当前位置:文档之家› 区熔法的应用

区熔法的应用

区熔法的应用
区熔法的应用

区熔理论在材料提纯中的应用和实现

摘要:区熔法是一种利用局部区域熔化后,通过熔区的运动进行提纯的方法。他是一种制备高纯单晶的方法,广泛应用于硅锗等单晶的制备。区熔法主要可分为水平区熔法和悬浮区熔法两种,两种方法生产工艺不同,适用范围也不同

物质的固相和液相在密度差的驱动下,均会发生运动,因而可通过区域熔炼控制或者重新分配存在于原料纸的可溶性杂质。同时区熔法可有效消除分凝效应,也可将所期望的杂质均匀掺入晶体中,并在一定程度上控制盒消除位错、包裹体等结构缺陷。

区熔法是利用热能在半导体棒料的一端产生一熔区,再熔接单晶耔晶。调节温度使熔区缓慢地向棒的另一端移动,通过棒料整根棒料,生长成一根单晶,晶向与耔晶晶向相同。区熔法适宜生长那些在熔点温度时具有非常强的溶解能力的材料,可生长熔点极高或活性较强的材料,如MgO单晶,碳化物单晶和难熔金属单晶。按其适用范围的不同,区熔法主要分为两种,即水平区熔法和悬浮区熔法。前者主要用于锗、GaAs等材料的提纯和单晶生长。后者主要用于制备单晶硅,这是由于硅熔体的温度高,化学性能活泼,容易受到异物的拈污,难以找到适合的舟皿。

水平区熔提纯是只把材料锭的一小部分熔化形成熔区,并使熔区从锭条的一端移到另一端。因为每次熔化的仅是锭条的一小部分,例如,对K<1的杂质,当熔区第二次在锭首时,由于杂质浓度较高的尾部没被熔化,所以小熔区中的杂质浓度一定比原来锭的杂质浓度要小,熔区移动后,新凝固的固相杂质浓度要比第一次小。这样当熔区一次次通过锭条时,材料就能逐渐被提纯。当某些半导体器件或某些特殊器件对材料的纯度要求很高时,则应进行多次区熔提纯,使中间部分纯度达到要求的程度。区熔提纯受到熔区长度、熔区移动速度、区熔次数以及质量运输等诸多因素影响。其中,在一次区熔时,熔区长度越长,区熔效果越好,多次区熔时则刚好相反。熔区移动速度越慢,区熔时间越久,区熔效果越好,但生产率不高,因而必须选取一个合适的熔区移动速度。区熔一定次数后,锭中杂质的浓度已经达到极限分布,再区熔也没多少效果,因而可以按照经验选择区熔次数,一般以20次左右为宜。区熔时物质会从一端缓慢移动到另一端,这会使水平区熔的材料锭纵向截面变成锥形,甚至引起材料外溢,造成浪费。因此,为了避免浪费产生,水平区熔时,可以将锭料容器倾斜成一个角度,用重力来改变其运动方向。锗锭放在一个清洁处理的高纯石墨舟中,舟放入石英管中,区熔时石英管内要填充氢气或其它惰性气体保护或者抽真空,防止锗在高温时被氧化。熔区可用高频高频感应线圈或电阻加热炉产生。熔区移动可用移动石墨舟或加热线圈来完成。多熔区加热法可以提高加热效率,这时锭条同时经过几个加热器,则一个行程,对锭上任何一点都做n次区熔提纯,效率提高n倍。

作为拉制单晶锗的原料必须是纯度很高的锗,所以必须进行多次区熔提纯。而只有进行多次区熔提纯过程,才能显示区熔提纯的优越性。因为它不必重复出炉、切去锭的首尾端、腐蚀处理、再装炉提纯。区熔提纯方法不仅克服了用正常凝固法进行多次提纯时的困难,同时用多个间隔一定距离的熔区同时通过锗锭,还可以节约时间,提高设备的生产能力。依据双环形加热器的区熔提纯设备的特点,当环形加热器或者石英管从锗锭的一端移动到锗锭的另一端,整个锗锭在全过程中就被提纯了两次。

区熔法制备硅单晶时主要用无坩埚悬浮区熔法。该方法是在气氛会真空的炉室中,利用高频线圈在单晶耔晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行生长。

该方法中,柱状的高纯多晶硅材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使多晶柱紧邻线圈的部分熔化,线圈移过后,熔料再结晶为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长

装置可置于真空系统中,或者有保护气氛的封闭腔室中。区熔主要设备为区熔单晶炉,其主要结构包括:双层水冷炉室、长方形钢化玻璃观察窗、抽真空接口、上轴、下轴、高频加热圈等。除炉室外,还有供电、供水或抽真空系统与高频感应发生器等。由于该装置制取硅的操作完全在竖直方向,因而硅熔体只能完全依靠其表面张力和高频电磁力的支撑,才能悬浮于多晶棒与单晶之间。区熔法制备单晶硅的主要工艺为:<1>将硅棒熔成半球;<2>下压硅棒熔接耔晶;<3>缩颈:耔晶硅棒同步下行轻拉上轴使熔区呈漏斗状;<4>放肩:耔晶硅棒同步下行但上轴拉伸次数减少造成饱满而不崩塌的熔区;<5>收肩合棱:熔区饱满稍下压上轴;

<6>等径生长:硅棒晶体同步运行通过适当拉压上轴来控制晶体直径;<7>收尾:轻拉上轴使熔区逐步拉断形成尖形;<8>区熔鼓棱单晶外形。由于该方法中样品的熔化是完全由固体部分支撑,不需要坩埚,从而有效避免了外来物的污染。

悬浮区熔法可以进行多次提纯,因而制成的单晶纯度高,可用于制作电力电子器件、光敏二极管、射线探测器、红外探测器等。

利用中子嬗变掺杂可以克服由区熔法制取的单晶会有高的电阻率不均匀的缺陷,使其突破高电阻率不均匀所带来的对大功率整流器和晶闸管的反向电压的限制,从而使电子器件的制造研究得到迅速发展。同时,由于自然资源的枯竭,人们对太阳能的利用越发关注。而区熔单晶硅作为太阳能电池的主要原料也在日益受到关注。以区熔单晶硅制造的太阳能电池的光电转化率已经超过以直拉单晶硅和多晶硅为主要原料的太阳能电池。同时,随着信息时代的快速发展,区熔单晶硅在通讯领域被大量用来制造射频集成电路、微波集成电路和光电探测器等高端微电子器件,极大地促进了这一领域的发展。

区熔法可用于制备单晶和提纯材料,可得到均匀的杂质分布。因而它可以广泛应用于生产纯度很高的半导体、金属、合金、无机和有机化合物晶体。在信息时代对原料的要求原来越高的背景下,区熔法必将发挥更大的作用。

参考文献:1杨树人,半导体材料,科学出版社,2004;

2何桂凤,区熔锗的提纯,上海有色金属,1983

3张玉龙,人工晶体,化学工业出版社,2005

无纺布生产工艺

无纺布生产工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

无纺布生产工艺 无纺布是一种不需要纺纱织布而形成的织物,只是将纺织短纤维或者长丝进行定向或随机撑列,形成纤网结构,然后采用机械、热粘或化学等方法加固而成。简单的讲就是:它不是由一根一根的纱线交织、编结在一起的,而是将纤维直接通过物理的方法粘合在一起的,所以,当你拿到你衣服里的粘称时,就会发现,是抽不出一根根的线头的。非织造布突破了传统的纺织原理,并具有工艺流程短、生产速度快,产量高、成本低、用途广、原料来源多等特点。它的主要用途大致可分为: (1)医疗卫生用布:手术衣、防护服、消毒包布、口罩、尿片、妇女卫生巾等; (2)家庭装饰用布:贴墙布、台布、床单、床罩等; (3)跟装用布:衬里、粘合衬、絮片、定型棉、各种合成革底布等; (4)工业用布:过滤材料、绝缘材料、水泥包装袋、土工布、包覆布等;(5)农业用布:作物保护布、育秧布、灌溉布、保温幕帘等; (6)其它:太空棉、保温隔音材料、吸油毡、烟过滤嘴、袋包茶叶袋等。 无纺布的分类: 一、水刺无纺布 水刺工艺是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一起,从而使纤网得以加固而具备一定强力。 二、热合无纺布 热粘合无纺布是指在纤网中加入纤维状或粉状热熔粘合加固材料,纤网再经过加热熔融冷却加固成布。

三、浆粕气流成网无纺布 气流成网无纺布又可称做无尘纸、干法造纸无纺布。它是采用气流成网技术将木浆纤维板开松成单纤维状态,然后用气流方法使纤维凝集在成网帘上,纤网再加固成布。 四、湿法无纺布 湿法无纺布是将置于水介质中的纤维原料开松成单纤维,同时使不同纤维原料混合,制成纤维悬浮浆,悬浮浆输送到成网机构,纤维在湿态下成网再加固成布。 五、纺粘无纺布 纺粘无纺布是在聚合物已被挤出、拉伸而形成连续长丝后,长丝铺设成网,纤网再经过自身粘合、热粘合、化学粘合或机械加固方法,使纤网变成无纺布。 六、熔喷无纺布 熔喷无纺布的工艺过程:聚合物喂入---熔融挤出---纤维形成---纤维冷却---成网---加固成布。 七、针刺无纺布 针刺无纺布是干法无纺布的一种,针刺无纺布是利用刺针的穿刺作用,将蓬松的纤网加固成布。 八、缝编无纺布 缝编无纺布是干法无纺布的一种,缝编法是利用经编线圈结构对纤网、纱线层、非纺织材料(例如塑料薄片、塑料薄金属箔等)或它们的组合体进行加固,以制成无纺布。

熔喷设备、工艺、静电驻极

目前熔喷无纺布在过滤材料领域的应用非常广泛。自从20世纪70年代以来,各种荷电技术以及通过混合不同纤维的带电技术等各具特色的带静电过滤器得到了开发和利用。其直接的结果是导致了现在的静电驻极工艺。目前的驻极方法主要有静电纺丝法、电晕充电法、摩擦起电法、热极化法、低能电子束轰击打法、纯水喷射法等,由于材料的静电驻极工艺不同,所形成的驻极体的性质亦大不相同,过滤性能提升和静电持久性有差异。 熔喷无纺布本身的过滤性能其实只有70%以下的,纯粹靠熔喷超细纤维的纤维细、空隙小、孔隙率高的纤维三维集合体的机械阻挡作用是不够的。不然,一味增加材料克重厚度反而会大大增加过滤阻力。所以熔喷过滤材料普遍都是会通过静电驻极的工艺对熔喷布进行添加静电电荷效应,利用静电的方法提升过滤效率,可以达到99.9%到99.99%。也就是达到KN95标准或以上。 驻极体空气过滤材料利用纤维本身驻极性,对粉尘静电吸附,捕获细菌和病毒。聚丙烯熔喷纤维驻极的带电不同于普通材料摩擦带的电荷。用摩擦起电的方式吸引纸碎去判断熔喷是否带电和口罩是否有过滤性能是不科学的。摩擦起电是暂时带电,是表面电荷被暂时聚集的现象。摩擦带电是表面极化的正负电荷,而驻极体纤维的电荷是在驻极工艺时通过外加高压电荷额外加上去的内部电荷。这些电荷随着驻极母粒纳米形式分散在熔喷超细纤维多孔内部结构里。熔喷材料本身拒水加上超细纤维的阻隔,这些电荷被牢牢的锁在内部,只有微细颗粒进入熔喷层内部时,静电作用和超细纤维结构就开始发挥作用。所谓静电是因为聚丙烯熔喷材料本身是绝缘的,也是一种驻极材料,所以电荷不会随意中和,随意散失。通过额外高压放电的电荷在纤维内部保存,时间较久,带电量充足,而且是多种电荷共同存在,不是摩擦起电的一种电荷,用宏观吸附不能直接反应微观电荷性能。以超细纤维三维聚集高孔隙率和纤维开放式静电驻极体性能提供高效低阻的过滤品质。驻极抗菌熔喷布的作用机理是驻极体产生的强静电场和微电子流刺激细菌,使其蛋白质和核酸变异损伤,破坏细菌的表面结构,导致细菌死亡,电气石本身释放负离子阻断了一些细菌微生物的代谢过程,这包括呼吸系统,酶的活性,来自细胞壁的物质传递,从而抑制细菌细胞起到抗菌作用。 熔喷驻极过滤材料主要是通过机械阻挡和静电吸附双重作用来捕获粒子。机械阻挡作用与材料的结构以及性质密切相关:当熔喷布经过电晕充电后带有几百到几千伏电压,由于静电的排斥作用使纤维扩散成网状孔洞,纤维间的尺寸远大于粉尘的尺寸,从而形成一种开放式结构。当粉尘经过熔喷过滤材料时,静电作用不仅能有效吸引带电粉尘粒子,而且以静电感应效应捕获极化的中性粒子。材料静电势越高,材料的电荷密度越大,带点电荷越多,静电作用越强。电晕放电能大大提高聚丙烯熔喷布的过滤性能。加入电气石微粒能有效改善驻极效益,过滤效率增加,过滤阻力降低,纤维表面电荷密度增加,纤网贮存电荷能力也增强。加入6%的电气石

熔喷法非织造布生产流程概述

1熔喷法非织造布生产流程概述 熔喷法非织造布是20世纪50年代首先在美国研制成功的,我国也曾在60年代初进行过研制。它由高熔融指数的聚丙烯切片直接纺丝成布,是一种高新技术产品。目前,美国的年产量约为l5万,t我国的年产量为5000t。熔喷法非织造布的生产过程是:将聚丙烯切片(FR400-1200)通过螺杆挤压机使其熔融,经过喷丝孔将其喷出成为纤维状,并在高速(13000m/min)热气流的喷吹下,使之受到强大拉伸,形成极细的短纤维,这些短纤维被吸附在成网帘上,由于纤维凝聚成网后仍能保持较高的温度,从而使纤维间相互粘连成为熔喷法非织造布,最后进行成卷打包。其生产流程如图1所示。 1.螺杆挤出机; 2.计量泵; 3.熔喷装置; 4.接收网; 5.卷绕装置; 6.喂料装置图1 熔喷法非织造布生产流程图 熔喷法非织造布连续性生产线的设备高约6m,宽约5m,长约20m,其生产设备如下: (1)螺杆挤压机:螺杆直径一般为100~120mm,长/径比为30,其目的是将切片熔化。 (2)计量泵:其作用是精确计量,控制产量和纤维的细度,为齿轮泵,将熔体连续输送到喷丝头。 (3)熔体过滤器:其作用是将熔体中的杂质过滤掉,以免堵塞喷丝孔。

(4)输送网帘:将熔喷纤维均匀接收铺在网上,向前输送,其下面有吸风机,将上面下来的热风排出。 (5)纺丝箱体:是熔喷工艺的关键设备,有1块长条形喷丝板,板上布满一长列喷丝孔,一般每m长约有1500个喷孔。喷丝板两侧面装有热空气喷管,下装有热空气喷孔,与喷丝孔成50b角,使纤维喷出之后,即刻用高速热空气进行气流拉伸,把纤维吹断,成为超细纤维。 (6)喂料系统:由3个计量斗组成,分别用于计量白色切片、色母粒、添加剂,3种组分进入下面的混合搅拌器混合均匀,即投入生产。(7)热风机与加热器:提供纺丝气流拉伸时所用的热空气的温度与压力,用电加热,耗电量较大。 (8)卷取机采用全自动卷取,将熔喷布成卷包装。熔喷法非织造布的纤维特点是超细,其纤维直径最小可达到,一般在1~5Lm之间。纤维越细,熔喷布质量越好,但产量相对减少。由于纤维超细,其比表面积大,吸附能力强,这是熔喷布最突出的优点。

化学热处理技术

化学热处理技术应用和发展 摘要:浅谈化学热处理原理、反应机理,以及化学热处理分类、应用和发展前景、技术特点 关键词:化学热处理;碳渗;氮渗;稀土化学 前言 化学热处理是一种通过改变金属和合金工件表层的化学成分、组织和性能的金属热处理。它的工艺过程一般是:将工件置于含有特定介质的容器中,加热到适当温度后保温,使容器中的介质(渗剂)分解或电离,产生的能渗入元素的活性原子或离子,在保温过程中不断地被工件表面吸附,并向工件内部扩散渗入,以改变工件表层的化学成分。通常,在工件表层获得高硬度、耐磨损和高强度的同时,心部仍保持良好的韧性,使被处理工件具有抗冲击载荷的能力。 一、化学热处理原理 化学热处理是将工件置于一定温度的活性介质中保温,使活性物质的原子渗入工件的表层中,改变其表层的化学成分、组织和性能的热处理工艺,是表面合金化与热处理相结合的一项工艺技术。 二、化学热处理的过程 化学热处理包括三个基本过程,即①化学渗剂分解为活性原子或离子的分解过程;②活性原子或离子被金属表面吸收和固溶的吸收过程;③被渗元素原子不断向内部扩散的扩散过程。 (1) 分解过程 渗剂通过一定温度下的化学反应或蒸发作用,形成含有渗入元素的活性介质,然后通过活性原子在渗剂中的扩散运动而到达工件的表面。 (2) 吸收过程 渗入元素的活性原子吸附于工件表面并发生相界面反应,即活性物质与金属表面发生吸附—解吸过程。

(3) 扩散过程 吸附的活性原子从工件的表面向内部扩散,并与金属基体形成固溶体或化合物。 三、化学热处理的分类 1.按渗入元素的数量分类 (1)单元渗:渗碳,渗氮,渗硫,渗硼,渗铝,渗硅,渗锌,渗铬,渗钒等。 (2)二元渗:碳氮共渗,氮碳共渗,氧氮共渗,硫氮共渗,硼铝共渗,硼硅共渗,硼碳共渗,铬铝共渗,铬硅共渗,铬钒共渗,铬氮共渗,铝稀土共渗,铝镍共渗等。 (3)多元渗:氧氮碳共渗,碳氮硼共渗,硫氮碳共渗,氧硫氮共渗,碳氮钒共渗,铬铝硅共渗,碳氮氧硫硼共渗等。 2.按渗剂的物理形态分类 (1) 固体法:颗粒法,粉末法,涂渗法(膏剂法、熔渗法),电镀、电泳或喷涂后扩散处理法。 (2) 液体法:熔盐法(熔盐渗、熔盐浸渍、熔盐电解),热浸法(加扩散处理〕,电镀法(加扩散处理),水溶液电解法。 (3) 气体法:有机液体滴注法,气体直接通人法,真空处理法,流态床处理法。 (4) 辉光离子法:离子渗碳或碳氮共渗,离子渗氮或氮碳共渗.离子渗硫,离子渗金属。 3.按钢铁基体材料在进行化学热处理时的组织状态分类 (1) 奥氏体状态:渗碳,碳氮共渗,渗硼及其共渗,渗铬及其共渗。渗铝及其共渗,渗钒、渗钦、渗错等。 (2) 铁素体状态:渗氮,氮碳共渗,氧氮共渗及氧氮碳共渗,渗硫,硫氮共渗及硫氮碳共渗,氮碳硼共渗,渗锌。 4.按渗入元素种类分类 (1) 渗非金属元素:渗碳,渗氮,渗硫,渗硼,渗硅。 (2) 渗金属元素:渗铝,渗铬,渗锌,渗钒。

生产熔喷法非织造布的新型设备

生产熔喷法非织造布的新型设备 E .Gla wi on 立达自动化设备公司(德国) 摘 要:描述了熔喷法非织造布的典型应用以及工艺的基本步骤与缺点。将熔喷法与 其他纤网成形工艺相结合便形成了复合材料,这开启了该工艺新应用领域之门,而这是以前仅用熔喷法所难以实现的。介绍了德国立达自动化设备公司为易于操作维修所做的优化设计。其特点包括纺丝头组合件的顶端装载以及聚合物的链段分布。 关键词:熔喷法,非织造布,设备, 复合材料 图1 用于空气过滤的熔喷法非织造布的过滤等级 熔喷法可以说是纺粘法的后起之秀。不但其生产线的尺寸和产能较小,而且可加工的纤维更细,线密度大约是纺粘法的十分之一。这使得制成的纤网更加精致完善,更适合实际应用,而这是纺 粘法用经济的方式所不能生产的。 日常生活中熔喷法非织造产品随处可见,以卫生用品为例,有尿布、妇女用卫生用品、擦拭布以及用于空气和液体的过滤材料。特别是用熔喷法可以轻松地实现 隔离效果,这是卫生用品在应用中 的一个关键特性。另一方面熔喷法制成的纤网具有较低的机械强度,这一点限制了它在其他很多领域的应用。将熔喷法与其他纤网成形工艺相结合便形成了复合材料,这开启了该工艺新应用领域之 门,而这是以前仅用熔喷法所难以实现的。 1 典型的应用 人们对日用品性能要求的增

图2  熔喷法工艺中喷嘴下纤网的形成 图3 熔喷法工艺中纺丝头组合件的顶部载荷 加促成了熔喷法在应用方面的成功。由天然或合成纤维加工而成的简单针刺纤维网不能满足精细过滤应用的要求,它们仅用于预过滤或量多的场合。 熔喷法非织造布最重要和需求量最大的应用领域是空气过滤,详细应用见图1中的过滤等级F5 ~F9。微粒直径为10μm 时,虽然可用过滤等级为F5、纤维直径不小于10μm ,面密度为60~100g/m 2 的熔喷非织造布进行分离,但 是过滤等级为F9要求用纤维直径 接近1μm 、面密度为140~180g/m 2 的熔喷非织造布来分离,面密 度的增加使过滤性能更好。为了实现F9过滤等级的性能需求,与其他应用相比熔喷法非织造布生产线的产能会减少50%以上,这会导致该种熔喷法非织造布成本的提高。捕集效果直接与过滤材料中纤维的线密度及材料的面密度相关,因而需要开发出一种更有效的既能够捕集较小微粒又能够提高捕集性能的材料。另一重要特性是大容积性,这样有利于存储空间,从而 在使用期限内更加有效。其他重要的标准则与纤维直径及面密度相关。 对于擦拭布的存储空间也有相似的要求,它主要是吸收液体。当然对粘附性能的要求也很高,但用于过滤时对粘附性的要求就较低。因此可用捻度高的长丝来生产擦拭布,而且产能相当高。 然而,熔喷法非织造布最大的消费是用于卫生领域。为了这一目的,理想地将纤网强度及俘获性能相结合的方式仍然是采用纺粘/熔喷/纺粘的结合方式,通常称为S MS 。具有S MS 结构且面密度低 于10g/m 2 的非织造布最为普遍,能满足大多数需求。 2 工艺的基本步骤及缺 点 虽然该工艺是由美国海军在 20世纪70年代初开发的,但是这 项原始专利应用的基本特点仍然反映了当前的水平。聚合物熔融体从一排呈毛细管状的直径约0.2~0.4mm 的喷嘴中挤出,喷嘴间距不到1mm 。气隙位于这排毛细管状物的两边,可通入250~300℃的压缩气体,其顶端指向聚合物挤出时易粘于喷丝板的交界处。这股气流的速度接近声速,它将热的长丝牵伸,最终的直径达1~10 μm 。当这股热气流向下流到成形帘网处时就会与周围的空气相混合,使得长丝冷却最后固化。当各自到达传送带或纺粘层时,纤维仍保留有足够的热量,可将纤维交界处的长丝熔化,最终无需任何进一步处理便可形成牢固的纤网(图2)。与先期广泛采用的纺粘法不同的是无需轧光机。 聚丙烯纤维仍然是最主要的原料,占市场份额的90%之多。

线状Na2Ti3o7的制备与其形成机理

第44卷第1期2016年1月 硅酸盐学报Vol. 44,No. 1 January,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/0514627205.html, DOI:10.14062/j.issn.0454-5648.2016.01.18 线状Na2Ti3O7的制备与其形成机理 何慧芬,王晶,杨雨佳,王峻 (大连交通大学,无机超细粉体制备及应用重点实验室,辽宁大连 116028) 摘要:以锐钛矿型氧化钛和氢氧化钠为原料,水和乙醇为溶剂,采用水热法制备出线状钛酸钠。借助X射线衍射仪、扫描电子显微镜和热重–差示扫描量热检测仪研究了水热温度、水热时间,碱浓度、溶剂体积比等因素对产物相结构和微观形貌的影响,并探讨了线状钛酸钠的形成机理。结果表明:当反应物NaOH的浓度为2.5mol/L,溶剂水和乙醇的体积比是1:3,在水热温度为180℃条件下保温48h,所生成的钛酸钠的形貌以纳米线状为主。反应机制可以用经典晶体生长理论解释,也可以用一种劈裂模型来解释,其微观形貌是板片状结构发生劈裂形成线状结构。 关键词:氧化钛;水热法;线状钛酸钠 中图分类号:TB321 文献标志码:A 文章编号:0454–5648(2016)01–0117–08 网络出版时间:2015–12–23 17:19:59 网络出版地址:https://www.doczj.com/doc/0514627205.html,/kcms/detail/11.2310.TQ.20151223.1719.018.html Preparation and Formation Mechanism of Linear Na2Ti3O7 HE Huifen, WANG Jing, YANG Yujia, WANG Jun (Liaoning Key Laboratory for Fabrication and Application of Superfine Inorganic Powders, Dalian Jiaotong University, Dalian 116028, Liaoning, China) Abstract: Linear Na2Ti3O7 was synthesized by a hydrothermal method with anatase TiO2 and NaOH as raw materials, and water and ethanol as solvents. The effects of hydrothermal time, hydrothermal temperature, alkali concentration and volume ratio of water to ethanol on the phase structure and microstructure of the product were investigated by X-ray diffraction, scanning electron microscopy and thermogravimetric-differential scanning calorimetry, respectively. In addition, the formation mechanism was also discussed. The results indicate that the morphology of Na2Ti3O7 shows a linear structure when synthesis at the concentration of NaOH of 2.5mol/L, the volume ratio of water to ethanol of 1:3, the hydrothermal temperature of 180℃ and the hydrothermal time of 48h. The reaction mechanism can be given based on the classical theory of crystal growth and a model of splitting. The micro-morphology of the product is split from a platelet structure to a line structure. Keywords: titanium oxide; hydrothermal method; linear sodium titanate 近年来,一维纳米材料在组装成电路的研究中取得了突破进展,使其受到了人们的极大关注[1]。一维纳米材料拥有特殊的纳米结构,在光学、力学、热学、磁学、电学等方面表现出了独特的性质,使得其成为了纳米材料研究中最热门和最具发展空间的领域[2]。 纳米材料钛酸钠(Na2Ti3O7),其晶体结构中的(Ti3O7)2–层与Na+结合形成层状结构,从而具有很强的阳离子交换能力和吸附性能。Na2Ti3O7具有特殊的高比表面积和光催化活性,在催化、储氢材料、气体传感、污水处理和降解废弃物等领域有重要应用[3–7]。另外,钛酸钠还是一类重要的宽带隙半导体[8–11],主要应用于计算机中的集成电路。 钛酸钠制备方法主要有水热法、熔盐法、溶胶–凝胶法、微波法等。付敏等[12]采用微波水热法制成了钛酸钠纳米管,通过钛酸四丁酯与氢氧化钠为原 收稿日期:2015–07–02。修订日期:2015–08–18。基金项目:国家自然科学基金项目(51274052)。 第一作者:何慧芬(1989—),女,硕士研究生。 通信作者:王晶(1967—),女,博士,教授。Received date: 2015–07–02. Revised date: 2015–08–18. First author: HE Huifen (1989–), famale, Master candidate. E-mail: hehuifen163@https://www.doczj.com/doc/0514627205.html, Correspondent author: WANG Jing (1967–), female, Ph.D., Professor. E-mail: wangjing@https://www.doczj.com/doc/0514627205.html,

无纺布生产工艺

无纺布生产工艺 无纺布是一种不需要纺纱织布而形成的织物,只是将纺织短纤维或者长丝进行定向或随机撑列,形成纤网结构,然后采用机械、热粘或化学等方法加固而成。简单的讲就是:它不是由一根一根的纱线交织、编结在一起的,而是将纤维直接通过物理的方法粘合在一起的,所以,当你拿到你衣服里的粘称时,就会发现,是抽不出一根根的线头的。非织造布突破了传统的纺织原理,并具有工艺流程短、生产速度快,产量高、成本低、用途广、原料来源多等特点。 它的主要用途大致可分为: (1)医疗卫生用布:手术衣、防护服、消毒包布、口罩、尿片、妇女卫生巾等;(2)家庭装饰用布:贴墙布、台布、床单、床罩等; (3)跟装用布:衬里、粘合衬、絮片、定型棉、各种合成革底布等; (4)工业用布:过滤材料、绝缘材料、水泥包装袋、土工布、包覆布等; (5)农业用布:作物保护布、育秧布、灌溉布、保温幕帘等; (6)其它:太空棉、保温隔音材料、吸油毡、烟过滤嘴、袋包茶叶袋等。 无纺布的分类: 一、水刺无纺布 水刺工艺是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一起,从而使纤网得以加固而具备一定强力。 二、热合无纺布 热粘合无纺布是指在纤网中加入纤维状或粉状热熔粘合加固材料,纤网再经过加热熔融冷却加固成布。 三、浆粕气流成网无纺布

气流成网无纺布又可称做无尘纸、干法造纸无纺布。它是采用气流成网技术将木浆纤维板开松成单纤维状态,然后用气流方法使纤维凝集在成网帘上,纤网再加固成布。 四、湿法无纺布 湿法无纺布是将置于水介质中的纤维原料开松成单纤维,同时使不同纤维原料混合,制成纤维悬浮浆,悬浮浆输送到成网机构,纤维在湿态下成网再加固成布。 五、纺粘无纺布 纺粘无纺布是在聚合物已被挤出、拉伸而形成连续长丝后,长丝铺设成网,纤网再经过自身粘合、热粘合、化学粘合或机械加固方法,使纤网变成无纺布。六、熔喷无纺布 熔喷无纺布的工艺过程:聚合物喂入---熔融挤出---纤维形成---纤维冷却---成网---加固成布。 七、针刺无纺布 针刺无纺布是干法无纺布的一种,针刺无纺布是利用刺针的穿刺作用,将蓬松的纤网加固成布。 八、缝编无纺布 缝编无纺布是干法无纺布的一种,缝编法是利用经编线圈结构对纤网、纱线层、非纺织材料(例如塑料薄片、塑料薄金属箔等)或它们的组合体进行加固,以制成无纺布。

纺粘熔喷复合无纺布工艺及检验方法

培训内容大纲第一章:生产工艺及技术说明简介 一、非织造布定义 二、非织造布分类 三、常见无纺布工艺简述 四、纺粘法工艺概述 五、熔喷法工艺概述 六、纺粘法与熔喷法工艺对比 七、SMS\SMMS\SSMMMS复合无纺布 八、无纺布复合工艺方式概述 九、不同复合工艺方式特点 十、双组分型非织造布 十一、功能性后处理无纺布 第二章:产品质量管理检测项目简介 一、熔指检测 二、克重检测 三、防水性检测(静水压法) 四、静电衰减检测 五、断裂强力及伸长率检测 六、耐磨性测试(马丁代尔法) 七、渗水性检测(喷淋冲击法) 八、透气性能检测 九、渗透性能检测(亲水性) 十、均匀度 十一、幅宽 十二、卷长 十三、卷重

第一章:生产工艺及技术说明简介 一、非织造布定义 <1>国家标准定义(GB/T5709-1997)略 定向或随机排列的纤维通过摩擦、抱合或粘合或者者这些方法的组合而相互结合制成的片状物、纤网或絮垫(不包括纸、机织物、簇绒织物,带有缝编纱线的缝编织物以及湿法缩绒的毡制品)。所用的纤维可以是天然纤维或化学纤维,可以是短纤维、长丝或当场形成成的纤维状物。 <2>工程实践定义 通常是指纤维通过梳理方法或聚合物熔体通过纺丝方法,形成需要的层网状产品,然后通过热黏合、水刺或针刺等加固方法而形成需要的产品生产过程 二、非织造布分类 在实际应用中,有很多种非织造布成网工艺,每一种成网工艺往往还有多种纤网固结方法,而不同的成网工艺与不同的纤网固结方式组合,便产生了种类繁多的非织造产品。(下图为常见非织造布工艺组合图)

<1>根据成网的工艺区分 ①、纺丝成网 ②、气流成网 ③、梳理成网 ④、静电纺 ⑤、闪蒸法 ⑥、湿法等。 <2>根据纤维网所用固结工艺区分 ①热轧固结 ②水刺固结 ③针刺固结 ④热风固结 ⑤化学粘合固结 ⑥自粘合固结 ⑦气刺固结 <3>根据纤网使用材料区分 主要是丙纶(PP)、涤纶(PET)。此外,还有锦纶(PA)、粘胶纤维、腈纶、乙纶(HDPE)、氯纶(PVC)。按应用要求,无纺布分为一次性应用型和耐用型两大类。 三、常见无纺布工艺简述 <1>水刺无纺布 水刺工艺是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一起,从而使纤网得以加固而具备一定强力。 <2>热合无纺布 热粘合无纺布是指在纤网中加入纤维状或粉状热熔粘合加固材料,纤网再经过加热熔融冷却加固成布。 <3>浆粕气流成网无纺布 气流成网无纺布又可称做无尘纸、干法造纸无纺布。它是采用气流成网技术将木浆纤维板开松成单纤维状态,然后用气流方法使纤维凝集在成网帘上,纤网再加固成布。

应用电化学--简单题附答案

1.何谓电毛细曲线?何谓零电荷电势?由lippman 公式可进一步得到界面双电层的微分电容Cd ,请给出Cd 的数学表达式。 答:①将理想极化电极极化至不同电势(Φ),同时测出相应的界面张力(σ值),表征Φ-6关系的曲线为“电毛细曲线”。②“零电荷电势”是指σ-Φ曲线上最高点处d σ/d Φ=0即q=0(表面不带有剩余电荷)相应的电极电势,用Φ0表示。③由lippman 公式:q=-(d σ/d Φ)μ1 ,μ2 ,...μi ;及Cd=dq/d Φ得Cd=-d 2σ/d Φ2 2.何谓电化学极化?产生极化的主要原因是什么?试分析极化在电解工业(如氯碱工业)﹑电镀行业和电池工业的利弊。 答:①电化学极化是指外电场作用下,由于电化学作用相对于电子运动的迟缓性改变了原有的电偶层而引起电极电位变化。(即电极有净电流通过时,阴、阳电流密度不同,使平衡状态受到了破坏,而发生了电极电位的“电化学极化”)。②原因:电化学反应迟缓、浓差极化。③从能量角度来看,极化对电解是不利的;超电势越大,外加电压越大,耗能大。极化在电镀工业中是不利的,氢在阴极上析出是不可避免的副反应,耗能大,但同时使阴极上无法析出的金属有了析出的可能。极化使电池放电时电动势减少,所做电功也减小,对电池工业不利 3.参比电极需选用理想极化电极还是不极化电极?目前参比电极有那些类型?选择参比电极需考虑什么? 答:① 参比电极选用理想不极化电极。②类型:标准氢电极,饱和甘汞电极,Ag/Agcl 电极,Hg/HgO/OH -电极。③考虑的因素:电极反应可逆,稳定性好,重现性好,温度系数小以及固相溶解度小,与研究体系不反应 4.零电荷的电势可用哪些方法测定?零电荷电势说明什么现象?能利用零电荷电势计算绝对电极电位吗? 答:①电毛细法和微分电容法。②零电荷电势表明了“电极/溶液”界面不会出现由于表面剩余电荷而引起的离子双电层现象;③不能将此电势看成相间电势的绝对零点,该电势也是在一定参比电极下测得的,所以不能用于计算绝对电极电位。 5.为什么卤素离子在汞电极上吸附依F ﹤Cl ﹤I 的顺序而增强,特性吸附在电毛细曲线和微分电容曲线上有何表现? 答:①卤素离子为表面活性物质,阴离子吸附主要发生在比零电荷电势更正的电势范围,由于 F - 、cl - 、 I -离子半径依次增大,可极化度增大,吸附能力增强,所以在汞电极上,I ->cl ->F -.②特性吸附在两种曲线上的左半支曲线不同,零电荷电势负移。 6.何谓非稳态扩散?其初始条件和一个边界条件是什么?另一边界条件由极化条件决定。 答:①非稳态扩散:在电化学反应开始阶段,由于反应粒子浓度变化幅度较小,液相传质不足,粒子被消耗,此时浓度极化处于发展阶段,称之为传质过程的非稳态阶段②初始条件:C i (x,0)=C i 0 开始电极前扩散粒子完全均匀分布在液相中。边界条件:C i (∞,t )=C i 0,无穷远处不出现浓度极化。③另一边界条件:极化条件 7.溶液中有哪几种传质方式,产生这些传质过程的原因是什么? 答:对流、扩散、电迁移。①对流:由于流体各部分之间存在浓度或温度差或者外部机械作用力下所引起;②扩散:由于某一组分存在浓度梯度,粒子由高浓度向低浓度转移;③电迁移:在外电场作用下,液相中带电粒子作定向移动。 8.稳态扩散和非稳态扩散的特点是什么,可以用什么定律来表示? 答:①稳态扩散:扩散粒子的浓度只与距离有关,与时间无关。用Fick 第一定律 表示,J 表示扩散流量。②非稳态扩散:扩散粒子的浓度同时是距离和时间的函数。用Fick 第二定律 9.说明标准电极反应速度常数k S 和交换电流密度i 0的物理意义,并比较两者的区别。 答:①k S :当电极电势为反应体系的标准平衡及反应粒子为单位浓度时,电极反应进行的速率(md/s )。i 0:反应在平衡电势下的电流密度,即有i 0=i a =i k ②相同点:数值越大,表示该反应的可逆性越强。不同点:k S 与浓度无关,i 0与反应体系各种组分的浓度有关。 10.为什么有机物在电极上的可逆吸附总是发生在一定的电位区间内? 答:越正的电势,有机物易被氧化;电势越负,易被还原,因此其可逆吸附发生在平衡电势附近值,即一定的电位区间内。 11.试说明锂离子电池的正极和负极材料是何物质?为什么其溶剂要用非水有机溶剂? 锂离子电池比一般的二次电池具有什么特点? 答:①正极:主要是嵌锂化合物,包括三维层状的LiCoO 2,LiNiO 2,三维的TiO 2。负极:主要是碳素材料,如石墨、碳纤维。②锂遇水反应生成H 2,可能有爆炸的危险,所以要用非水有机溶剂。③

熔喷法非织造布

熔喷法非织造布 20世纪50年代的东、西方两大阵营冷战时期,美国海军通过收集高层大气中的放射性尘埃微粒的方法,掌握当时苏联的核试验动态,开发了一种能捕获超细微粒的过滤材料,这些过滤材料就是早期的熔喷法非织造布产品。 20世纪60年代中期,美国埃克森(EXXON)公司取得了熔喷法非织造布技术专利,并成为如今的熔喷法生产工艺基础。 在专利保护期满以后,EXXON公司将拥有的熔喷专利技术转让给美国的精确公司(ACCURATE)、3M公司、捷迈公司(J&M)、金佰利克拉克公司(Kimberly-Clark)、德国的科德宝公司(Freudenberg)、莱芬豪舍(Reifenh?user)公司,这些公司利用EXXON 专利、分别开发出具有各种特点的应用熔喷技术。 半个世纪以来,虽然熔喷技术有了长足的发展,但主流工艺仍然

是EXXON工艺。就是仅有一排喷丝孔,牵伸热气流从两侧吹出的结构。此外,美国的双轴纤维膜公司(Biax Fiberfilm)还开发了一种有多排喷丝孔,牵伸热气流从与喷丝孔同心的环形通道吹出的新型结构(简称Biax工艺)。 EXXON工艺所用的喷丝板组件结构如下: 日本的旭化成、仓敷、NKK及KASEN公司、意大利的UNIVERSAL公司等。外,、Nordson、 其中比较有特点的是Biax 公司,突破传统熔喷原理,采用多排孔,最多可达20排喷丝孔,密度高达332孔/英寸,纤维直径1-50μm,采用水雾对纤维冷却,成布强度高,手感柔软。 Nordson公司采用J&M公司的技术改变过去单独用高温热空气带动熔体从喷丝孔喷出的方法,而是当熔体已纤维状喷出时经过一骤冷装置用侧吹风使之骤冷,使纤维在骤冷的条件下成形,有一定的结晶度和取向度,改变了过去熔喷纤维没有强度的弱点,纤维的连续长度也大为提高,且纤网蓬松、外观和悬垂性好,是熔喷工艺的一个突破。 采用聚冷技术可以减少喷丝板到网帘之间的距离(DCD)是熔喷工艺的一个特点,现在已经有多家设备制造厂采用这一技术。国外熔喷技术发展很快,纤维直径可达0.5μm,一般在1~10μm,产量可超过100kg/m/h(纤维直径2-5μm),纤网定量为3~300g/m2。

硝酸钾硝酸钠熔盐的应用情况

硝酸钾、硝酸钠熔盐体系的应用情况 熔融盐是指盐的熔融态液体, 通常说的熔融盐是指无机盐的熔融体。硝酸熔盐是无机盐的一种, 其固态大部分为离子晶体, 在高温下熔化后形成离子熔体。熔融盐有不同于水溶液的诸多性质, 如高温下的稳定性、在较宽温度范围内的低蒸气压、低的黏度、具有良好的导电性、低的腐蚀性、较高的离子迁移和扩散速度、高的热容量、具有溶解各种不同材料的能力等。 硝酸熔盐作为一种无机化合物熔盐, 以其电导率低、黏度小、导热性能好、腐蚀性弱、蒸汽压低、使用温度范围广和价格便宜等优点受到人们的重视, 在熔盐蓄热传热、反应介质、熔盐电解液、废热利用和金属及合金制造、高温燃料电池等方面得到广泛的应用。 1 硝酸熔盐在一般工业中的应用 硝酸熔盐在一般工业中的应用已经多年, 技术也比较成熟。早期硝酸熔盐主要作为传热蓄热介质在化学和石油化工行业得到广泛的应用。相比其他熔盐而言, 在这些工业应用中使用较多的是KNO3-NaNO2-NaNO3熔盐体系, 简称HTS。 在非循环系统中, HTS熔盐由于有低的蒸气压常被用于炼油行业。其主要应用在天然气脱水、重油稳定化处理和氨水吸收制冷系统氨的再生等领域。敞开的HTS熔盐非循环盐池也可用于金属处理和清洗、浸泡用于制造尼龙和轮胎铸造的金属模具等。石油工业需要大量的HTS熔盐作为传热介质,以控制催化剂温度在900u( 1u=5/9K) 附近。催化床中失效的碳球氧化放出的热量被床内流动的HTS 熔盐吸收, 再传递热量给蒸汽发生器。在石油精炼工业中, 用于润滑油脱色念土剂的再生所用到的塞摩福( 型) 流动床催化剂再生炉HTS也有相同的应用, 燃 烧黏土所吸附染色物和其他有机物产色的热量被HTS循环吸收移除。化学工业采用HTS作为高温反应加热和冷却介质。应用最广的是汽车尾气中马来酸酐和邻苯二甲酸酐催化式排气净化器, HTS提供650~ 850u高温使萘和苯被空气氧化。另一个相同应用是在650~900u间烷基胺转炉。另外, 熔盐还可以用于反应床冷却和废热蒸汽产生。硫酸蒸馏过程也使用HTS, 用作990u再沸器的加热介质。 工厂通常使用HTS浓缩腐蚀性Na2CO3 溶液。用熔融HTS加热, 除了能使NaOH 溶液浓缩到9918%( 质量分数) 以外, 熔融HTS加热器所需的热传递面积很小,

(完整版)纺粘熔喷复合无纺布工艺及考验方法

培训内容大纲 第一章:生产工艺及技术说明简介 一、非织造布定义 二、非织造布分类 三、常见无纺布工艺简述 四、纺粘法工艺概述 五、熔喷法工艺概述 六、纺粘法与熔喷法工艺对比 七、SMS\SMMS\SSMM复M合S无纺布 八、无纺布复合工艺方式概述 九、不同复合工艺方式特点十、双组分型非织造布十一、功能性后处理无纺布第二章:产品质量管理检测项目简介 一、熔指检测 二、克重检测 三、防水性检测(静水压法) 四、静电衰减检测 五、断裂强力及伸长率检测 六、耐磨性测试(马丁代尔法) 七、渗水性检测(喷淋冲击法) 八、透气性能检测 九、渗透性能检测(亲水性)

十、均匀度 十一、幅宽 十二、卷长 十三、卷重 第一章:生产工艺及技术说明简介 一、非织造布定义 <1>国家标准定义( GB/T5709-1997 )略 定向或随机排列的纤维通过摩擦、抱合或粘合或者者这些方法的组合而相互结合制成的片状物、纤网或絮垫(不包括纸、机织物、簇绒织物,带有缝编纱线的缝编织物以及湿法缩绒的毡制品)。所用的纤维可以是天然纤维或化学纤维,可以是短纤维、长丝或当场形成成的纤维状物。 <2>工程实践定义 通常是指纤维通过梳理方法或聚合物熔体通过纺丝方法,形成需要的层网状产品,然后通过热黏合、水刺或针刺等加固方法而形成需要的产品生产过程 二、非织造布分类 在实际应用中,有很多种非织造布成网工艺,每一种成网工艺往往还有多种纤网固结方法,而不同的成网工艺与不同的纤网固结方式组合,便产生了种类繁多的非织 造产品。(下图为常见非织造布工艺组合图)

<1>根据成网的工艺区分 ①、纺丝成网 ②、气流成网 ③、梳理成网 ④、静电纺 ⑤、闪蒸法 ⑥、湿法等。 <2>根据纤维网所用固结工艺区分 ①热轧固结 ②水刺固结 ③针刺固结 ④热风固结 ⑤化学粘合固结 ⑥自粘合固结 ⑦气刺固结 <3>根据纤网使用材料区分 主要是丙纶(PP)、涤纶(PET)。此外,还有锦纶(PA)、粘胶纤维、腈纶、乙纶(HDPE)、氯纶(PVC)。按应用要求,无纺布分为一次性应用型和耐用型两大类。 三、常见无纺布工艺简述 <1>水刺无纺布水刺工艺是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一 起,从而使纤网得以加固而具备一定强力。 <2>热合无纺布热粘合无纺布是指在纤网中加入纤维状或粉状热熔粘合加固材料,纤网再经过加 热熔融冷却加固成布。 <3>浆粕气流成网无纺布 气流成网无纺布又可称做无尘纸、干法造纸无纺布。它是采用气流成网技术将木浆纤维板开松成单纤维状态,然后用气流方法使纤维凝集在成网帘上,纤网再加固成布。 <4>湿法无纺布 湿法无纺布是将置于水介质中的纤维原料开松成单纤维,同时使不同纤维原料混合,制成纤维悬浮浆,悬浮浆输送到成网机构,纤维在湿态下成网再加固成布。 <5>纺粘无纺布 纺粘无纺布是在聚合物已被挤出、拉伸而形成连续长丝后,长丝铺设成网,纤网再经过自身粘合、热粘合、化学粘合或机械加固方法,使纤网变成无纺布。 <6>熔喷无纺布

熔喷法非织造布技术进展及熔喷布的用途

熔喷法非织造布技术进展及熔喷布的用途 2011-04-22 来源: 刘玉军侯幕毅肖小雄(来源互联网)点击次数:571 关键字:熔喷非织造布;纷丝;熔喷纤维;非织造布 熔喷法非织造布技术发展迅速特别是近几年,随着工业的飞速发展及对环境保护的加强熔喷法非织造布市场越来越大。其超细纤维的特点所表现出的特性,在许多工业、民用领域被人们发现并得到广泛的应用。随着宏大研究院有限公司在熔喷技术方面研发投入的加大我国熔喷技术已得到很大的发展。2006年5月幅宽2 400 mm的熔喷生产线在宏大研究院试验基地试车成功,标志着我国宽幅熔喷生产线已能完全实现设备国产化从而为熔喷技术的进一步发展以及SMS(纺粘熔喷复合) 技术的发展奠定了坚实的基础。 1 熔喷法非织造布技术 1.1 工艺流程 熔喷法非织造布生产技术,是将高聚物树脂通过螺杆挤出机挤压熔融塑化后,通过计量泵精确计量送给喷丝组件在高速高压热空气流的作用下拉成超细纤维在收集装置上形成熔喷非织造布。熔喷法非织造布可以使用多种聚合物材料.如:聚丙烯、聚醋、聚酸胺等。 1.2 熔喷法纺丝原理 聚合物树脂经挤压熔融后通过计量泵的精确计量送入一特殊的熔体分配腔再通过整流后进入纺丝熔体池,经纺丝微孔喷出成丝,在高速热风气流的喷射拉伸下得到超细纤维,其单丝直径能达到1一2 gm。熔体分配腔能保证熔体沿幅宽方向分布均匀(流速一致、流量相等、压力分布均匀)加上沿幅宽方向的气流喷射速度一致从而能保证丝束沿幅宽方向分布均匀丝径沿幅宽方向一致。 如图1所示喷丝组件中纺丝熔体池下有一排纺丝微孔,微孔直径一般为0.3一0.4 mm,为更有利于纺丝成型其长径比远远大于常规的熔融纺丝,一般为10一15。同时喷丝组件与

应用电化学

应用电化学 (Applied Electrochemistry) 目的和要求 应用电化学是为化学专业本科生开设的一门选修课. 它主要讲授应用电化学的三个重要分支学科: 金属电沉积, 化学电源, 腐蚀电化学. 希望通过本科程的讲授, 让学生对与人类生活密切相关的若干应用电化学生产过程的基本原理和应用范围有一定的了解和掌握. 课程以介绍各个相关应用电化学工业过程的基本原理和研究方法为主, 也兼顾介绍一些生产工艺和发展方向等. 本课程也可作为材料化学及化学工程专业本科生的选修课. 基本内容及学时分配 第一章应用电化学简介 (1学时) 1.1应用电化学(电化学工程与技术)的研究内容及其发展状况 1.2本课程内容简介 第二章化学电源概论 (1.5学时) 2.1 化学电源概论 化学电源与物理电源 ---- 能量储存与转化装置 2.2电池的分类及组成 (按工作原理分:原电池、蓄电池、储备电池及燃料电池等) 2.3 电池的性能参数及影响因素 电池电压、容量及效率 电池及其材料的比较特性 (要求掌握原理及计算方法) 2.4 化学电源研究及生产的现状与发展趋势 第三章一次电池(原电池)( 3学时) 3.1 一次电池概论 3.2 普通锌锰电池及碱性锌锰电池

3.3 银锌电池及汞氧化物锌电池 3.4 一次锂电池 3.4.1 正极材料 3.4.2 锂负极材料 3.4.3 电解质溶液 具体电池体系涵盖: Li/MnO2, Li/(CF)n, Li/LiClO4, PC/Ag2CrO4 3.5 金属-空气电池 3.5.1锌空电池 3.5.2 铝空电池 第四章二次电池(蓄电池) (3学时) 4.1 二次电池概论 4.2 铅酸蓄电池 4.3 碱性蓄电池 4.3.1 镉镍电池 4.3.2 金属氢化物(氢)镍电池 4.3.3 锌镍电池 4.3.4 其他碱性蓄电池 4.4 锂蓄电池 4.5 锂离子电池 原理简介 电极材料及电解质 第五章燃料电池 (2学时) 5.1 燃料电池概述 基本原理及应用范围 5.2 碱性燃料电池(AFC)

《晶体材料制备原理与技术》课后思考题解答

第一章思考题: 1、什么是单晶体、多晶体和非晶体?结构上有何区别? 答:1)单晶体是由一个晶核各向均匀生长而成,晶体内部的粒子基本上保持其特有的排列规律,如:单晶硅、红宝石、金刚石; 2)多晶体是由很多单晶微粒杂乱无规则的聚结而成的,各向异性的特征消失,使整体一般不表现各向异性,如:多数金属和合金等。 3)非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,没有一定规则的外形,物理性质为各向同性,没有固定的熔点,属热力学上的亚稳态,如玻璃、松香、石蜡等。 单晶体在整个晶体中均保持有序的周期性;多晶体则只是在一个单晶微粒中保持有序的周期性,但整体上杂乱无章;非晶体是近程有序(在极小范围内规则排列),而远程无序。 2、分析晶体的宏观物理性质与其结构的关系 答:由于晶体是具有格子构造的固体,因此,也就具备着晶体所共有的、由格子构造所决定的基本性质。 ①均一性:宏观观察中,晶体在其任一部分上都表现出具有相同的各种特性。也称为结晶均一性,与非晶体的统计均一性有本质的区别; ②自范性:晶体在适当条件下可自发地(而非人为加工)形成封闭的凸几何多面体外形的特性,且几何多面体外形满足欧拉定律:W+V=E+2; ③异向性:晶体的几何量度和物理性质因观察方向的不同而表现出差异的特性; ④对称性:晶体的相同部分(外形上的和内部结构上的)或性质,能够在不同方向或位置上有规律地重复出现的特性; ⑤最小内能性:在相同热力学条件下,晶体与同种物质的非晶体、液体或气体相比,其内能(包括质点的动能与位能)最小,故而结构也最稳定; ⑥稳定性:在相同的热力学条件下,晶体比具有相同化学成分的非晶体稳定。晶体的稳定性是最小内能性的必然结果; 3、根据晶体的功能并结合其主要应用领域,人工晶体如何分类?答:光功能晶体,半导体晶体,压电晶体,热释电晶体,超硬晶体等

相关主题
文本预览
相关文档 最新文档