当前位置:文档之家› 四台矿极近距离煤层采空区下开采技术_王雄伟

四台矿极近距离煤层采空区下开采技术_王雄伟

四台矿极近距离煤层采空区下开采技术_王雄伟
四台矿极近距离煤层采空区下开采技术_王雄伟

四台矿极近距离煤层采空区下开采技术

王 雄 伟

(大同煤矿集团公司四台矿,山西大同 037007)

摘 要:对四台矿极近距离煤层采空区下开采设计进行分析,并通过生产实践总结出一套可靠的采掘安全保障系统,形成了一套极近距离煤层采空区下开采技术,对近距离煤层开采具有指导作用,具有广阔的推广应用前景。

关键词:极近距离煤层;巷道布置;开采技术

中图分类号:TD823 文献标识码:B 文章编号:0253-2336(2004)12-0023-04

Coal mining technology for seam under above goaf

with very short distance in Sitai Mine

W ANG Xiong-wei

(Sitai Mine,Datong Coal Mine Group Co rpo ration,Datong 037007,China)

四台矿404盘区10号层于2001年底开采结束。

为保证盘区正常接替,必须开采404盘区下部11号层,404盘区10号、11号层属极近距离煤层,层间距极不稳定。四台矿从科学合理的盘区开采设计到首采面8423工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成了一套极近距离煤层采空区下开采技术。

1 盘区概况

11号层404盘区所处的开采水平为1045m水平,上部10号层均已回采结束,盘区走向长度1340~1770m,倾斜长度1180m。煤层包括11号层和盘区中部1000m段11号层与12-1号层合并层,厚度2 0~7 4m,平均厚度4 0m,煤层倾角1~6 ,平均3 ,煤层与10号层层间距0 4~17 8 m,大部分区段为0 4~1 5m,平均1m,采深平均-200m。

404盘区内地质构造复杂,有陷落柱4个,断层分布较密集。11号层顶板为粉砂岩层,层理、节理、裂隙发育,稳定性差,11号煤层及顶底板岩性如图1所示。掘进回采时顶板不易维护,易发生漏顶事故。

2 开采方案说明

2 1 盘区巷道布置

10号层、11号层盘区巷道采用联合布置方式

,

图1 11号煤层及顶底板岩性

开采11号层时,利用原有开采10号层已布置的三条沿南北向的盘区巷,其中盘区轨道巷、盘区回风巷布置在10号层,盘区带式输送机巷布置在11号层。回采巷道倾斜布置,即东西向布置。

2 2 上下回采巷道内错距的确定

11号层受上覆10号层采空区及层间距的影响,根据上部采空区塌落稳定后采空区及巷间煤柱的压力传递范围,同时结合大同煤矿集团公司王村矿近距离煤层开采经验,选择11号层工作面与10号层工作面内错式布置。

根据回采平巷矿山压力显现规律,在11号层回采巷道与10号层层间距确定的情况下,应布置于压力的传递影响角以外。压力影响角与煤层倾角、层间岩性有关,一般情况下当煤层倾角小于25 时,压力影响角为25~45 ,11号层上覆10号煤层倾角一般为0~8 ,所以上下回采巷道内错距L为

23

L H tan =2 8m(1)式中 H 10号、11号层间距,取4m;

压力影响角,取35 。

根据式(1)及四台矿10号层、11号层煤层层间距及岩性,以及根据矿压观测沿走向上部10号层实体煤对11号层巷道布置的影响,最终确定上下回采巷道净煤柱为4m。

3 8423工作面开采情况

3 1 11号层8423工作面基本概况

11号层8423工作面相对上部10号层8423工作面内错布置,两回采巷道均与10号层回采巷道内错4m,工作面走向长度1510m,可采长度1368m(前窑村保护煤柱142m),工作面倾斜长度134m。根据掘巷及回采过程中的资料分析,煤层较稳定,厚度2 9~4 5m,平均4 38m,中间有0 3m的夹矸,工作面300~1300m段为11号、12-1号层合并,煤厚4 2m左右,1300~1510m 段为11号煤层,煤厚2 6m左右。(其中400~1 200m段上覆10号层采空)。直接顶为粉砂岩互层,厚度0 4~3 0m,岩性特征为深灰色,交错层理,含大量煤屑。老顶为10号煤层,部分已采空,平均厚度1 97m,直接底为细砂岩,厚度1 7~3 16 m,岩性特征为深灰色,以石英为主。上覆10号层采空区积水已打孔排放,瓦斯平均绝对涌出量4 14m3/min,相对涌出量1 70m3/t。煤尘爆炸指数37%,煤的自然发火期为6个月。

3 2 首采面8423工作面掘进情况

3 2 1 实体煤下巷道掘进及维护

8423工作面上覆采空区段为400~1200m,在非采空区段巷道掘进时带式输送机巷高度为2 8 m,宽度为4 0m,轨道巷高度为2 8m,宽度为3 6m,两巷均沿11号层顶板掘进,支护形式为锚、网、索联合支护。切眼宽6 5m,高2 8m,锚杆、锚索联合支护。

为了提高极近距离煤层留顶煤复合顶板的稳定性,四台矿在极近距离煤层巷道11号层5423、2423巷采用了小孔径全长锚固螺纹钢锚杆支护,不仅加强了对锚固区围岩的整体约束,使锚杆支护系统刚度大大增强,有效地控制了顶板变形,而且实现了锚索和锚杆支护机具的统一。

3 2 2 采空区下巷道掘进及维护

由于10号层与11号层属极近距离煤层,且层间距极不稳定,其中800m范围采空区下10号层与11号层间距0 4~1 5m,平均1 0m,巷道掘进时采用留设11号顶煤掘进,支护采用锚网和工字钢棚联合支护。巷道在采空区范围下掘进时压力显现非常明显,在2423巷具体表现为:所留设的顶煤由于节理裂隙发育,整体性差,加之顶板压力大,顶煤相当破碎,顶煤边掘边冒,冒顶长度总计为130m,冒顶宽度为1 5~2 5m,高度为0 9~ 1 4m,冒顶区瓦斯浓度超限,一般为3%~12%;能留住的顶煤处,破碎顶煤托于工字钢棚上方,压力显现为锚杆托板压烂、锚杆螺帽压飞、锚杆杆体被拉断、工字钢顶梁严重变形。

为了解决上述问题,采取了打2 0m短锚索进行加强支护,大大提高了支护能力,支护效果良好。针对顶梁压弯严重的现象,及时把棚距由0 8 m改为0 5m,并在压弯的顶梁下支设单体液压支柱和木柱防止变形加剧。同时主动掌握近距离煤层矿压显现特征及动压规律,在掘进巷道中每隔100 m安装一块压力盒,定期观测压力显现情况,发现压力大时,及时采取措施进行处理。为了更主动的超前解决巷道维护问题,四台矿采用马丽散聚合固化产品对巷道顶煤进行超前加固,利用艾格劳尼聚合产品对漏顶区进行中空填充以防治瓦斯积聚。超前注入马丽散后,顶板的整体性得到加强,有效防止了冒顶的发生,巷道矿压显现明显减轻。对冒高区采用艾格劳尼泡沫充填,有效的治理了冒顶空洞的瓦斯积聚。

新技术的不断使用保证了巷道的安全掘进,简化了施工工艺,减轻了工人的劳动强度,提高了巷道的单进水平,为8423工作面按期圈出及安全顺利回采打下了坚实的基础。

3 3 8423工作面回采情况

11号层8423工作面从2001年10月1日正式生产,现已开采完毕,工作面经历了从实体煤下 采空区下 实体煤下的安全回采,累计总产量72万t,平均日产3800t,最高日产7000t,最高月产13 5万t,最低月产10万t。

3 3 1 采煤方法

工作面采用单一长壁后退式综合机械化开采方法,全部垮落法辅助人工强制放顶管理顶板。工艺流程为:单向割煤,尾部斜切进刀 上行割煤 推刮板输送机 移架,下行清煤。

24

3 3 2 工作面设备配置

采高选择:工作面在开采上覆实体煤段时,见顶见底,采高3 5m;开采上覆采空区段时,见底留顶,保证复合顶板厚度2 5m,采高2 5m。

支架选型:根据开采10号层时的采高为1 9 m,留设顶煤及夹石厚度约2 5m,可计算开采11号层时每架支架所承受的最大静压力为上覆10号层顶板塌实时岩体垮落带及2 5m顶板的重量之和,若按1 5的安全系数计算,则每架支架的支承能力应为291t/架,换算可得每架支架的支承能力应大于2910kN。该工作面选择ZZS6000/17/37型液压支架,其工作阻力为6000kN,满足生产需要。工作面具体设备配置见表1。

表1 工作面设备配备

设备名称型 号功率/kW数量备 注

采煤机MG TY300/700-1 1D7001采高2 0~3 7m

液压支架ZZS6000/17/37 90支撑高度1 7~3 7m,工作阻力6000kN 刮板输送机SGZ-830/630315 21长度132m 转载机SZZ-830/2002001长度30m

带式输送机STJ1000/3 2003 20011510m,1000m加中驱破碎机PCM-1601601

乳化液泵WRB-200/31 51251两泵一箱

3 3 3 工作面进出上覆采空区下时的技术措施

工作面进入采空区前30m时,采高由3 5m 逐渐降低为2 5m,留设顶煤以保证顶板厚度在2 5m以上;工作面进入采空区前20m时向煤体打 36mm 2000mm锚杆,向煤壁打锚杆护帮,防止片帮,减少自由面;支架移架采取紧跟采煤机前滚筒及时移架;把液压支架的大护壁板更换为小护壁板,以减小机道空顶距离。工作面出采空区前15 m时坚持及时移架,当进入实体煤后采用带压移架;进入实体煤后,逐渐加大采高至3 3~3 5m 后,更换小护壁板为大护壁板。

3 3

4 工作面矿压显现情况

8423工作面在实体煤下推进时,支架阻力平稳,安全阀按周期来压步距28~35m均匀开启;当工作面推进到上覆采空区前20m至进入采空区前7m时,工作面及巷道片帮严重,顶板压力增大,局部破碎垮落,支架阻力增大到30MPa左右,安全阀80%开启;当工作面推进至距采空区边界7 m时,工作面进入煤体的塑性变形区,顶板压力变小,煤壁片帮现象减轻;当工作面完全推进至采空区下后,顶板压力小,煤壁平直,截齿牙痕明显,支架阻力平稳,安全阀很少开启;当工作面推进至采空区范围外15m时,压力显现与工作面进入采空区时相似,强度稍弱。

3 3 5 超前、端头支护管理

超前支护采用DZ31 5-28/100型单体液压支柱、1 2m长 型钢梁进行支护,在实体煤下支护长度两巷均为20m,前10m为双排,后10m为单排(靠近工作面一侧),柱距0 8m。采空区下单体液压支柱直接支护在原支护顶梁下,5423巷超前支护60m,双排支设;2423巷超前支护30m,双排支设。在实体煤下安全出口处支护的原超前支护不提前回取,每循环只回取二根单体支柱。在采空区下原超前支护不变的情况下,增设迈步式抬棚,抬棚支护方式为二对四梁,顶梁为11号工字钢,长度为3 2m,每对抬顶梁间距为0 3m,两对抬顶梁间距为1m。工作面上下端头支护均由工作面支架支设至巷中,巷中至煤柱侧由DZ31 5-28/100型单体液压支柱、1 2m长 型钢梁均匀支设至支架与煤帮中间,柱距0 8m,支设范围为放顶线至煤壁线,每循环回一次。

3 3 6 通防综合管理

11号层8423工作面为高瓦斯工作面,煤层煤体及围岩中瓦斯含量较高,回采过程是瓦斯涌出的主要来源;另外,在采至10号层采空区下时,随顶板垮落10号层采空区内的瓦斯也将涌出。采取了严格瓦斯管理制度的执行和落实,加强配风管理;上隅角瓦斯处理使用抽排风机和尾部打风障措施进行处理;在回采过程中打抽放瓦斯钻孔,对工作面施行边抽边采等措施预防瓦斯超限。

另外在回采过程中还采取综合防灭火措施:在

25

工作面构筑均压系统;封堵漏风通道;对10号层采空区及11号层工作面进行预防性黄泥灌浆;在工作面进风端头设置氯化镁雾化器,使汽雾阻化剂变为阻化汽雾凭借采空区漏风为载体转移到遗煤表面,从而达到阻化防火作用。

4 存在的问题

巷道在采空区下掘进时的顶板支护不能有效的控制上覆采空的冲击压力,支护破坏严重,巷道二次维护工程量大,回采时钢棚采出率低。

巷道在掘进时底板底鼓严重,虽然采取了向煤柱打直径108mm的钻孔卸压,但效果不明显。

5 结 语

项目研究成功后,将安全开采出404盘区11号层煤炭580万t,该盘区开采结束后,可创经济效益5亿多元。首采面开采技术研究获得成功,将为极近距离煤层正常开采总结出宝贵的理论基础和实践经验,同时将会为四台矿下部12号层、14号层近距离煤层开采提供一套可靠的采掘安全保障系统,经济、社会效益显著,具有广阔的推广应用前景。

参考文献:

[1] 钱鸣高,刘听成 矿山压力及其控制[M].北京:煤炭工

业出版社,1992.

[2] 陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中

国矿业大学出版社,1994.

作者简介:王雄伟(1966-),男,山西大同人,高级工程师,现任大同煤矿集团公司四台矿总工程师。

收稿日期:2004-07-08;责任编辑:朱栓成

郭二庄矿开拓大巷破坏治理技术

冯光明1,尚继平2,冯俊伟1,陈海良2

(1 中国矿业大学能源与安全工程学院,江苏徐州 221008;2 邯郸煤业(集团)有限责任公司郭二庄煤矿,河北邯郸 056303)

摘 要:针对郭二庄矿-300m北大巷严重变形与破坏的具体情况,分析了其破坏原因及锚杆支护与注浆加固机理,用FLAC数值模拟软件进行了支护效果预测分析,工程中应用表明,锚杆索支护与注浆加固参数设计正确,治理效果明显,取得了显著技术经济效益。

关键词:开拓大巷;注浆加固;综合治理

中图分类号:TD353 文献标识码:B 文章编号:0253-2336(2004)12-0026-04 Repair technololgy for mine failured development roadway

in Guo erzhuang mine

FENG Guang-ming1,SHANG J-i ping2,FE NG Jun-wei1,C HE N Ha-i liang2

(1 Sc hool o f Ene rgy and Safet y Enginee ring,China U nive rsity o f Mining and Technology,Xuzhou 221008,China;

2 Guo erzhuang Mine,Handan Coal Mining Group Corporation Ltd.,Handan 056303,China)

郭二庄矿-300m北大巷位于5号煤直接顶板或5号煤层位中,是近10年内二水平主采区的主要通道。大巷原设计高3 4m,宽4 2m,采用锚喷支护,喷射150号混凝土,喷厚100mm,锚杆长1600mm,700m m 700mm矩形布置。大巷约有300m出现大范围垮落与底鼓等,严重变形与破坏,巷高平均不足1 8m,巷宽不足3 3m,局部地段底鼓处,人走在上面,脚可陷入30m m深,大巷已无法使用,严重影响二水平采区正常接续及矿井的正常生产。为从根本上解决-300m北大巷严重破坏难题,对该大巷进行了综合治理研究。

1 北大巷破坏原因及治理原则

1 1 北大巷破坏原因分析

-300m北大巷破坏典型断面如图1所示。经分析其破坏原因主要有: 北大巷围岩含泥质较

26

深部开采

深部矿井开采技术问题 摘要:本文根据我国主要深部矿区30余对矿井的实地调查、部分井下观测和25个矿务局的函调材料,对我国煤矿深部开采的基本状况及其在开采中遇到的巷道维护、冲击地压、瓦斯突出及地热等主要问题作了总结和剖析,并就今后煤矿深部开 技术问题提出了几点看法和建议。 1煤矿深部开采的现状及趋势 深井开采技术是当今世界主要深井开采国家(如德国、原苏联、波兰等)十分关注的问题之一。随着我国煤矿开采规模的扩大,开采深度的逐渐增加,深部开采中遇到的各种技术问题日益增多,对当前的煤矿生产和今后矿井建设的影响日趋严重。因此,研究深部开采问题,对安全、经济、合理地开发深部煤炭资源无疑有特别重要的意义。 我国是世界第一产煤大国,1997年原煤产量13.3亿吨。全国主要国有矿区90多个,井工开采的生产矿井588对(1996年统计)。据不完全统计,采深超过800m的深井19对,其中开滦矿务局赵各庄、沈阳矿务局彩屯矿采深超过1000m,新汶矿务局孙村矿、华丰矿、长广七矿采深超过800m。“八五”期间新打深井65个,平均深度588m,其中700~800m的井筒28个,800~1000m的井筒13个,1000m以上井有12个。 据煤炭资源开发和资源保护研究指出,在我国预测总储量中73.2%埋深在1000m 以下,浅部储量较少。因此,深井开采技术不仅是目前一些深矿井面临的问题,而且从长远看,它将是我国今后进一步开发利用深部煤炭资源的带有战略意义的问题。 2深井开采的主要技术问题 2·1矿压显现加剧,巷道维护困难随着矿井采深的不断增加,一方面,巷道断面必需加大,据对开滦矿区统计,近10年间采深平均增加100m,岩石巷道断面平均增加8.1%,煤、半煤岩巷平均增加32%;另一方面,地压增大,在深部高应力作用下,围岩移动更为剧烈,巷道产生变形破坏更为严重。在调查的超过700m的深井中,巷道矿压问题普遍严重,底鼓成为常见的地压现象,特别在采准巷道中尤其严重。失修和严重失修巷道比例增加,据开滦局调查统计,井深1000m时巷道失修率约是同条件下500~600m埋深巷道失修率的3~15倍,部分矿井巷道失修和严重失修率达20%以上。巷道维修占用大量人力物力,林西矿井深800m,巷道维修工占井下工人的比重为7.00%~10.50%。很多深部巷道由于严重破坏无法行人、行车而被迫停产反修。且常常出现前掘后修、重复反修的象。深井巷道维护问题已成为整个矿井生产系统中的最薄弱环节。 出现上述现象的主要原因是客观上井深、围岩应力增加。主观上没有充分认识深井巷道矿压规律,巷道支护形式不能适应深井巷道围岩变形的要求,支护形式、支架参数

薄煤层开采

第一章 项目建设单位概况 土城矿位于贵州省六盘水市盘县洒基镇境内,地理坐标东经104°30′30″~104°31′59″,北纬25°54′22″~25°57′44″,井田面积15km2。矿区内有盘水公路及盘西铁路支线通过,盘水公路南端在两头河与320国道公路相连,盘西铁路支线在红果与南昆铁路接轨,交通方便。 矿井隶属于盘江煤电〔集团〕公司,属集采矿、煤炭洗选一体的大型国有综合性企业。原设计井型120万吨/年,1993年12月至1998年12月按240万吨/年生产能力进行改扩建后,改扩建后,矿井产量逐年上升,2004年生产原煤213.9万吨。2005年根据贵州省煤炭管理局文件[黔煤规字(2005)294号]文件批复土城矿的矿井综合生产能力核定为300万吨/年, 2009年根据贵州省煤炭管理局文件〔黔煤规字[2009]100号文〕同意土城矿由240万吨/年技改到400万吨/年。 矿井开拓方式为平硐+斜井开拓,采用走向长壁方式开采,综合机械化采煤方法。截止2010年底保有储量48770.3万吨,工业储量为34344.2万吨(其中0.9~1.3m的煤炭工业储量16835.9万吨),可采储量为27475.4万吨,尚可服务65.4年。 第二章 项目基本情况 一、项目名称 盘江精煤股份有限公司土城矿回采薄煤层开采提高资源回收率项目。 二、申报单位 申报单位为盘江精煤股份有限公司土城矿。

三、项目类型 项目类型为新开。 四、项目工作范围及起止时间 工作范围为盘江精煤股份有限公司土城矿13采区1351回采工作面;工作起止时间从2011年6月开始,2012年3月结束。 五、立项依据 国家关于保护矿产资源、提高资源回收率的矿业方针和政策要求。 六、国内外薄煤层开采的现状 我国薄煤层煤炭储量约620亿吨,占总体储量的17.5%,但是由于薄煤层开采难度较大,因此,年开采量仅占全国总产量的10.4%。随着薄煤层综采设备制造技术的提升,以及国家对资源合理利用的要求的提高,薄煤层开采日益受到重视,目前许多的矿区随着开采强度的加大,厚及中厚煤层的储量急剧下降甚至枯竭,薄煤层逐渐变为主采煤层。国外长壁式薄煤层高效开采主要有两种技术途径,一是采用滚筒采煤机、刮板输送机和液压支架配套的综采方式,二是采用刨煤机、刮板输送机和液压支架的综采方式。 七、项目实施的意义 土城矿1351回采工作面走向长579m,倾向长168m,煤厚1.2m,可采储量为16.34万吨;按照土城矿在现使用的综采设备不能回采薄煤层,将造成资源损失,如采用单体液压支柱配合炮采工艺安全管理难度大,如采用薄煤层综合机械化采煤工艺,将盘活土城矿薄煤层16835.9万

探究急倾斜极近距离煤层联合开采采煤方法

探究急倾斜极近距离煤层联合开采采煤方法 摘要】在目前煤层开采的过程之中,还存在着采煤技术以及采煤方法上的问题,尤其是在急倾斜极近距离煤层联合开采的过程之中会存在较多的问题,所以为了 进一步解决这一问题,需要通过理论研究、试验测试以及实际采煤经验来进行探讨,从而提出可行的优化建议,以此推动采煤的技术的有效应用。 【关键词】采煤技术;采煤方法;联合开采 急倾斜极近距离煤层联合开采具有一定程度上的难度,在回采巷道的布置上 会相对困难,并且整体的开采环境以及通风调节都不能够满足其开采要求,所以 要结合煤层开采主要影响因素来进一步分析煤层的层间结构、基本性质、从而决 定开采高度以及采煤方式,这样才能够提升技术应用措施的安全性以及可靠性, 提升煤炭开采的经济效益以及社会效益。 一、急倾斜极近距离煤层联合开采采煤方法应用现状 从理论等层面上来看,目前的煤层联合开采多基于理论基础所进行应用的采 煤方式,利用煤层之间的压力形式,以及协调采空区压实区之间的内部关系,从 而形成错矩布置的相应形式,才能够满足急倾斜极近距离煤层联合开采采煤工作 的相应需求。但是因为急倾斜极近距离煤层联合开采采煤方式自身具有相应的难度,所以需要通过大量的计算以及实验去优化采煤方式,克服煤层工作面因为生 产二出现的压力垮落现象,尽可能提升支撑点的支撑力,并且为巷道的维护工作 奠定相应的技术理论基础[1]。 而急倾斜极近距离煤层联合开采采煤技术在应用过程之中还有很大的发展空间,所以技术人员需要在充分明确急倾斜极近距离煤层联合开采采煤方法应用现 状以及应用过程之中所存在的相应问题,从而合理利用改进方式,加强常规错矩 定值研究,提升煤层工作面的质量,增强整体煤矿开采工作的安全性以及有序性。 二、优化急倾斜极近距离煤层联合开采采煤方法的具体措施 (一)加强急倾斜极近距离煤层联合开采的理论研究 理论研究是一切技术应用实践的相关基础,所以在优化急倾斜极近距离煤层 联合开采采煤方法的过程之中,需要加强急倾斜极近距离煤层联合开采的理论研究,从本质与核心上来看,目前煤层开采的过程之中,其急倾斜极近距离煤层联 合开采的主要难点都集中在下错距的确定上,所以需要加强理论研究,来确定好 急倾斜极近距离煤层联合开采的相关数据[2]。 可以应用离散元模拟技术来进行联合开采行为的模拟实验,以建立模型的形 式来检测联合开采采煤技术的应用程度。首先从层面的分解上来看,煤层会存在 着多个应力区,所以需要找到下煤层回采工作面、上采空区之间的应力区域,明 确临界点的实际位置;加强对于应力峰值点距离计算,从而得出上煤层的采高、 煤矿整体的粘聚能力、上层岩层在岩体重量平均值、应力集中系数等多个模型建 造基础数据,建立好模型之后才能够进行煤层结构以及实验探究。 (二)急倾斜极近距离煤层联合开采的实验过程 急倾斜极近距离煤层联合开采采煤方式也是需要反复的实验才能够投入应用的,一般而言,目前的急倾斜极近距离煤层联合开采需要结合柔性实验装置,来 进行模拟测试,其中的应用变量一般都是控制在煤层土质、煤层厚度以及煤层结 构分布等数据内容上,利用柔性实验装置顶部的液压装置系统,进行液压处理操作,并且以均匀的分布形式,来提升原型条件的合理状况,才能够提升实验过程

煤矿开采技术——采煤方法概述

第五章采煤方法概述 第一节采煤方法概念及分类 第二节采煤方法的选择 第三节采煤方法发展方向 目的要求: 1、了解采煤方法发展方向 2、掌握采煤方法概念及分类 3、掌握采煤方法的选择 重点、难点和突破的方法: 重点:1、采煤方法概念及分类 2、采煤方法的选择 难点:采煤方法的选择 突破方法:1、详细讲解 2、根据工程实例讲述 教学内容和步骤 第一节采煤方法概念及分类 一、基本概念 1.采场 在采区内,用来直接大量开采煤炭资源的场所,称为采场。 2.采煤工作面 在采场内进行采煤的煤层暴露面称为煤壁,又称为采煤工作面。在实际工作中,采煤工作面就是采煤作业的场地,与采场是同义语。 3.采煤工作 在采场内,为了开采煤炭资源所进行的一系列工作,称为采煤工作。采煤工作包括破煤、装煤、运煤、支护、采空区处理等基本工序及其辅助工序。 4.采煤工艺

由于煤层的自然赋存条件和采用的采煤机械不同,完成采煤工作各道工序的方法也不同,在进行的顺序、时间和空间上必须有规律地加以安排和配合。这种在采煤工作面内各道工序按照一定顺序完成的方法及其相互配合称为采煤工艺。 5.采煤系统 采煤系统是指采区内的巷道布置系统以及为了正常生产而建立的采区内用于运输、通风等目的的生产系统。通常是由一系列的准备巷道和回采巷道构成的。 6.采煤方法 采煤方法是指采煤系统和采煤工艺的综合及其在时间、空间上的相互配合。不同采煤工艺与采区内相关巷道布置的组合,构成了不同的采煤方法。 二、采煤方法分类(如图所示) (一)壁式体系采煤法 壁式体系采煤法一般以长壁工作面采煤为主要特征,是目前我国应用最普遍的一种采煤方法,其产量约占到国有重点煤矿产量的95%以上。 (1)根据开采技术条件煤层按倾角分类: 地下开采露天开采 近水平煤层α<8°α<5° 缓倾斜煤层8°~ 25°5°~ 10° 倾斜煤层25°~ 45°10°~ 45° 急倾斜煤层α> 45°α>

深部煤层巷道支护技术

深部煤层巷道支护技术 ——二水平丁六皮带下山设计构想 李永伟冯瑞明 引言 随着我国煤炭工业的发展,煤矿开采强度和深度的不断增加,相当一部分矿井面临深井巷道围岩控制,特别是煤层巷道在掘进及回采等阶段的大变形严重制约工作面正常推进,影响安全高效开采。深井煤层巷道围岩地质条件复杂,地应力高,煤岩体具有长期的流变、蠕变效应致使煤巷顶板控制比一般条件下更加困难。 深井高地应力、采动影响综合作用于巷道,表现为全断面来压,不仅在掘进和回采过程中,巷道因采掘影响而引起围岩剧烈变形,而且在应力分布趋向稳定后仍保持快速流变,维护十分困难。如何解决深井条件下煤巷围岩控制稳定性问题,已成为煤巷锚杆支护面临的关键课题一。 二水平丁六皮带下山位于-593水平以下,埋深超过800m,巷道压力明显增大,因此必须对原有支护技术进行革新。 1 深井煤巷高预应力支护技术 巷道锚杆支护技术的精髓是提供有效的初始支护强度,并具有良好的增阻性能。通过及时安装锚杆,并给锚杆施加一个较大的预拉力,对围岩产生有效约束,这种通过前张拉方式对巷道围岩产生的高预紧力,不仅可以消除岩层内原始的裂缝空隙,也可以使各个岩层之间锁紧为一个整体,提高锚固范围内岩层的内摩擦角和内聚力,从而提高岩层的整体承载性能。根据相关研究表明,初期施工锚杆的支护强度(预紧力)与巷道围岩的松散扩容变形之间的关系有定性、定量关系。围岩的扩容变形与锚杆的初始支护强度之间呈负相关性关系,锚杆的初始支护强度越小,围岩的松散变形越大;锚杆的初始支护强度越大,围岩的松散变形越小。 1.1 采用高性能、高预应力锚杆强化帮角 采用 IV 级螺纹钢加工成高性能锚杆,抗破断强度更高,支护刚度更大,限制变形更有力,针对软岩急剧膨胀扩容产生的高应力控制效果会更好,体现超高强材料、大刚度附件、加长锚固、超高预紧力的技术思想。加固帮角可直接提高

煤层气开采技术

煤层气简介 1、定义 煤层气,是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。 煤层气俗称“瓦斯”,其主要成分是CH4(甲烷),与煤炭伴生、以吸附状态储存于煤层内的非常规天然气,热值是通用煤的2-5倍,主要成分为甲烷。1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净,几乎不产生任何废气,是上好的工业、化工、发电和居民生活燃料。 煤层气空气浓度达到5%-16%时,遇明火就会爆炸,这是煤矿瓦斯爆炸事故的根源。煤层气直接排放到大气中,其温室效应约为二氧化碳的21倍,对生态环境破坏性极强。在采煤之前如果先开采煤层气,煤矿瓦斯爆炸率将降低70%到85%。煤层气的开发利用具有一举多得的功效:洁净能源,商业化能产生巨大的经济效益。 2、煤层气与煤矿瓦斯的关系与差异 在煤炭工业界通常将涌入煤矿巷道内的煤层气称之为煤矿瓦斯(Gassy),其气体组分除煤层气组分外,还有煤矿巷道内气体的成分,如氮气(N2)、二氧化碳(CO2)等空气组分以及一氧化碳(CO)、二氧化硫(SO2)等采矿活动所产生的气体组分。

在煤层气概念引进初期,有些学者为便于业外人士了解煤层气,通常在煤层气一词后加注“俗称煤矿瓦斯”。 近年来,国内外有些学者为区分两者之间的概念差异,将通过煤矿井下抽放(Gas Drainage in-mine)、采动区(GOB)抽放或废弃矿井(Abandoned Mines)抽排等方式获得的煤层气称为Coal Mine ethane (缩写为CMM)。 2、存在形式 吸附于煤内表面;以游离态存在于煤的天然孔隙中;少量溶解在煤的地层水中。 3、用途 煤层气(煤矿瓦斯)作为一种非常规天然气,可作为瓦斯发电、居民生活和工业锅炉燃料。煤层气可以用作民用燃料、工业燃料、发电

露天煤矿绿色开采技术的主要内容

第一题:露天矿开采新技术 1 露天井工联合开采技术 对由多煤层组成的水平、近水平煤矿床,深部煤层采用露天开采从经济上不合理时,一般采用井工方法进行开采:一是采用独立的井工开采,待露天开采完毕后,由地面进行斜井或竖井开拓,井工与露采没有联系,其缺点: (1)露天境界内的煤炭储量减少,开采年限缩短或生产规模减小,也相对增加了征地成本; (2)在地表打井进行井工开采,与露天矿是相互独立的两个企业,增加了企业管理机构和人员;(3)井工矿运煤提升高度大,增加运煤成本。二是充分利用己形成的露天矿坑,在坑底打斜井开采露天矿以下的煤层,露天开采与井工开采同时进行,即露天一井工联合开采,具有以下优点: (1)露天开采与井工开采统属一个矿,管理机构简单; (2)可以增大露天矿企业的生产能力,延长矿山开采年限; (3)井工开采的煤炭运至露天坑底后转为露天矿运输设备运输,可充分利用露天矿运输系统和设备,可降低运输成本。但露采与井工开采必须协调,露天矿坑以下至井工开采煤层之间的夹石层必须有足够的厚度和强度,以保证井工开采工作面的顶板稳定性。 2露天煤矿端帮靠帮开采技术 端帮靠帮开采是通过提高露天煤矿端帮边坡角,增加煤炭资源回收、减少土地占用,提高开采经济效果,其攻克难点为:靠帮开采方式及判断准则。安家岭露天煤矿和黑岱沟露天煤矿实施了端帮靠帮开采,端帮角度从34°提高到了38°,平均每年回收端帮压煤60万吨。

3露天煤矿时效边坡分析与二次设计技术 以往露天煤矿边坡采用静态、均一、永久性设计,端帮边坡角缓;端帮设置运输通道,边坡进一步变缓,造成端帮压煤,并且多占用土地。露天煤矿边坡易滑区煤炭资源回收困难。时效边坡考虑了采剥工程和边坡动态耦合关系,采用若干采矿措施,实现露天煤矿边坡动态分析与设计。易滑区煤炭回收技术采用“短工作线、高强度推进、快速回填”技术,实现易滑区煤炭资源的安全回采。 4 露天煤矿开拓运输系统设置技术 在露天煤矿工作帮的推进过程中,对采场下部水平两侧端帮含煤台阶按边坡稳定条件采靠界;下部水平内排土通路通过横跨采空区的中间桥连接。中煤集团安太堡露天煤矿和霍林河露天煤矿实施搭桥内排,缩短剥离物运距0.6-0.7千米。 5 露天煤矿采区转向方式设计技术 该技术包括:采区转向方式分析技术、反向内排技术、“树枝状”运输系统技术。中煤集团安太堡露天煤矿在转向期间实施反向内排和树枝状运输系统增加了内排土场的容量,缩短了运输距离2千米,节省土地150余亩。 6露天煤矿绿色开采技术 露天矿绿色开采技术主要有几下几方面内容: (1) 开采工艺与设备选型合理化, (2) 煤炭资源回采率最大化 (3)露天矿运输系统优化

依靠科技进步 坚持自主创新 实现急倾斜和薄煤层安全高效开采(2021)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 依靠科技进步坚持自主创新实现急倾斜和薄煤层安全高效开采

依靠科技进步坚持自主创新实现急倾斜和薄煤层安全高效开采(2021)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、川煤集团基本情况 川煤集团是由攀枝花、芙蓉、广能、达竹、广旺5个矿务局整合而成的国有独资大型煤炭企业。集团共有34对矿井,其中生产矿井24对,基建矿井10对。设计生产能力2053万吨/年,核定能力1653万吨/年。川煤集团资源赋存条件差,煤层特点是“一大一薄”。“大”指煤层倾角大,倾角大于35°的大倾角和急倾斜煤层资源量占45%;“薄”指煤层厚度薄,1.3m以下的薄和极薄煤层占60%(其中,0.8m 以下的极薄煤层占30%)。矿井地质构造复杂,断层、陷落柱、褶曲多,节理、裂隙发育,煤层结构复杂,顶、底板稳定性差。水、火、瓦斯、煤尘、硫化氢等各种灾害严重,34对生产和基建矿井中,有高瓦斯矿井10对,煤与瓦斯突出矿井18对。 二、依靠科技进步,坚持自主创新,实现急倾斜和薄煤层综合机械化开采

近距离薄煤层条带开采引起地表变形模拟分析

近距离薄煤层条带开采引起地表变形模拟分析 王传团1,2,潘志存2,张学豪2 (1.中国矿业大学资源学院,江苏徐州221008;2.济宁市金桥煤矿,山东济宁272200) 摘要近距离薄煤层条带开采是“三下”开采中控制覆岩移动变形和地表沉陷的有效方法之一,提高煤炭资源回收率,同时减少煤矿开采对矿区环境、地表破坏的影响,具有重要的理论意义和应用价值。本文采用数值模拟方法研究了近距离薄煤层条带开采引起的地表变形特征,结果表明:当采出率为50%时条带方案选取采40m留40m时最为合适。 关键词近距薄煤层条带煤柱数值模拟地表变形 中图分类号TD325+.2文献标识码A Simulation Analysis of Surface Deformation by Strip Mining in the Short-Distance Thin Coal Seam Wang Chuan-tuan1,2,Pan Zhi-cun2,Zhang Xue-hao2 (1.School of Resource and Earth Science,China University of Mining and Technology,221008;2.JinQiao Mine,JiNing,272200)Abstract The strip mining in short-distance thin coal seam is one of the effective methods controlling displacement deformation of overlying strata and surface subsidence in coal mining under buildings and railroads and water bodies.The method has a great theoretical significance and application value by increasing recovery rate of coal resources and cutting down the effect of coal mining on environment and surface of mining area.The numerical simulation method is adopted to study the surface deformation characteristics by the strip replacement mining in short-distance thin coal seam.Such conclusions are drawn as follows:the strip project of forty meters mining with forty meters reserving is quite suitably selected while half of mining rate. Key words short-distance thin coal seam strip coal pillar numerical simulation surface deformation 中国2010年煤炭规划产量为25亿t,2020年为28亿t,煤炭将长期是中国的主要能源[1]。据不完全统计“三下”压煤量达140亿t,仅全国建筑物下压煤量就达87.6亿t,占“三下”压煤总量的63.5%[2]。鉴于条带开采在解放“三下”压煤中的重要作用,国内外学者对条带开采技术进行了大量的研究。如条带开采地表移动机理和规律[3,4]、条带开采地表移动和变形预计方法和预计参数[5,6]、条带煤柱稳定性[7,8]、条带开采优化设计[9]等。条带开采由于能有效地控制地表沉陷,保护地面建(构)筑物和生态环境,一般不增加或较少增加吨煤生产成本,而且有利于安全生产,生产管理也不复杂。因此,深入研究作为“三下”采煤重要技术措施的条带开采无疑对解放“三下”压煤具有重要意义。为此本文拟采用FLAC3D软件对近距离薄煤层村下条带开采方式所引起的地表变形情况进行研究分析。 1数值模拟 1.1计算模型的确立 根据某煤矿所处区域的实际地质条件,建立倾斜方向长度为600m(X方向),走向方向长度为700m(Y 方向)及垂直方向长度为374m(Z方向)的三维计算模型,即三维计算模型大小为600?700?374m,模型共有258600个单元,273128个节点。为了提高计算精 *收稿日期:2011-09-22 作者简介:王传团(1970-),男,1994年毕业于中国矿业大学采矿工程系。现任济宁市金桥煤矿总工程师,现攻读中国矿业大学资源学院矿业工程硕士,曾在国内知名刊物发表论文数篇。曾获得省部级科技成果一、二、三等奖多项。度,工作面周围网格进行加密处理,其他部分网格成发散状,如图1所示。模型的两侧面(水平方向)采用水平位移约束,模型底面采用垂直方向及水平方向位移约束,模型上部边界为地表,因此采用自由面 。 图1计算区域内模型网格划分 1.2岩体力学参数的选取 本计算选取莫尔—库仑模型进行计算分析。依据现场地质调查和相关试验研究所提供的岩石力学试验结果,在考虑岩石尺度效应的基础上,最终确定模拟计算所需的岩体力学参数。 1.3分析方案 为了正确模拟分析近距薄煤层条件下不同煤柱尺寸时地表变形情况,为在建筑物下进行多工作面联合条带开采提供理论基础及必要的科学依据,特制定如下两类计算方案,其中第一类主要分析同一采出率不同煤柱留设尺寸,以采出率为50%为基准,煤柱留设尺寸分别为30m、40m及50m共3个计算方案;第二类主要分析同一采出尺寸不同煤柱留设宽度,以采出宽度为40m为基准,留设煤柱尺寸分别为10m及40m共 37 2012年第2 期

煤矿千米深井开采技术现状

煤矿千米深井开采技术现状 1 国内外深井开采现状 在我国已探明的煤炭资源中,约占50%的煤炭埋深超过千米。随着对能源需求量的增加和开采强度的不断加大,我国煤炭开采逐步转向深部,煤矿开采深度以8~12m/年的速度增加。如何能够安全、高效、低成本地开采深部煤炭资源,将其转换为经济建设有力的能源保障,成为目前我国煤炭行业亟需寻求突破的重大技术难题。 1.1 国外深井开采现状 煤矿深部开采是世界上大多数主要采煤国家目前和将来要面临的问题。在世界主要采煤国家中,美国、澳大利亚、德国、英国、波兰、俄罗斯等国家采矿业较为发达,原西德和前苏联较早进入深部开采。在20世纪60年代初,原西德埃森北部煤田中的巴尔巴拉矿的开采深度就已经超过1000 m,达到1200m;从1960~1990年,原西德煤矿的平均开采深度从730m 增加到900m 以上,最大开采深度从1200m 增大到1500m,并且以每年约10m 的速度递增。前苏联在解体前的20年中,煤矿的开采深度以每年10~12m左右的速度递增。在俄罗斯,仅顿巴斯矿区就有30个矿井的开采深度达到1200~1350m,波兰的煤矿开采深度已达1200 m,日本和英国的煤矿开采深度曾分别达到1125 m 和1100m。 1.2 国内深井开采现状 近年,我国经济持续高速稳定发展,能源需求旺盛,煤

炭产量大幅度增加,2012年生产原煤36.5亿t。矿井开采延深速度加快,一大批矿井快速进入深部开采阶段。东北及中东部地区的多数矿区开采历史长,开采深度相对较大。预计在未来20年,很多煤矿的开采深度将达1000~1500m。如现在新汶矿区平均最大回采深度达到1032m。 图我国煤矿千米深井分布图 据国家煤矿安全监察局初步统计,我国已有平顶山、淮南和峰峰等43个矿区的300多座矿井开采深度超过600m,逐步进入深部开采的范畴,其中开滦、北票、新汶、沈阳、长广、鸡西、抚顺、阜新和徐州等近200处矿井开采深度超过800m,而开采深度超过1000m 的矿井全国有47处。其中山东省就有21处。目前,全国最深的矿井是新汶孙村煤

煤峪口矿近距离薄煤层采场顶板跨落机理及支架承载分析

煤峪口矿近距离薄煤层采场顶板跨落机理及支架承载分析 p煤峪口矿14#层408盘区煤层倾角1°~3°,赋存较稳定,煤厚变化大,煤层厚度一般为0.07~4.17米,盘区西翼(盘区上山)开采期间煤厚变化不大,在2米左右。盘区东翼(盘区下山)开采时煤层厚度变薄,最薄处不足1.4米,工作面偶有冲刷、夹石。 从14#层307盘区、410盘区现已掘出巷道揭露的煤层来看,赋存情况不容乐观,煤厚变化大赋存极不稳定,煤层厚度为0.8-2.3,普遍不足1.6米。 408盘区盘区西翼(盘区上山)开采期间,采煤方法为长壁全部冒落法,工作面支护采用ZZS-5600/14/28型液压支架:适应煤厚 1.6-2.6米;工作阻力:28.5MPa(5600KN),支护强度:0.73-0.98MPa,该支架完全能够适应采场支护。盘区东翼(盘区下山)煤层厚度变薄,该支架在采高上已显出不足。为保证14#层的顺利开采,支架重新选型迫在眉睫。 ZYB4400/8.5/18液压支架适应煤厚1-1.6米;支护强度:0.766 MPa;初撑力:31.4MPa(3860KN);工作阻力:35.7MPa(4400KN)泵站压力:31.4MPa。支护强度是否能够支护采场顶板,是目前薄煤层开采采场支护急需解决的问题。 2 采区围岩状况 煤峪口矿14#层属近距离薄煤层,与11~12#层间距为2.86~10.45米,平均厚度4.39米。层间顶板为灰白色粉砂岩,上覆为11、12#层采空冒落部分。直接底灰色灰褐色粉砂岩,平均厚度1.6米。 3 采场顶板跨落机理及支架承载分析 由已采14#408盘区工作面矿压观测,工作面没有明显周期来压,有瞬时增阻。随工作面推进,直接顶在支架切顶线后1米左右跨落,支架切顶线后最大悬顶长1米左右,上覆为11、12#层采空冒落部分松散岩体随着下落。由于松散岩体高度大,采空区高度小,下落的松散岩体相互挤压,并未按流体沿斜面下滑。 11、12#合并层基本顶为灰白色中砂岩,厚度31.12—32.41米,平均31. 7米,直接顶灰白细粒砂岩细粒砂岩互层,厚度2.52—2.1米,平均2.18米。煤厚7.5-8.8米,平均煤厚8米。上下分层采高均为2.8米,下分层顶煤2.4厚米,顶煤回收率按50%计,则共采出煤厚6.8米;上下分层采出后,直接顶、下位基本顶冒落后填满采空区。 冒落岩石碎胀系数取1.35。设岩层冒落高度h: 6.8+h=1.35h

我国煤矿薄煤层开采技术的现状与发展探讨

我国煤矿薄煤层开采技术的现状与发展探讨 摘要对于我国资源储量比较大的薄煤层来说,随着国内外采矿设备制造水平的提高,在采用大功率、高可靠性工作面设备的基础上,应根据当地的煤层赋存情况,因地制宜地选择采煤机械,并采用合理的采煤方法,努力实现薄煤层的高产高效开采。本文将对薄煤层开采技术的现状和未来进行探讨。 关键词薄煤层开采;特点;现状;发展 我国把厚度小于1.3 m的煤层划归为薄煤层,厚度小于0.8 m的煤层属于极薄煤层。我国薄煤层资源丰富,分布面广,而且煤质好。据统计,全国薄煤层的储量占全部可采储量的20%,在近80个矿区中的400多个矿井中就有750多层为薄煤层。其中,厚度在0.8 m~1.3 m的共占86.02%,小于0.8 m的占13.98%,0.8 m~1.3 m的缓倾斜煤层占73.4%,开采条件相对较好。一些地区薄煤层储量比重很大。贵州省占37%,山东省占52%,四川省占60%。尽管有较好的储存条件,但由于受“劳动强度大、机械化程度低、安全系数低、工作效率低”的“一大三低”影响,每年从薄煤层中采出的煤量仅占全国总储量的10.4%,而且还有继续下降的趋势,产量与储量的比例严重失调,造成国家资源的浪费,矿井服务年限 缩短。 1 薄煤层开采的特点 目前我国薄煤层多数采用普采,高档普采,效率低,经济效益差,

一直制约着薄煤层资源的开采和利用。一些矿井虽然使用了综合采煤设备,但是三机装备配套性能不佳,生产效率低,工作面生产能力很低。薄煤层由于其开采厚度较小,与中厚及厚煤层相比,开采主要存在以下特点:煤层薄、采高低、煤质硬、劳动效益低煤层厚度多在1.3 m以下,并且煤层硬度多大于3~4,使得人员进入或在工作面内作业以及设备移动都十分困难。采掘比例大、掘进率高,采掘接替紧张随着刨煤机、螺旋钻机等设备的投入,工作面推进加快,而回采巷道多为半煤岩巷,综掘设备难以投入。煤层的厚度、角度变化,褶曲、断层等构造对采煤方法影响很大。 目前我国薄煤层开采技术发展的还不是很好。 1)机械化程度低。由于薄煤层采煤工作面空间非常狭小,工作条件也比较差,这样就给设备的设计制造和井下移动带来诸多困难。 2)生产效率低下。薄煤层由于煤层厚度变化、断层等地质构造,对煤层开采有很大影响,生产能力低,一般薄煤层单产只为中厚煤层的1/3或更少。 3)投入产出比高。由于效率低,掘进率高,其开采成本明显高于中厚煤层,而经济效益则不如中厚煤层。 可见,发展机械化、实现综合机械化采煤,是实现薄煤层开采高产高效的唯一出路,我国在这方面一直在不断努力。 2 薄煤层工作面设备选择与工艺分析

探讨深部开采面临的主要问题与对策

探讨深部开采面临的主要问题与对策 摘要:随着我国国民经济发展,煤矿深部开采技术不断进步,国家加大对于深部开采的投入力度,而在深部开采过程中,由于深部多变、复杂的煤岩体特点,给身边开采造成一定困难。本文主要探讨深部开采面临的主要问题,并提出一些针对性的对策。 关键词:深部开采;问题;对策 针对矿井深部开采,开采的深度直接反映矿井的开采难度。近年来,随着我国经济持续、稳定增长,对于能源需求量日益增多,使得矿井开采的延伸速度在不断加快。目前,我国矿井开采已发展至深部开采阶段,同浅部开采对比,深部开采的成本较高,随着深度增加,也不利于采矿环境,给煤矿生产、安全造成极大问题。笔者根据自身多年从业经验,对深部开采中面临的主要问题进行分析,并提出一些针对性的建议,现总结如下: 一.深部开采面临的主要问题 首先,巷道围岩变形。地应力随着开采深度的增加而增大,同时巷道周围的应力也随之增高。处于浅部较硬的围岩,直到深部后形成工程软岩,主要表现应变软化、强烈扩容性特点,降低了巷道岩体的强度,严重破坏了支护与巷道。按照相关统计显示,深部巷道的翻修比例在91%以上,显著增加了巷道维护成本,导致矿井生产系统不畅通,降低运输能力,以及风水电等一系列系统问题。具体表现如下方面:其一,巷道的变形速度较快,底鼓较为严重,变形量较大,在深部高应力的条件下,岩体具备较高能量,对巷道开挖具有卸荷作用,短时间可释放岩体聚集能量,深部围岩最大应力和最小应力差呈上升趋势。前掘后修已成为深部回采巷道施工的基础工作;其二,岩性显著影响了巷道的稳定性,对于浅部岩体而言,岩性变化几乎不影响巷道变形。而到达深部之后,不同岩性围岩的变形差异逐渐增加,巷道位置取决于岩性主导因素,若同一巷道的岩性不同,采用非等强支护方法已成为主要的巷道围护方法;其三,掘进后,巷道持续流变和变形,是深部巷不变形的表现特征。 其次,矿井煤同瓦斯之间的冲击、突出地压。其一,随矿井开采深度有所增加,煤层瓦斯压力随之增加,许多旧浅部属于非突出煤层,转变成突出煤层,随深度增加,其突出频度、强度也显著增大。由于我国煤矿开采条件较为复杂,矿井几乎全部为瓦斯矿井,瓦斯是煤矿安全生产的必要问题。其二,煤岩的冲击地压日益突出,破坏过程显著加剧,而且承压水、瓦斯提出等问题存在互相叠加作用,使得灾害预测难度增加。 第三,矿井水灾。由于地下水处于渗流场内,通常裂隙岩体水渗流与达西定理符合,然而矿井深部岩体由于高地温、高应力作用影响,特征出现显著变化,高渗透压力极易发生地质灾害。由于我国煤矿地质、水文地质条件极为复杂,奥灰水压呈持续增长趋势,承压水问题极为严重,同时突水几率也相应增加。 第四,高温热害。因为高温职工没有集中注意力,对生产效率造成严重影响,明显增加了机电设备、人身事故率,不能确保采掘工作面的安全、稳定生产。根据《煤矿安全规程》规定,煤矿采掘的工作面空气温度必须小于26摄氏度,机电硐室温度必须小于30摄氏度,若这两个工作点超过了30、34摄氏度的室内温度,必须强制性停止作业。 第五,煤层自燃。根据相关研究显示,随着开采深度增加,其地温随之增高。

浅议煤矿煤层的开采技术

浅议煤矿煤层的开采技术 发表时间:2011-09-29T16:27:09.627Z 来源:《时代报告》2011年7月下期供稿作者:王保军 [导读] 在一定时间内,按照一定的顺序完成回采工作各项工序的过程,称为采煤工艺过程。 王保军 (河南煤化集团鹤煤公司九矿河南鹤壁 458000) 中图分类号:TD821 文献标识码:A 文章编号:41-1413(2011)07-0000-02 摘要:由于煤层的自然条件和采用的机械不同,完成回采工作各工序的方法也就不同,并且在进行的顺序、时间和空间上必须有规律地加以安排和配合。这种在采煤工作面内按照一定顺序完成各项工序的方法及其配合,称为采煤工艺。在一定时间内,按照一定的顺序完成回采工作各项工序的过程,称为采煤工艺过程。 关键词:开发技术煤炭工艺煤炭 一、煤炭开采的主要形式 (一)井下采煤 井下采煤的顺序。对于倾角10°以上的煤层一般分水平开采,每一水平又分为若干采区,先在第一水平依次开采各采区煤层,采完后再转移至下一水平。开采近水平煤层时,先将煤层划分为几个盘区,立井于井田中心到达煤层后,先采靠近井筒的盘区,再采较远的盘区。如有两层或两层以上煤层,先采第一水平最上面煤层,再自上而下采另外煤层,采完后向第二水平转移。 按落煤技术方法,地下采煤有机械落煤、爆破落煤和水力落煤三种,前二者称为旱采,后者称为水采,我国水采矿井仅占1.57%。旱采包括壁式采煤法和柱式采煤法,以前者为主。壁式采煤法工作面长,一般100~200 m,可以容纳功率大,生产能力高的采煤机械,因而产量大,效率高。柱式采煤法工作面短,一般6~30 m,由于工作面短,顶板易维护,从而减少了支护费用,主要缺点是回采率低。(二)露天采煤 移走煤层上覆的岩石及覆盖物,使煤敞露地表而进行开采称为露天开采,其中移去土岩的过程称为剥离,采出煤炭的过程称为采煤。露天采煤通常将井田划分为若干水平分层,自上而下逐层开采,在空间上形成阶梯状。 其主要生产环节:首先用穿孔爆破并用机械将岩煤预先松动破碎,然后用采掘设备将岩煤由整体中采出,并装入运输设备,运往指定地点,将运输设备中的剥离物按程序排放于堆放场;将煤炭卸在洗煤厂或其他卸矿点。 主要优缺点 优点为生产空间不受限制,可采用大型机械设备,矿山规模大,劳动效率高,生产成本低,建设速度快。另外,资源回采率可达90%以上,资源利用合理,而且劳动条件好,安全有保证,死亡率仅为地下采煤的1/30左右。 主要缺点是占用土地多,会造成一定的环境污染,而且生产过程需受地形及气候条件的制约。在资源方面,对煤赋存条件要求较严,只宜在埋藏浅,煤层厚度大的矿区采用。 二、采煤方法与工艺 在发展现代采煤工艺的同时,继续发展多层次、多样化的采煤工艺,建立具有中国特色的采煤工艺理论。我国长壁采煤方法已趋成熟,放顶煤采煤的应用在不断扩展,应用水平和理论研究的深度和广度都在不断提高,急倾斜、不稳定、地质构造复杂等难采煤层采煤方法和工艺的研究有很大空间,主要方向是改善作业条件,提高单产和机械化水平。 (一)开采技术 开发煤矿高效集约化生产技术、建设生产高度集中、高可靠性的高产高效矿井开采技术。以提高工作面单产和生产集中化为核心,以提高效率和经济效益为目标,研究开发各种条件下的高效能、高可靠性的采煤装备和工艺,简单、高效、可靠的生产系统和开采布置,生产过程监控与科学管理等相互配套的成套开采技术,发展各种矿井煤层条件下的采煤机械化,进一步改进工艺和装备,提高应用水平和扩大应用范围,提高采煤机械化的程度和水平。 (二)解决难题 开发“浅埋深、硬顶板、硬煤层高产高效现代开采成套技术”,主要解决以下技术难题。 硬顶板控制技术,研究埋深浅、地压小的硬厚顶板控制技术,主要通过岩层定向水力压裂、倾斜深孔爆破等顶板快速处理技术,使直接顶能随采随冒,提高顶煤回收率,且基本顶能按一定步距垮落,既有利于顶煤破碎,又保证工作面的安全生产。 硬厚顶煤控制技术,研究开发埋深浅、支承压力小条件硬厚顶煤的快速处理技术,包括高压注水压裂技术和顶煤深孔预爆破处理技术,使顶煤体能随采随冒,提高其回收率。 顶煤冒放性差、块度大的综放开采成套设备配套技术,研制既有利于顶煤破碎和顶板控制,又有利于放顶煤的新型液压支架,合理确定后部输送机能力。 两硬条件下放顶煤开采快速推进技术,研究合适的综放开采回采工艺,优化工序,缩短放煤时间,提高工作面的推进度,实现高产高效。5~5.5m宽煤巷锚杆支护技术,通过宽煤巷锚杆支护技术的研究开发和应用,有利于综采配套设备的大功率和重型化,有助于连续采煤机的应用,促进工作面的高产高效。 (三)缓倾斜薄煤层长壁开采 主要研究开发:体积小、功率大、高可靠性的薄煤层采煤机、刨煤机;研制适合刨煤机综采的液压支架;研究开发薄煤层工作面的总体配套技术和高效开采技术。 (四)缓倾斜厚煤层一次采全厚大采高长壁综采 应进一步加强完善支架结构及强度,加强支架防倒、防滑、防止顶梁焊缝开裂和四连杆变形、防止严重损坏千斤顶措施等的研究,提高支架的可靠性,缩小其与中厚煤层(采高3m左右)高产高效指标的差距。 (五)各种综采高产高效综采设备保障系统 要实现高产高效,就要提高开机率,对“支架—围岩”系统、采运设备进行监控。今后研究的重点是:通过电液控制阀组操纵支架和改

四台矿极近距离煤层采空下开采技术

编订:__________________ 单位:__________________ 时间:__________________ 四台矿极近距离煤层采空 下开采技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2669-96 四台矿极近距离煤层采空下开采技 术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 四台矿404盘区10#层于20xx年底开采结束,为保证盘区正常接替,必须开采404盘区下部11#层。404盘区10#层与11#属极近距离煤层,层间距不稳定。我矿从科学合理的盘区开采设计到首采面8423工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成一套完整的极近距离煤层采空下开采技术。 1盘区概况 11#层404盘区所处的开采水平为1045水平,上部10#层均已回采结束,盘区走向长度1340m~1770m,倾斜长度1180m。煤层包括11#层和盘区中部1000m段11#层与12-1#层合并层,厚度2.0m~7.4m,平均厚度4.0m,煤层倾角10~60,平均30,煤层与10#层层间

薄煤层开采技术

薄煤层开采技术 摘要 对于我国资源储量比较大的薄煤层来说,随着国内外采矿设备制造水平的提高,在采用大功率、高可靠性工作面设备的基础上,应根据当地的煤层赋存情况,因地制宜地选择采煤机械,并采用合理的采煤方法,努力实现薄煤层的高产高效开采。 关键词薄煤层开采工艺分析回采技术发展趋势支护技术现状 我国把厚度小于1.3 m的煤层划归为薄煤层,厚度小于0.8 m的煤层属于极薄煤层。我国薄煤层资源丰富,分布面广,而且煤质好。据统计,全国薄煤层的储量占全部可采储量的20%,在近80个矿区中的400多个矿井中就有750多层为薄煤层。其中,厚度在0.8 m~1.3 m的共占86.02%,小于0.8 m的占13.98%,0.8 m~1.3 m的缓倾斜煤层占73.4%,开采条件相对较好。一些地区薄煤层储量比重很大。贵州省占37%,山东省占52%,四川省占60%。尽管有较好的储存条件,但由于受“劳动强度大、机械化程度低、安全系数低、工作效率低”的“一大三低”影响,每年从薄煤层中采出的煤量仅占全国总储量的10.4%,而且还有继续下降的趋势,产量与储量的比例严重失调,造成国家资源的浪费,矿井服务年限。我国从20世纪60年代起始对薄煤层工作面综合机械化开采技术与装备展开研究,先后研制并生产了多种类型薄煤层工作面综采配套设备,但没有解决关键性技术装备问题,薄煤层开采成本高、单产低、效益差、工人劳动强度高等问题,一直未能得到有效解决。 一、薄煤层开采的特点 目前我国薄煤层多数采用普采,高档普采,效率低,经济效益差,一直制约着薄煤层资源的开采和利用。一些矿井虽然使用了综合采煤设备,但是三机装备配套性能不佳,生产效率低,工作面生产能力很低。薄煤层由于其开采厚度较小,与中厚及厚煤层相比,开采主要存在以下特点:煤层薄、采高低、煤质硬、劳动效益低煤层厚度多在1.3 m以下,并且煤层硬度多大于3~4,使得人员进入或在工作面内作业以及设备移动都十分困难。采掘比例大、掘进率高,采掘接替紧张随着刨煤机、螺旋钻机等设备的投入,工作面推进加快,而回采巷道多为半煤岩巷,综掘设备难以投入。煤层的厚度、角度变化,褶曲、断层等构造对采煤方法影响很大。 目前我国薄煤层开采技术发展的还不是很好。 1)机械化程度低。由于薄煤层采煤工作面空间非常狭小,工作条件也比较差,这样就给设备的设计制造和井下移动带来诸多困难。 2)生产效率低下。薄煤层由于煤层厚度变化、断层等地质构造,对煤层开采有很大影响,生产能力低,一般薄煤层单产只为中厚煤层的1/3或更少。 3)投入产出比高。由于效率低,掘进率高,其开采成本明显高于中厚煤层,而经济效益则不如中厚煤层。 可见,发展机械化、实现综合机械化采煤,是实现薄煤层开采高产高效的唯一出路,我国在这方面一直在不断努力。 二、薄煤层工作面设备选择与工艺分析

相关主题
文本预览
相关文档 最新文档