当前位置:文档之家› 基于插值FFT算法的间谐波参数估计_祁才君

基于插值FFT算法的间谐波参数估计_祁才君

基于插值FFT算法的间谐波参数估计_祁才君
基于插值FFT算法的间谐波参数估计_祁才君

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 PWM 控制原理………………………………………… 4.2.2.2滞环比较控制方式………………………………………… 4.2.2.3三角波比较方式………………………… 4.3有源电力滤波器的主电路设计 …………………………………………

Matlab中的FFT使用说明

FFT是Fast Fourier Transform(快速傅里叶变换)的简称,FFT算法在MATLAB 中实现的函数是Y=fft(x,n)。刚接触频谱分析用到FFT时,几乎都会对MATLAB 的fft函数产生一些疑惑,下面以看一个例子(根据MATLA帮助修改)。 Fs = 2000; % 设置采样频率 T = 1/Fs; % 得到采用时间 L = 1000; % 设置信号点数,长度1 秒 t = (0:L-1)*T; % 计算离散时间, % 两个正弦波叠加 f1 = 80; A1 = 0.5; % 第一个正弦波100Hz,幅度0.5 f2 = 150; A2 = 1.0 ; % 第2个正弦波150Hz,幅度 1.0 A3 = 0.5; % 白噪声幅度; x = A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t); % 产生离散时间信号; y = x + A3*randn(size(t)); % 叠加噪声; % 时域波形图 subplot(2,1,1) plot(Fs*t(1:50),x(1:50)) title('Sinusoids Signal') xlabel('time (milliseconds)') subplot(2,1,2) plot(Fs*t(1:50),y(1:50)) title('Signal Corrupted with Zero-Mean Random Noise') xlabel('time (milliseconds)') NFFT = 2A nextpow2(L); % 设置FFT点数,一般为2 的N次方,如1024,512 等Y = fft(y,NFFT)/L; % 计算频域信号, f = Fs/2*linspace(0,1,NFFT/2+1); %频率离散化,fft后对应的频率是-Fs/2到Fs/2,由NFFT个离散频点表示 % 这里只画出正频率; % Plot single-sided amplitude spectrum. figure; plot(f,2*abs(Y(1:NFFT/2+1))); % fft 后含幅度和相位,一般观察幅度谱,并把负频率加上去, title('Single-Sided Amplitude Spectrum of y(t)') xlabel('Frequency (Hz)')

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

实验二 FFT算法的MATLAB实现

班级:学号:姓名 实验二FFT算法的MATLAB实现 (一)实验目的: (1)掌握用matlab进行FFT在数字信号处理中的高效率应用。 (2)学习用FFT对连续信号和时域离散信号进行谱分析。 (二)实验内容及运行结果: 题1:若x(n)=cos(nπ/6)是一个N=12的有限序列,利用MATLAB计算它的DFT 并进行IDFT变换同时将原图与IDFT变换后的图形进行对比。当求解IFFT变换中,采样点数少于12时,会产生什么问题。 程序代码: N=12; n=0:11; Xn=cos(n*pi/6); k=0:11; nk=n'*k; WN=exp(-j*2*pi/N) WNnk=WN.^nk XK=Xn*WNnk; figure(1) stem(Xn) figure(2) stem(abs(XK)) 运行结果:

IFFT变换中,当采样点数少于12时图像如下图显示:

分析:由图像可以看出,当采样点数小于12时,x(n)的频谱不变,周期为6,而XK 的频谱图发生改变。 题2:对以下序列进行谱分析 132()()103()8470x n R n n n x n n n =+≤≤?? =-≤≤??? 其他n 选择FFT 的变换区间N 为8和16点两种情况进行频谱分析,分别打印其幅频特 性曲线并进行对比、分析和讨论。 ㈠ 程序代码: x=ones(1,3);nx=0:2; x1k8=fft(x,8); F=(0:length(x1k8)-1)'*2/length(x1k8); %进行对应的频率转换 stem(f,abs(x1k8));%8点FFT title('8点FFTx_1(n)'); xlabel('w/pi'); ylabel('幅度'); N=8时:

按时间抽取的基2FFT算法分析与MATLAB实现

按时间抽取的基2FFT 算法分析及MATLAB 实现 一、DIT-FFT 算法的基本原理 基2FFT 算法的基本思想是把原始的N 点序列依次分解成一系列短序列,充分利用旋转因子的周期性和对称性,分别求出这些短序列对应的DFT ,再进行适当的组合,得到原N 点序列的DFT ,最终达到减少运算次数,提高运算速度的目的。 按时间抽取的基2FFT 算法,先是将N 点输入序列x(n)在时域按奇偶次序分解成2个N/2点序列x1(n)和x2(n),再分别进行DFT 运算,求出与之对应的X1(k)和X2(k),然后利用图1所示的运算流程进行蝶形运算,得到原N 点序列的DFT 。只要N 是2的整数次幂,这种分解就可一直进行下去,直到其DFT 就是本身的1点时域序列。 图1 DIT-FFT 蝶形运算流图 二、DIT-FFT 算法的运算规律及编程思想 1.原位计算 对N=M 2点的FFT 共进行M 级运算,每级由N/2个蝶形运算组成。在同一级中,每个蝶的输入数据只对本蝶有用,且输出节点与输入节点在同一水平线上,这就意味着每算完一个蝶后,所得数据可立即存入原输入数据所占用的数组元素(存储单元),经过M 级运算后,原来存放输入序列数据的N 个存储单元中可依次存放X(k)的N 个值,这种原位(址)计算的方法可节省大量内存。 2.旋转因子的变化规律 N 点DIT ―FFT 运算流图中,每个蝶形都要乘以旋转因子p W N ,p 称为旋转因子的指数。例如N =8 =3 2 时各级的旋转因子: 第一级:L=1, 有1个旋转因子:p W N =J /4W N =J 2L W J=0 第二级:L=2,有2个旋转因子:p W N =J /2W N =J 2L W J=0,1 第三级:L=3,有4个旋转因子:p W N =J W N =J 2L W J=0,1,2,3 对于N =M 2的一般情况,第L 级共有1 -L 2个不同的旋转因子: p W N =J 2L W J=0,1,2,… ,1 -L 2-1 L 2=M 2×M -L 2 = N ·M -L 2 故: 按照上面两式可以确定第L 级运算的旋转因子

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange 插值的基本理论,譬如:线形插值,抛物插值,Lagrange 多项式等.然后将线形插值,抛物插值,Lagrange 多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词: 拉格朗日插值公式 唯一性 证明 解题应用 资产评估 曲线插值问题,直观地说,认为已知的一批数据点()n k k k f x 0,=是准确的,这些数据点所表现的 准确函数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1,+k k x x 的端点处的函数值()k k x f y =, ()11++=k k x f y ,要求线性插值多项式()x L 1使它满足()k k y x L =1, ()111++=k k y x L . ()x L y 1=的几何意义:通过两点()k k y x ,和()11,++k k y x 的直线, 如图1所示,()x L 1的表达式由几何意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()11111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). y=L 1x () y=f x () y k+1 y k x k+1 x k o y x

FFT的定点DSP实现

1 引言 CCS(Code Composer Studio)是TI公司的DSP集成开发环境。它提供了环境配置、源文件编辑、程序调试、跟踪和分析等工具,帮助用户在一个软件环境下完成编辑、编译链接、调试和数据分析等工作。与TI提供的早期软件开发工具相比,利用CCS能够加快软件开发进程,提高工作效率。CCS一般工作在两种模式下:软件仿真器和与硬件开发板相结合的在线编程。前者可以脱离DSP芯片,在PC机上模拟DSP指令集与工作机制,主要用于前期算法实现和调试。后者实时运行在DSP芯片上,可以在线编制和调试应用程序。 2 C语言和汇编语言的混合编程 TMS320 C5000系列的软件设计通常有三种方法: (1) 用C语言开发; (2) 用汇编语言开发; (3) C和汇编的混合开发。 其中用C语言开发具有兼容性和可移植的优点,有利于缩短开发周期和减少开发难度,但是在运算量较大的情况下,C代码的效率还是无法和手工编写的汇编代码的效率相比,比如FFT运算,用汇编语言开发的效率高,程序执行速度快,而且可以合理利用芯片的硬件资源,但是开发难度较大,开发周期长,而且可读性和可移植性差。C和汇编的混合编程则可以充分利用前两者的优点,以达到最佳利用DSP资源的目的。但是,采用C和汇编语言混合编程必须遵循相关函数调用规则和寄存器调用规则,否则会给程序的开发带来意想不到的问题。 2.1 C语言和汇编语言混合编程的四种方法 (1) 独立编写汇编程序和C程序,分开编译或汇编成各自的目标代码模块,再用链接器将二者链接起来。这种方法比较灵活,但是设计者必须自己维护各汇编模块的入口和出口代码,自己计算传递的参数在堆栈中的偏移量,工作量较大,但是能做到对程序的绝对控制。 (2) 在C程序中使用汇编程序中定义的变量和常数。 (3) 在C程序中内嵌汇编语句。这种方法可以实现C语言无法实现的一些硬件控制功能,如修改中断控制寄存器。 (4) 将C语言编译生成相应的汇编代码,手工修改和优化C编译器生成的汇编代码。采用这种方法可以控制C编译器,从而产生具有交叉列表的汇编程序,而设计者可以对其中的汇编语句进行修改,然后对汇编程序进行编译,产生目标文件。

MATLAB中FFT结果的物理意义

FFT结果的物理意义 最近正在做一个音频处理方面的项目,以前没有学过fft,只是知道有这么个东西,最近这一用才发现原来欠缺这么多,最基本的,连fft的输入和输出各自代表什么都不知道了,终于在网上查到这样的一点资料,得好好保存了,也欢迎大家分享。 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N(ps:横坐标第n个点对应的频率值Fn的计算公式。整个横坐标代表了采样频率Fs,被分为N点。故其频率分辨率为Fs/N)。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。

数值计算方法—拉格朗日插值

数值计算方法作业 专业:测控1002 学号:10540226 姓名:崔海雪

拉格朗日插值的算法及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;Matlab 算法程序; 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。 2、Lagrange 插值公式 (1)线性插值)1(1L 设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足 )(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y ) ,(1x ,1y )的直线,从而得到 )(1x L =0y +0101x x y y --(x-0x ). (2)

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

matlab信号仿真谐波

综合训练① 实验内容:利用matlab绘制频率自定的正弦信号(连续时间和离散时间),复指数信号(连续时间),并举例实际中哪些物理现象可以用正弦信号,复指数信号来表示。绘制成谐波关系的正弦信号(连续时间和离散时间),分析其周期性和频率之间的关系。实验步骤: 一、绘制谐波关系的正弦信号 分析:由于正弦信号可以表示成两个共轭的复指数信号相减,然后再除去两倍的单位虚数得到,故,我们将正弦信号设置为 X=exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j) 此信号就相当于 x=sin(pi*n/4) 设计程序如下: n=[0:32]; %设置n的取值 x=(exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j); %限定离散正弦信号 stem(n,x) %绘制该离散正弦信号 通过Matlab所得图形如下:

分析:同样的连续型的正弦信号同样也可以用类似方式绘制. x=sym('(exp(j*pi*t/T)+exp(-j*pi*t/T))/2');%函数表示正弦信号 x5=subs(x,5,'T'); %设置周期大小ezplot(x5,[0,10]) %绘制图形 所得结果如下:

二、绘制复指数信号 分析:由于复指数信号有实数部分和虚数部分,所以绘制其图形,我们采取了分别绘制的方法,将实数和虚数分别画出。 实验程序如下: t=[0:.01:10]; %产生时间轴的等差点 y=exp((1+j*10)*t); %设置复指数信号 subplot(211),plot(t,real(y)); %绘制实数信号图形 grid subplot(212),plot(t,imag(y)); %绘制虚数部分图形 grid 实验所得结果如下:

用matlab实现fft算法

A1=str2double(get(handles.edit8,'String')); A2=str2double(get(handles.edit9,'String')); F1=str2double(get(handles.edit10,'String')); F2=str2double(get(handles.edit11,'String')); Fs=str2double(get(handles.edit12,'String')); N=str2double(get(handles.edit13,'String')); t=[0:1/Fs:(N-1)/Fs]; x=A1*sin(2*pi*F1*t)+A2*sin(2*pi*F2*t); %信号x的离散值 axes(handles.axes1) %在axes1中作原始信号图 plot(x); grid on m=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次m if length(x)

用matlab进行fft谐波分析

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs 为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。 由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 好了,说了半天,看着公式也晕,下面以一个实际的信号来做说明。 假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V 的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下: S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180) 式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。

利用MATLAB实现信号DFT的计算

07级电信(2)班 刘坤洋 24 实验一 利用MATLAB 实现信号DFT 的计算 一、实验目的: 1、熟悉利用MATLAB 计算信号DFT 的方法 2、掌握利用MATLAB 实现由DFT 计算线性卷积的方法 二、实验设备:电脑、matlab 软件 三、实验内容: 1、练习用matlab 中提供的内部函数用于计算DFT (1) fft (x ),fft (x ,N ),ifft (x ),ifft (x ,N )的含义及用法 (2) 在进行DFT 时选取合适的时域样本点数N 请举例,并编程实现 题目: 源程序: >> N=30; %数据的长度 >>L=512; %DFT 的点数 >>f1=100; f2=120; >>fs=600; %抽样频率 >>T=1/fs; %抽样间隔 >>ws=2*pi*fs; >>t=(0:N-1)*T; >>f=cos(4*pi*f1*t)+cos(4*pi*f2*t); >>F=fftshift(fft(f,L)); >>w=(-ws/2+(0:L-1)*ws/L)/(2*pi); >>hd=plot(w,abs(F)); >>ylabel('幅度谱') >> xlabel('频率/Hz') 的频谱 分析利用)π4cos()π4cos()(DFT 21t f t f t x +=Hz 600,Hz 120,Hz 10021===s f f f

>> title('my picture') 结果图: (3) 在对信号进行DFT 时选择hamming 窗增加频率分辨率 请举例,并编程实现 题目: 源程序:>> N=50; %数据的长度 >>L=512; %DFT 的点数 >>f1=100;f2=150; >>fs=600; %抽样频率 >>T=1/fs; %抽样间隔 >>ws=2*pi*fs; >>t=(0:N-1)*T; >>f=cos(4*pi*f1*t)+0.15*cos(4*pi*f2*t); 的频谱 分析利用)π4cos(15.0)π4cos()(DFT 21t f t f t x +=Hz 600,Hz 150,Hz 10021===s f f f

试求三次样条插值S(X)

给定数据表如下: 试求三次样条插值S(X),并满足条件: i)S’(0.25)=1.0000, S’(0.53)-0.6868; ii) S”(0.25)= S”(0.53)=0; 解: 由给定数据知: h0 =0.3-0.25 - 0.05 , h 1=0.39-0.30-0.09 h 2=0.45-0.39-0.06, h 3=0.53-0.45-0.08 由μ i=h i/(h i1+h i), λ i= h i/(h i1+h i) 得: μ1= 5/14 ; λ 1= 9/14 μ2= 3/5 ; λ 2= 2/5 μ3= 3/7 ; λ 3=4/7 0.25 0.5000 ﹨ ﹨ 1.0000 ∕﹨ 0.25 0.5000 ∕ -0.9200-f[x 0,x 0, x 1 ] ﹨∕ 0.9540 ∕﹨ 0.30 0.5477 -0.7193-f[x 0,x 1,x 2 ] ﹨∕

0.8533 ∕﹨ 0.39 0.6245 -0.5440-f[x1,x2,x 3 ] ﹨∕ 0.7717 ∕﹨ 0.45 0.6708 -0.4050-f[x 2,x 3,x 4 ] ﹨∕ 0.7150 ∕﹨ 0.53 0.7280 -0.3525-f[x 3,x 4,x 5 ] ﹨∕ 0.6868 ∕ 0.53 0.7280 i)已知一节导数边界条件,弯矩方程组 ┌┐┌┐ │ 2 1 │┌M 0 ┐│-0.9200 ︳ ︳5/14 2 9/14 ︳︳M ︳︳-0.7193 ︳ 1 ︳3/5 2 2/5 ︳︳M 2 ︳_6 ︳-0.5440︳ ︳ 3/7 2 4/7 ︳︳M ︳︳-0.4050 ︳ 3

实验2FFT算法实现

实验2 FFT 算法实现 2.1 实验目的 1、 加深对快速傅里叶变换的理解。 2、 掌握FFT 算法及其程序的编写。 3、 掌握算法性能评测的方法。 2.2 实验原理 一个连续信号)(t x a 的频谱可以用它的傅立叶变换表示为 dt e t x j X t j a a Ω-+∞ ∞-?= Ω)()( (2-1) 如果对该信号进行理想采样,可以得到采样序列 )()(nT x n x a = (2-2) 同样可以对该序列进行z 变换,其中T 为采样周期 ∑+∞∞--=n z n x z X )()( (2-3) 当ωj e z =的时候,我们就得到了序列的傅立叶变换 ∑+∞∞-=n j j e n x e X ωω)()( (2-4) 其中ω称为数字频率,它和模拟域频率的关系为 s f T /Ω=Ω=ω (2-5) 式中的s f 是采样频率。上式说明数字频率是模拟频率对采样率s f 的归一化。同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。 ∑+∞∞--=)2(1)(T m j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。注意:这里的信号必须是带限信号,采样也必须满

足Nyquist 定理。 在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。无限长的序列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅立叶变换为: ∑-===10)()]([)(N n kn N W n x n x DFT k X (2-7) 其中N j N e W π 2-=,它的反变换定义为: ∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令k N W z -=,则有 ∑-====-10)]([)(|)(N n nk N W z n x DFT W n x z X k N (2-9) 可以得到k N j k N e W z z X k X π2|)()(===-,k N W -是z 平面单位圆上幅角为k N πω2=的点,就是将单位圆进行N 等分以后第k 个点。所以,X(k)是z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。时域采样在满足Nyquist 定理时,就不会发生频谱混淆;同样地,在频率域进行采样的时候,只要采样间隔足够小,也不会发生时域序列的混淆。 DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。在运用DFT 进行频谱分析的时候可能有三种误差,分析如下: (1)混淆现象 从式(2-6)中可以看出,序列的频谱是采样信号频谱的周期延拓,周期是2π/T ,因此当采样速率不满足Nyquist 定理,即采样频率T f s /1=小于两倍的信号(这里指的是实信号)频率时,经过采样就会发生频谱混淆。这导致采样后的信号序列频谱不能真实地反映原信号的频谱。所以,在利用DFT 分析连续信号频谱的时候,必须注意这一问题。避免混淆现象的唯一方法是保证采样的速率足够高,使频谱交叠的现象不出现。这就告诉我们,在确定信号的采样频率之前,需要对频谱的性质有所了解。在一般的情况下,为了保证高于折叠频率的分量不会出现,在采样之前,先用低通模拟滤波器对信号进行滤波。 (2)泄漏现象 实际中的信号序列往往很长,甚至是无限长序列。为了方便,我们往往用截短的序列来近似它们。这样可以使用较短的DFT 来对信号进行频谱分析。这种截短等价于给原信号序列乘以一个矩形窗函数。而矩形窗函数的频谱不是有限带宽的,从而它和原信号的频谱进行卷积以后会扩展原信号的频谱。值得一提的是,泄漏是不能和混淆完全分离开的,因为泄露导致频谱的扩展,从而造成混淆。为了减小泄漏的影响,可以选择适当的窗函数使频谱的扩散减到最小。 (3)栅栏效应 因为DFT 是对单位圆上z 变换的均匀采样,所以它不可能将频谱视为一个连续函数。

相关主题
文本预览
相关文档 最新文档