他逻辑电路在内的SoC(System on Chip)产品,而这在CCD中却很难实现。尤其是CMoS传感器不像CCD那样需要特殊的制造工艺,因此可直接使用面向DRAM等大批量产品的生产设备。这样一来,CMOS 图像传感器就有可能形成完全不同于CCD图像传感器的成本结构。 图1示出了有源像素CMOS图像传感器(ActivePixel Sensor,APS)的功能结构图,其中成像部分为光敏二极管阵列(Photo Diode Array)。 四场效应管(4T)有源像素CMOS图像传感器的每个像素由光敏二极管、复位管T2、转移管T1、源跟随器T3和行选通开关管T4组成,如图2所示。

基于4T像素结构的CMOS图像传感器设计

基于4T像素结构的CMOS图像传感器设计 发表时间:2018-07-18T16:50:27.360Z 来源:《科技新时代》2018年5期作者:陈雷 [导读] 文中介绍了基于一种4T像素结构的图像传感器的设计. 广东省深圳市深圳市华海技术有限公司 518051 摘要传统的CMOS图像传感器采用3T像素结构,但由于自身结构的关系,整体性能难以满足较高的要求,4T像素结构应运而生,它比3T像素有更小的噪声,更好的性能;同时要求控制部分更加复杂.文中介绍了基于一种4T像素结构的图像传感器的设计. 关键词3T;4T;APS;图像传感器 CMOS图像传感器是在20世纪60年代末期出现的由IBM和仙童公司开发的双极型和MOS光敏二极管阵列结构⑴.在图像传感器中最常用的光敏器件是反偏PN结光电二极管和P+/N/P埋藏光电二极管(BuriedPhotoDiode)。其中埋藏光电二极管像素比反偏PN结像素有更好的灵敏度,另外由于M1(Tx)的存在,使像素的可控性更好,有效地降低热噪声和暗电流.但4T结构比3T多了一个管子,在同样像素尺寸条件下,填充率比3T像素小.3T像素由于自身结构的关系,暗电流不能得到很好的控制,性能难以满足较高的要求;为满足需要,4T像素结构应运而生,它比3T 像素有更小的噪声,更好的性能;同时要求控制部分更加复杂⑷ 14T像素图像传感器的设计 1.14T像素与读取电路结构设计 T1时刻,完成对光敏二极管和P点连接的寄生电容Cp的复位,光电荷开始聚集; T2时刻,再次完成P点寄生电容的复位,寄生电容Cp存入电压VDD; T3时刻,经过源跟随器对电容CP.电压进行采样,到T4时刻,完成采样。源跟随器增益AP,CP电压存于电容CP;电容CP上电压 Vc1=AP?VDD; T5时刻,光信号积分完成,图像信号产生;M1管打开,光电荷流向寄生电容CP,T6时刻完成电荷转移。寄生电容CP上电压为 Vcp=VDD-Vsignal; T7时刻,对CP上的电压进行采样。到T8时刻,完成采样,CP上的电压存于电容C8;C8上的电压为VC8=AP?(VDD-Vsignal); 由此可知,电容C和电容C上的电压差得到相关的图像信号电压(前文对相关双采样论述详细,这里没有再对噪声信号进行分析,因此各电容电压均为近似值). 1.2系统概述, CMOS图像传感器的集成度高,在同一芯片上集成有模拟信号处理电路和数字信号处理电路。描述了CIS芯片的系统模块.芯片可以通过I.c接口将用户设定保存在控制寄存器中,控制寄存器的值决定了系统的工作状况.时序与控制模块产生控制信号,控制曝光顺序,放大器增益,AD转换启止,数据流时序和数据读取.传感器模拟电路主要包括一个像素矩阵,一个方向上的寻址寄存器,2个Y方向上的寻址寄存器,校正噪声的列放大器PGA(programmable—gainamplifier),一个模拟多路开关,一个ADC模数转换器.数字电路包括时序与控制模块,控制寄存器与I2C 接口模块,色彩校正和色彩补偿模块.从像素列读出的图像信号首先经过可控增益放大器PGA,放大后的信号再由列级A/D转换器转换为数字信号并锁存,再由x寻址寄存器控制逐列读出图像数据.数字图像数据经过色彩校正和色彩补偿模块作消噪和补偿运算,最后数据输出.CMOS图像传感器的像素阵列采用列复用结构,每一列像素由列总线相连,共用—个列读出电路. 像素阵列中,每列像素共享一个列电路.在像素单元中,曝光开始后光电流产生的电子聚积起来.首先像素所在的行被选中,此行的reset产生脉冲信号将P结点电压复位,然后采样信号reset产生脉冲将复位后的col—out电压保存在电容c,然后产生脉冲选通M1管,光电子流向结点P 点的寄生电容,sig的脉冲信号将col_out的电压保存在电容C上,两个缓冲器分别输出Vres和Vaig. CMOS图像传感器的寻址寄存器由一个同步时钟控制,用于指向正被读出或复位的行和列,由x和Y寄存器选定的行和列就可以选定一个需要的像素.工作时有2个Y方向的寻址寄存器,一个指向正在被读出的行,另一个指向正在被复位的行,这2个寻址寄存器在同一时钟频率下逐行移位并扫过整个像平面,图像传感器每行像素的积分时间相同,由2个寻址寄存器脉冲之间的时间延迟来决定.方向的寻址寄存器用来指向正被读出的列,每行数据依次被读出并复位. CMOS图像传感器的大部分控制信号由内部时序控制器产生,如主时钟信号MAIN_CLK,帧有效信号FRAME—VALID,行有效信号LINE—VALID,像素时钟PIXEL—CLK等一些基本控制信号需要由外部控制电路产生,主要有外部时钟信号CLKIN,复位信号RESET. 2R11_HDL设计 这里以时序与控制模块为例,介绍图像传感器电路的RTL设计. 根据CMOS图像传感器工作的时序要求,控制电路采用自顶向下的设计方法,按照各功能要求划分子模块,其中,时钟分频进程负责接收外部输入的时钟信号CLKIN,产生主控进程所需的时钟信号MAIN—CLK;主控进程在外部输入的RESTART信号下启动,通过外部输入的设定判断拍照时所要求采用的快门工作方式,并向图像传感器输出相应的时序控制信号,以满足不同曝光工作模式下的时序要求;主控进程还负责产生图像传感器标志信号NEW—FRAME,NEW—COLUM,NEW_ROW,GAINC,LINEC,判断传感器所处的工作状态以完成时序控制;当传感器图像数据输出时,时序控制模块输出相应的指示信号,分别为图像数据的时钟信号PIXCLK,帧有效信号FRAME—VALID,行有效信号LINE—VALID以指示后续电路对图像数据进行存储或处理. 控制电路各子模块分别运用Verilog硬件描述语言进行程序设计.其中,主控进程采用有限状态机的设计方法产生和处理图像传感器的工作时序.完成程序设计后,使用UNIX操作平台下的SYNOPSYSVCS仿真工具对程序进行仿真。 为了便于对仿真结果的观察以验证设计的正确性,设定快门模式工作时的读取指针和复位指针之间相差2个像素行,且每行读取40个像素值.从图7给出的仿真结果可知,ay每给一个地址,读取指针完成一个像素数据的读取,与设计的工作时序一致,仿真结果证明了设计的正确性. 3实验结果 芯片使用27MHz外部时钟,输出1280*1024的10位RGB数据,最大帧速率为15帧/秒,提供可控曝光时间从1gs到20s.芯片中模拟电路部分

CMOS图像传感器的应用与发展

CMOS图像传感器的应用与发展 姓名: 班级:学号: 摘要:首先介绍了CMOS传感器的发展历程,然后对CMOS传感器的基本原理进行介绍,分析了CMOS传感器技术优于CCD传感器技术的特点,主要有制造简单、节省电影、价格便宜和小体积等。介绍了CMOS传感器的应用及研发。最后说明了CMOS传感器超越CCD传感器的美好发展前景,并说明了CMOS传感器现存的一些问题。 关键词:图像传感器;应用;趋势 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。如果把CMOS 图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、

CMOS图像传感器及其应用

第31卷第2期激光与红外VOl.31 NO.2 2001年4月LASER8INFRARED April = ================================================================== 2001文章编号:1001-507S(2001)02-0076-02 CM0S图像传感器及其应用 谈新权1何永泰2 (1.华中科技大学电子与信息工程系湖北武汉430074;2.楚雄师范高等专科学校物理系云南楚雄675000) 摘要:CM0S图像传感器是近年来市场上出现的一种新的摄像器件文中对CM0S图像传 感器与CCD图像传感器作了比较分析了CM0S像传感器的工作原理及其优越的性能提供 了CM0S像传感器的应用实例CM0S成像器在红外成像领域具有广阔的应用前景 关键词:CM0S图像传感器;单片彩色摄像机;固体摄像器件 中图分类号:TN3S6.5;TP212.14文献标识码:A CMOS Image Sensor and Its Application TAN Xin-guan1~E YOng-tai2 (1.Dept.Of ElectrOnics and InfOrmatiOn Engineering~uazhOng univ.Of Science and TechnOlOgy.Wuhan430074 China;2.ChuxiOng Teachers cOllege ChuxiOng675000 China) Abstract:CM0S image sensOr is a new sOlid-state pickup element.This article cOmpares the perfOrmance Of a CM0S image sensOr with CCD image sensOr.The OperatiOn principle and significant perfOrmance advantages Of CM0S image sensOr are analysed.An applicatiOn example Of CM0S image sensOr is given in the article. CM0S image sensOr has the prOspects Of applicatiOn in the infrared imaging. Key words:CM0S image sensOr;single-chip cOlOr camera sOlid-state;image pickup device. 1前言 CM0S像传感器是光电子学领域中出现的又一新的成像器件最近几年里使用标准CM0S制作工艺的有源像素传感器(APS)引起了极大关注与CCD像感器相比CM0S像感器的优点是:1)低压工作和低功耗;2)与片上电子电路(如控制逻辑~定时~图像处理~接口电路等)兼容;3)图像数据随机存取;4)潜在的低成本CM0S成像器其所以具有低功耗一方面是由于在读出时只有一行像素需要激活另一方面本身只需低电源电压工作定时~控制~信号处理~A/D转换都在同一芯片上集成并采用同一电源供电从而大大降低了成像系统的成本CCD成像器需要特殊制造工艺像传感器芯片上的装配要使用附加电路如驱动电路移位寄存器故制作成本高工作电压种类多 CCD像感器和CM0S像感器在芯片的生产成本和兼容性方面存在巨大差异对成像系统特别是数字照相机~扫描仪~台式摄像机以及掌上摄像机市场产生巨大冲击CM0S兼容图像传感器技术的开发是在高集成度成像系统中迈出的重要一步目前CM0S有源像素传感器已成功应用于机器人~机器视觉~航空和航海~自动控制~消费电子产 品如可视电话~计算机输入和家庭监视设备等 2工作原理 CM0S像传感器的光电转换原理与CCD基本相同其光敏单元受到光照后产生光生电子而信号的读出方法却不同CM0S像传感器按信号读出方法可分为无源像素图像传感器和有源像素图像传感器(APS)前者的光敏单元驱动能力弱且固定结构噪声FPN较大目前使用较多的是性能优良的APS 图1示出了CM0S APS的电路结构和时序波形图图中虚线框内为像素单元包PG为光敏门TX为传输门MR为复位管工作时VD接+5V 当光敏门PG的电压为+5V~复位T 1 的栅极电压为低电平时光信号处在积分期所产生的光生电子聚 焦在PG下若T 1 栅极R为正时则将多余电荷导 作者简介:谈新权(1945-)男教授主要从事光电成像技术~图像通信与信息处理~数字视频技术等领域的教学和科研工作主持或参加部级重大科研课题多项获部级一等奖一项~二等奖二项~三等奖一项已发表论文60余篇多篇被美国<工程索引!收录收稿日期:2000-10-0S

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

图像传感器

图像传感器 一、前言 在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。 传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 二、CCD图像传感器 1、CCD图像传感器的简介 CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。可以称为CCD图像传感器。CCD 是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微小光敏物质称作像素(Pixel)。一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。CCD的作用就像胶片一样,但它是把图像像素转换成数字信号。CCD上有许多排列整齐的电容,能感应光线,并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给它相邻的电容。 机械量测量中有关形状和尺寸的信息以图像方式表达最为方便。目前较为实用的图像传感器为电荷耦合器件(Charge Couple Device简称CCD)。它分为线阵CCD和面阵CCD两种。前者用于尺寸和位移的测量,后者用于平面图形、文字的传递等。目前面阵CCD已作为固态摄像器用于可视电话和闭路电视等,在生产过程的监视和楼宇安保系统等领域的应用也日趋广泛。 2、CCD图像传感器基本工作原理 原理:以市面上常见的IL 型CCD 为例,曝光之后所有产生的电荷都会被转移到邻近的移位暂存器中,并且逐次逐行的转换成信号流从矩阵中读取出来。这些强弱不一的讯号,会被送入一个DSP 也就是数位影像处理单元。在这个单元之中有一个A/D 类比数位讯号转换器。这个转换器能将信号的连续范围配合色块码赛克的分布,转换成一个2D的平面表示系列,它让每个画素都有一个色调值,应用这个方法,再由点组成网格,每一个点(画素)现在都有用以表示它所接受的光量的二进位数据,可以显示强弱大小,最终再整合影像输出。性能(以三种常见CCD为例) (1)Interline 型CCD 的优点在于曝光后即可将电荷储存于暂存器中,元件可以继续拍摄下一张照片,因此速度较快,目前的反应速度以已经可达每秒15张以上。但IL 的缺点则是暂存区占据了感光点的面积,因此动态范围(Dynamic Range - 系统最亮与最暗之间差距所能表现的程度)较小。不过,由于其速度快、成本较低,因此市面上超过86%以上的数位相机都以IL 型CCD 为感光元件; (2)Full-Frame 全像CCD是一种架构更简单的感光设计。有鉴于IL 的缺点,FF改良可以利用整个感光区域(没有暂存区的设计),有效增大感光范围,同时也适用长时间曝光。其曝光过程和Interline 相同,不过感光和电荷输出过程是分开。因此,使用FF CCD的数位相机在传送电荷资讯时必须完全关闭快门,以隔离镜头入射的光线,防止干扰。这也意味着FF 必须使用机械快门(无法使用IL 的电子CLOCK 快门),同时也限制了FF CCD的连续拍摄能力。Full-Frame CCD 大多被用在顶级的数位机背上。 (3)Frame-Transfer 全传CCD的架构则是介于IL 和FF 之间的产品,它分成两个部分上半部分是

CMOS图像传感器的应用

CMOS图像传感器的应用 1.4.1 数字电视和视频摄像 电子图像传感器的起源就来自电视摄像的应用,CMOS图像传感器现在已经成为先进的数字电视摄像设备的主流图像传感器。电视和视频摄像的特点就是摄取连续图像,在这个领域中除了广播电视以外,CMOS图像传感器广泛应用于监控摄像机(Surveillance)、网络和多媒体摄像(Webcam)以及个人和专业的数字视频摄像机(Camcorder)。虽然CCD图像传感器在这一广阔领域仍然占有一席之地,但在高清晰度电视HD1080及以上的最新型号数字图像摄像机中,采用CMOS图像传感器已经成为主流。在数字电视和视频技术领域中,广泛应用先进的高速数据传输、存储和信号处理技术,并与微型计算机、网络和数字通信技术接口,直接输出图像数据的CMOS图像传感器芯片,比其前一代CCD图像传感器具备更明显的优势。 1.4 CMOS图像传感器的应用 1.4.1 数字电视和视频摄像 电子图像传感器的起源就来自电视摄像的应用,CMOS图像传感器现在已经成为先进的数字电视摄像设备的主流图像传感器。电视和视频摄像的特点就是摄取连续图像,在这个领域中除了广播电视以外,CMOS图像传感器广泛应用于监控摄像机(Surveillance)、网络和多媒体摄像(Webcam)以及个人和专业的数字视频摄像机(Camcorder)。虽然CCD图像传感器在这一广阔领域仍然占有一席之地,但在高清晰度电视HD1080及以上的最新型号数字图像摄像机中,采用CMOS图像传感器已经成为主流。在数字电视和视频技术领域中,广泛应用先进的高速数据传输、存储和信号处理技术,并与微型计算机、网

CMOS图像传感器芯片OV5017及其应用

CMOS图像传感器芯片OV5017及其应用 1 CMOS图像传感器的一般特征 目前,CCD(电荷耦合器件)是主要的实用化固态图像传感器件,它具有读取噪声低、动态范围大、响应灵敏度高等优点。但CCD技术难以与主流的CMOS技术集成于同一芯片之中。这样,诸如定时产生、驱动放大、自动曝光控制、模数转换及信号处理等支持电路就不能与像素阵列做同一芯片上,以CCD为基础的图像传感器难以实现单片一体化,因而具有体积大、功耗高等缺点。 CMOS图像传感器是近向年发展较快的新型图像传感器,由于采用了相同的CMOS技术,因此可以将像素阵列与外围支持电路集成在同一块芯片上。实际上,CMOS图像传感器是一个较完成的图像系统(Camera on Chip),通常包括:一个图像传感器核心、单一时钟、所有的时序逻辑、可编程功能和模数转换器。其基本结构见图1。与CCD相比,CMOS图像传感器将整个图像系统集成在一块芯片上,具有以下优点: (1)体积小、重量轻、功耗低; (2)编程方便、易于控制; (3)平均成本低。 2 OV5017的性能与特点 2.1 OV5017的基本性能 OV5017是美国OmniVision公司开发的CMOS黑白图像传感器芯片,该芯片将CMOS光感应核与外围支持电路集成在一起,具有可编程控制与视频模/数混合输出等功能,其输出的视频为黑白图像,与CCIR标准兼容。

OV5017芯片的基本参数为: (1)图像尺寸4.2mm×3.2mm,像素尺寸11μm×11μm; (2)信噪比SNR>42dB; (3)帧频50时,最小照度为0.5lux@f1.4; (4)帧频50时,峰值功耗小于100mW。 OV5017输出模拟视频信号,格式为逐行扫描。OV5017内部嵌入了一个8bit的A/D,因而可以同步输出8位的数字视频流D[7…0]。在输出数字视频流的同时,还提供像素时钟PCLK、水平参考信号HREF、垂直同步信号VSYNC,便于外部电路读取图像。 OV5017的像素阵列为384×288,分为16×16的子块,每个子块大小为24×18,可以在整个图像的局部开窗,输出窗口中的图像。 2.2 OV5017的编程功能 OV5017具有丰富的编程控制功能,其图像帧频、曝光时间、增益控制、Gamma校正、图像开窗等均可通过对芯片内部寄存器的读写进行设置,数字视频流的输出也必须通过对寄存器读取才能实现。 芯片内部有11个8位寄存器,通过对地址线A[3..0]的设置来选择寄存器,通过读写数据线[7..0]来读取或设置寄存器。在对寄存器进行读(或写) 时,应使片选CSB与输出使能OEB(或定使能WEB)有效。 地址号10xx的寄存器为视频数据端口,它是只读的,当选中并读取它时,芯片向外输出数

图像传感器参数你知多少

图像传感器参数你知多少 图像传感器的功能是光电转换,关键的参数有像素、单像素尺寸、芯片尺寸、功耗;技术工艺上有前照式(FSI)、背照式(BSI)、堆栈式(Stack)等。本篇就由仪器仪表商情网为您详细介绍传感器的参数知识。 一、图像传感器架构 图像传感器从外观看分感光区域(Pixel Array),绑线Pad,内层电路和基板。感光区域是单像素阵列,由多个单像素点组成。每个像素获取的光信号汇集在一起时组成完整的画面。 CMOS芯片由微透镜层、滤色片层、线路层、感光元件层、基板层组成。 由于光线进入各个单像素的角度不一样,因此在每个单像素上表面增加了一个微透镜修正光线角度,使光线垂直进入感光元件表面。这就是芯片CRA的概念,需要与镜头的CRA 保持在一点的偏差范围内。 电路架构上,我们加入图像传感器是一个把光信号转为电信号的暗盒,那么暗盒外部通常包含有电源、数据、时钟、通讯、控制和同步等几部分电路。可以简单理解为感光区域(Pixel Array)将光信号转换为电信号后,由暗盒中的逻辑电路将电信号进行处理和一定的编码后通过数据接口将电信号输出。 二、图像传感器关键参数 1、像素:指感光区域内单像素点的数量,比如5Maga pixel,8M,13M,16M,20M,像素越多,拍摄画面幅面就越大,可拍摄的画面的细节就越多。 2、芯片尺寸:指感光区域对角线距离,通常以英制单位表示,比如1/4inch,1/3inch,1/2.3inch等。芯片尺寸越大,材料成本越高。 3、单像素尺寸:指单个感光元件的长宽尺寸,也称单像素的开口尺寸,比如1.12微米,1.34微米,1.5微米等。开口尺寸越大,单位时间内进入的光能量就越大,芯片整体性能就相对较高,最终拍摄画面的整体画质相对较优秀。单像素尺寸是图像传感器一个相当关键的参数。 其他更深入的参数比如SNR,Sensitivity,和OB Stable等在这里不做介绍,朋友们可以研究探讨。 三、前照式(FSI)与背照式(BSI) 传统的CMOS图像传感器是前照式结构的,自上而下分别是透镜层、滤色片层、线路层、感光元件层。采取这个结构时,光线到达感光元件层时必须经过线路层的开口,这里易造成光线损失。 而背照式把感光元件层换到线路层的上面,感光层只保留了感光元件的部分逻辑电路,这样使光线更加直接的进入感光元件层,减少了光线损失,比如光线反射等。因此在同一单位时间内,单像素能获取的光能量更大,对画质有明显的提升。不过该结构的芯片生产工艺难度加大,良率下降,成本相对高一点。 四、堆栈式(Stack) 堆栈式是在背照式上的一种改良,是将所有的线路层挪到感光元件的底层,使开口面积得以最大化,同时缩小了芯片的整体面积。对产品小型化有帮助。另外,感光元件周边的逻辑电路移到底部之后,理论上看逻辑电路对感光元件产生的效果影响就更小,电路噪声抑制得以优化,整体效果应该更优。业内的朋友应该了解相同像素的堆栈式芯片的物理尺寸是比背照式芯片的要小的。但堆栈式的生产工艺更大,良率更低,成本更高。索尼的IMX214(堆栈式)和IMX135(背照式)或许很能说明上述问题。

相关主题
文本预览
相关文档 最新文档