当前位置:文档之家› 2N系列功率晶体管技术参数(精)

2N系列功率晶体管技术参数(精)

2N系列功率晶体管技术参数(精)
2N系列功率晶体管技术参数(精)

2N系列功率晶体管技术参数

2N1304GE-N25V0.3A0.15W10MHz 2N1305GE-P30V0.3A0.15W5MHz

2N1307GE-P30V0.3A0.15W B>60

2N1613SI-N75V1A0.8W60MHz 2N1711SI-N75V1A0.8W70MHz 2N109GE-P35V0.15A0.165W

2N1893SI-N120V0.5A0.8W

2N2102SI-N120V1A1W<120MHz 2N2148GE-P60V5A12.5W

2N2165SI-P30V50mA0.15W18MHz 2N2166SI-P15V50mA0.15W10MHz 2N2219A SI-N40V0.8A0.8W250MHz 2N2222A SI-N40V0.8A0.5W300MHz 2N22232xSI-N100V0.5A0.6W>50

2N2223A2xSI-N100V0.5A0.6W>50

2N2243A SI-N120V1A0.8W50MHz 2N2369A SI-N40V0.2A.36W12/18ns 2N2857SI-N30V40mA0.2W>1GHz

2N2894SI-P12V0.2A 1.2W60/90ns 2N2905A SI-P60V0.6A0.6W45/100

2N2906A SI-P60V0.6A0.4W45/100

2N2907A SI-P60V0.6A0.4W45/100

2N2917SI-N45V0.03A>60Mz

2N2926SI-N25V0.1A0.2W300MHz 2N2955GE-P40V0.1A0.15W200MHz 2N3019SI-N140V1A0.8W100MHz 2N3053SI-N60V0.7A5W100MHz 2N3054SI-N90V4A25W3MHz

2N3055SI-N100V15A115W800kHz 2N3055SI-N100V15A115W800kHz 2N3055H SI-N100V15A115W800kHz 2N3251SI-P50V0.2A0.36W

2N3375SI-N40V0.5A11.6W500MHz 2N3439SI-N450V1A10W15MHz 2N3440SI-N300V1A10W15MHz 2N3441SI-N160V3A25W POWER 2N3442SI-N160V10A117W0.8MHz 2N3495SI-P120V0.1A0.6W>150MHz 2N3502SI-P45V0.6A0.7W200MHz 2N3553SI-N65V0.35A7W500MHz 2N3571SI-N30V0.05A0.2W 1.4GHz 2N3583SI-N250/175V2A35W>10MHz 2N3632SI-N40V0.25A23W400MHz 2N3646SI-N40V0.2A0.2W

2N3700SI-N140V1A0.5W200MHz 2N3707SI-N30V0.03A0.36W100MHz 2N3708SI-N30V0.03A0.36W80MHz 2N3716SI-N100V10A150W4MHz

2N3725SI-N80V0.5A1W35/60ns 2N3740SI-P60V4A25W>4MHz 2N3741SI-N80V4A25W>4MHz 2N3742SI-N300V0.05A1W>30MHz 2N3767SI-N100V4A20W>10MHz 2N3771SI-N50V30A150W POWER 2N3772SI-N100V20A150W POWER 2N3773SI-N160V16A150W POWER 2N3792SI-P80V10A150W4MHz 2N3819N-FET25V20mA0.36W

2N3820P-FET20V15mA0.36W

2N3821N-FET50V 2.5mA0.3W

2N3824N-FET50V10mA0.3W<250E 2N3866SI-N55V0.4A1W175MHz 2N3904SI-N60V0.2A.35W300MHz 2N3906SI-P40V0.2A.35W250MHz 2N3909P-FET20V10MA0.3W

2N3958N-FET50V5mA0.25W

2N3963SI-P80V0.2A0.36W>40MHz 2N3972N-FET40V50mA 1.8W

2N4001SI-N100V1A15W40MHz 2N4033SI-P80V1A0.8W150MHz 2N4036SI-P90V1A1W60MHz 2N409GE-P13V15mA80mW 6.8MHz 2N4126SI-P25V200mA HF

2N4220N-FET30V0.2A

2N4236SI-P80V3A1W>3MHz 2N427GE-P30V0.4A0.15W B>40

2N428GE-P30V0.4A0.15W B>60

2N4286SI-N30V0.05A0.25W

2N4287SI-N45V0.1A0.25W40MHz 2N4291SI-P40V0.2A0.25W150MH 2N4302N-FET30V0.5mA0.3W

2N4347SI-N140V5A100W0.8MHz 2N4348SI-N140V10A120W>0.2MHz 2N4351N-FET30V30mA0.3W140KHz 2N4391N-FET40V50mA30E Up<10V 2N4392N-FET40V25mA60E Up<5V 2N4393N-FET40V5mA100E Up<3V 2N4401SI-N60V0.6A200MHz

2N4403SI-P40V0.6A200MHz

2N4416N-FET30V15mA VHF/UHF

2N4420SI-N40V0.2A0.36W

2N4427SI-N40V0.4A1W175MHz 2N4906SI-P80V5A87.5W>4MHz 2N4920SI-P80V1A30W

2N4923SI-N80V1A30W

2N5038SI-N150V20A140W0.5us

2N5090SI-N55V0.4A4W5mA

2N5109SI-N40V0.5A 2.5W 1.5GHz

2N5116P-FET30V5mA150E Up<4V

2N5154SI-N100V2A10W

2N5179SI-N20V50mA0.2W>1GHz

2N5192SI-N80V4A40W2MHz

2N5240SI-N375V5A100W>2MHz

2N5298SI-N80V4A36W>0.8MHz

2N5308N-DARL40V0.3A0.4W B>7K

2N5320SI-N100V2A10W AFSWITCH 2N5322SI-P100V2A10W AFSWITCH 2N5401SI-P160V0.6A0.31W

2N5416SI-P350V1A10W15MHz

2N5433N-FET25V0.4A0.3W7E

2N5457N-FET25V1mA Up<6V

2N5458N-FET25V 2.9mA UNI

2N5460P-FET40V5mA Up<6V GEN.P

2N5461P-FET40V9mA0.31W

2N5462P-FET40V16mA Up<9V GEN

2N5484N-FET25V5mA0.31W

2N5485P-FET25V4mA Up<4V

2N5551SI-N180V0.6A0.31W VID

2N5589SI-N36V0.6A3W175MHz

2N5639N-FET30V10mA310mW

2N5672SI-N150V30A140W0.5us

2N5680SI-P120V1A1W

2N5682SI-N120V1A1W>30MHz

2N5684SI-P80V50A200W

2N5686SI-N80V50A300W>2MHz

2N5770SI-N30V0.05A0.7W>900MHz

2N5771SI-P15V50mA625mW>850MHz

2N5876SI-P80V10A150W>4MHz

2N5878SI-N80V10A150W>4MHz

2N5879SI-N60V10A150W>4MHz

2N5884SI-P80V25A200W AFPOWSW

2N5886SI-N80V25A200W>4MHz

2N6031SI-P140V16A200W1MHz

2N6050P-DARL+D60V12A100W

2N6059SI-N100V12A150W

2N6083SI-N36V5A PQ=30W175MHz

2N6098SI-N70V10A75W AFPOWSWITCH 2N6099SI-N70V10A75W AFPOWSWITCh 2N6109SI-P60V7A40W10MHz

2N6124SI-P45V4A40W

2N6211SI-P275V2A20W20MHz

2N6213SI-P400V2A35W>20MHz

2N6248SI-P110V15A125W>6MHz

2N6284N-DARL100V20A160W B>75

2N6287P-DARL100V20A160W

2N6292SI-N80V7A40W

2N6356N-DARL50V20A150W B>150

2N6422SI-P500V2A35W>10MHz

2N6427N-DARL40V0.5A0.625W

2N6476SI-P130V4A16W5MHz

2N6488SI-N90V15A75W

2N6491SI-P90V15A30W

2N6517SI-N350V0.5A0.625W>40

2N6520SI-P350V0.5A0.625W>40

2N6547SI-N850/400V15A175W

2N6556SI-P100V1A10W>75MHz

2N6609SI-P160V16A150W2MHz

2N6660N-FET60V2A 6.25W3E

2N6661N-FET90V2A 6.2W4E

2N6675SI-N400V15A

2N6678SI-N400V15A

2N6716SI-N60V2A2W50MHz

2N6718SI-N100V2A2W50MHz

2N6725N-DARL60V2A1W B>15K

2N6728SI-P60V2A2W>50MHz

2N697SI-N60V1A0.6W<50MHz

2N7002N-FET60V0.115A0.2W700000 2N914SI-N40V0.5A<40/40NS SW

2N918SI-N30V50mA0.2W600MHz

2N系列功率晶体管技术参数(精)

2N系列功率晶体管技术参数 2N1304GE-N25V0.3A0.15W10MHz 2N1305GE-P30V0.3A0.15W5MHz 2N1307GE-P30V0.3A0.15W B>60 2N1613SI-N75V1A0.8W60MHz 2N1711SI-N75V1A0.8W70MHz 2N109GE-P35V0.15A0.165W 2N1893SI-N120V0.5A0.8W 2N2102SI-N120V1A1W<120MHz 2N2148GE-P60V5A12.5W 2N2165SI-P30V50mA0.15W18MHz 2N2166SI-P15V50mA0.15W10MHz 2N2219A SI-N40V0.8A0.8W250MHz 2N2222A SI-N40V0.8A0.5W300MHz 2N22232xSI-N100V0.5A0.6W>50 2N2223A2xSI-N100V0.5A0.6W>50 2N2243A SI-N120V1A0.8W50MHz 2N2369A SI-N40V0.2A.36W12/18ns 2N2857SI-N30V40mA0.2W>1GHz 2N2894SI-P12V0.2A 1.2W60/90ns 2N2905A SI-P60V0.6A0.6W45/100 2N2906A SI-P60V0.6A0.4W45/100 2N2907A SI-P60V0.6A0.4W45/100 2N2917SI-N45V0.03A>60Mz

2N2926SI-N25V0.1A0.2W300MHz 2N2955GE-P40V0.1A0.15W200MHz 2N3019SI-N140V1A0.8W100MHz 2N3053SI-N60V0.7A5W100MHz 2N3054SI-N90V4A25W3MHz 2N3055SI-N100V15A115W800kHz 2N3055SI-N100V15A115W800kHz 2N3055H SI-N100V15A115W800kHz 2N3251SI-P50V0.2A0.36W 2N3375SI-N40V0.5A11.6W500MHz 2N3439SI-N450V1A10W15MHz 2N3440SI-N300V1A10W15MHz 2N3441SI-N160V3A25W POWER 2N3442SI-N160V10A117W0.8MHz 2N3495SI-P120V0.1A0.6W>150MHz 2N3502SI-P45V0.6A0.7W200MHz 2N3553SI-N65V0.35A7W500MHz 2N3571SI-N30V0.05A0.2W 1.4GHz 2N3583SI-N250/175V2A35W>10MHz 2N3632SI-N40V0.25A23W400MHz 2N3646SI-N40V0.2A0.2W 2N3700SI-N140V1A0.5W200MHz 2N3707SI-N30V0.03A0.36W100MHz 2N3708SI-N30V0.03A0.36W80MHz 2N3716SI-N100V10A150W4MHz

功率晶体管的封装

功率晶体管的封装(附功率三极管封装图示) 功率晶体管包括三极管和二极管,其典型的封装形式是THM (Through-HoleMount,引脚插入式)插脚型封装,即使是在SMD (SurfacdMountingDevice,表面贴装元件)大行其道的今天也是如此,因为实践证明这种形式的封装既可靠又利于独立散热片的安装和固定。晶体管THM封装以TO(TransistorOutline,晶体管封装)为主要形式,而SMD形式的,以有引脚的为主要形式,IR(InternationalRectifier,国际整流器)开发的DirectFET 封装则是其中的特例,属于无引脚而只有焊接端子的形式,这种形式在小功率SMD器件中的应用最为广泛。 我们常见的电子元器件封装属于最终封装,是可以直接进行印制板(PCB)安装的封装形式,虽然各半导体芯片制造商都提供没有最终封装的预封装裸片(不能直接安装于印制板),但是带有最终封装的元器件仍然是最主要、最主流的提供形式。 功率晶体管相对于集成电路,引脚排列相对简单,只是外部形状各异。按照管芯封装材料来分大致有两大类:塑料封装和金属封装。如今,塑料封装最为常见,有裸露散热片的非绝缘封装和连散热片也封装在内的全塑封装(也称为绝缘封装),后者无需在散热器绝缘和晶体管之间加装额外的绝缘垫片,但是耗散功率会稍微小一些;金属封装又称为金属管壳封装或者管帽封装,有着银白色的圆形蘑菇状金属外壳,因为封装成本比较高,如今已经不太常见了。按照内部管芯的数量,可以分为单管芯、双管芯、多管芯三大类,多管芯一般耗散功率比较大,主要用于电力电子领域,比较通用的名称是模块或者晶体管模块,本文不再讨论。 三极管中,单管芯塑料封装最常见,引脚都是3个,排列也很有规律,很少有例外。有印字的一面朝向自己,引脚向下,从左至右,常见类型的功率晶体管引脚排列如下: BJT(双极性晶体管):b(基极)、c(集电极)、e(发射极);IGBT(绝缘栅双极晶体管):G(栅极)、c(集电极)、e(发射极);VMOS(垂直沟道场效应管):G(栅极)、D(漏极)、S(源极);BCR(双向晶闸管):A1(阳极1)、A2(阳极2)、G(控制极);SCR(单向晶闸管):K(阴极)、A(阳极)、G(控制极)大功率二极管除了特有的DO(DirectOutline,两端直接引线)封装外,也常常采用塑封三极管的封装形式,三引脚为共阴极或者共阳极以及双管芯并联,或者将三引脚改为两引脚,通常是中间的一脚省去。 对于塑料封装而言,三引脚的TO-220是基本形式,由此扩大,有TO-3P、TO-247、TO-264等,由此缩小,有TO-126、TO-202等,并各自延伸出全绝缘封装以及更多引脚封装和SMD形式。其目的也很明确,在保证耗散功率的前提下缩小封装成本,对于高频开关器件,还要减小引线电感和电容,DirectFET封装就是典型的例子。很多封装仅从外部形状来看,很相似,这时候就需要注意其实际的外

光功率计的使用说明

光功率计的具体说明 深圳中视同创光钎通信 光功率计使用说明书 概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。技术条件 性能指标: a.光波长范围:850 ~1550 nm ,b.光功率测量范围:-70 ~+10 dBm,c.显示分辨率:0.01 dB,d.准确度: ±5%(-70 ~+3 dBm ),非线性:≤ 4%(-70 ~+3 dBm )e.环境条件:工作温度 0 ~55℃,工作湿度≤ 85%,f.电源: AC 220伏/50Hz ±10% 基本功能: a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校 准; 操作 将后面板上电源线连接好,电源开关置“ON” 。仪器开始自检,点亮所有的发光器件,然后进入初始状态。仪器的初始状态如下: a.測量方式:dBm;b.測量波长:1310 nm;c.量程(RH):自动方式;d.调零(Z ERO):关;e.平均(AVG):关。 测量准备 1).开机后预热半小时。若对測量要求不高,预热几分钟就行了; 2).调零 调零主要是消除光探测器的残余暗电流及弱背景光等噪声功率的影响。调零时,输入口必须完全遮光(注意:塑料保护盖不能完全遮光)。也可以在弱背景光下调零,但是,背景光功率值不能超过最小量程值的一半; 调零时,只需按一下“ZERO”键便可自动进行。调零过程中,“ZERO”和“RH”鍵上方指示器发光,面板上除波长设定键“λ SET”及测量键“MEAS”外,其余控制键不起作用,直到调零结束,指示器不发光,各控制键恢复常态。 3).设定波长 开机后,仪器自动设定为1310(nm) 波长。要改变测量波长,按“λ SET”键,其上方指示器发光,此时,“数码显示窗”(10)显示其对应的波长数(nm),每按一次该键,改变一个选定波长,同时在“数码显示窗”(10)显示出来,其值可以在850、980、1300、1310、1 480和1550(nm)之间循环,按“MEAS”键后便选定了最后显示的波长,同时转入测量状态。 4).将FC-PC型測试光缆连接线接好。 测量 1).一般测量 仪器在测量状态下,可以根据使用者的习惯和测试特点选择测量数据的显示方式为“dBm”

三极管的封装及引脚识别

三极管的封装及引脚识别 三极管的封装形式是指三极管的外形参数,也就是安装半导体三极管用的外壳。材料方面,三极管的封装形式主要有金属、陶瓷和塑料形式;结构方面,三极管的封装为TO×××,×××表示三极管的外形;装配方式有通孔插装(通孔式)、表面安装(贴片式)和直接安装;引脚形状有长引线直插、短引线或无引线贴装等。常用三极管的封装形式有TO-92、TO-126、TO-3、TO-220TO等。 国产晶体管按原部标规定有近30种外形和几十种规格,其外形结构和规格分别用字母和数字表示,如TO-162、TO-92等。晶体管的外形及尺寸如图1所示。

图1 晶体管的外形及尺寸 1 封装 1.金属封装 (1)B型:B型分为B-1、B-2、…、B-6共6种规格,主要用于1W及1W以下的高频小功率晶体管,其中B-1、B-3型最为常用。引脚排列:管底面对自己,由管键起,按顺时针方向依次为E、B、C、D(接地极)。其封装外形如图2(a)所示。 (2)C型:引脚排列与B型相同,主要用于小功率。其封装外形如图2(b)所示。 (3)D型:外形结构与B型相同。引脚排列:管底面对自己,等腰三角形的底面朝下,按顺时针方向依次为E、B、C。其封装外形如图2(c)所示。 (4)E型:引脚排列与D型相同,封装外形如图3(d)所示。 (5)F型:该型分为F-0、F-1~F-4共5种规格,各规格外形相同而尺寸不同,主要用于低频大功率管封装,使用最多的是F-2型封装。引脚排列:管底面对自己,小等腰三角形的庵面朝下,左为E,右为B,两固定孔为C。其封装外形如图2(e)所示。¨ (6)G型:分为G-1~G-6共6种规格,主要用于低频大功率晶体管封装,使用最多的是G-3、G-4型。其中G-1、G-2为圆形引出线,G-3~G-6为扁形引出线。引脚排列:管底面对自己,等腰三角形的底面朝下,按顺时针方向依次为E、B、C。其封装外形如图2(f)所示。 2.塑料封装 (1)S-1型、S-2型、S-4型:用于封装小功率三极管,其中以S-1型应用最为普遍。S-1、S-2、S-3型管的封装外形如图2(g)、(h)、(i)所示。引脚排列:平面朝外,半圆形朝内,引脚朝上时从左到右为E、B、C。 (2)S-5型:主要用于大功率三极管。引脚排列:平面朝外,半圆形朝内,引脚朝上时从左到右为E、B、C。S-5型的封装外形如图2(j)所示。 (3)S-6lA、S-6B、S-7、S-8型:主要用于大功率三极管,其中以S-7型最为常用。S-6A 引脚排列:切角面面对自己,引脚朝下,从左到右依次为B、C、E。它们的引脚排列与外形分别如图5.12(k)、(l)、(m)、(n)所示。 (4)常见进口管的外形封装结构:TO-92与部标S-1相似,TO-92L与部标S-4相似,TO126与S-5相似,TO-202与部标S-7相似。

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的 输入电阻可高达1015W而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS t,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽 型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区, 并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖 一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G 另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS f。它的栅极与其他电 极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 源极s tiffiG m 引纯 ? N旳道增强型场效应管紡拘示胃图低州沟道壇强型场效应管符号 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图6-39(a) 可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0寸,即使加上漏-源电压UDS而且不论UDS的极性如何,总有一个PN结处于 反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID - 0。 若在栅-源极间加上正向电压,即UGS> 0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同 时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子 就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层, 且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称 为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准; 三.原理

常用金属封装大功率三极管参数

常用金属封装大功率三极管参数 型号 极性 用途 V A W β/kpl 2N5684 PNP NF/S-L 80 50 300 2N5686 MJ10013 PNP Darl-L 550 10 175 MJ11015 PNP Darl-L 120 30 200 MJ11016 MJ11033 PNP Darl-L 120 50 300 MJ11032 MJ14003 PNP S-L 80 70 300 MJ14002 MJ15004 PNP S-L 140 20 250 MJ14003 MJ15023 PNP S-L 200 16 250 MJ15022 MJ15025 PNP S-L 250 16 250 MJ15024 MJ4502 PNP NF/S-L 90 30 200 2N6518 2N5686 NPN NF/S-L 80 50 300 2N5684 BDY56 NPN NF/S-L 180 15 115 BU208A NPN TV-HA 1500 5 12.5 BU326 NPN TV-SN 800 6 60 BU932R NPN Darl-L 450 15 500ns BUS13A NPN S-L 1000 15 175 BUS14A NPN S-L 1000 30 250 BUS48A NPN NF/S-L 1000 15 175 BUX22 NPN S-L 300 40 250 BUX48A/C NPN S-L 850/1000 15 125 BUX98A/C NPN NF/S-L 450/1000 30 250 BUY71 NPN TV-HA 2200 2 40 C1325 NPN TV-HA 1500 6 8

教你怎么做晶体管的选型

1.认识晶体管 晶体管是一种具有放大和开关等功能的有源器件。按工艺可分为:双极、场效应、 闸流和光电等。按功能可分为放大、开关、錾波和光电等。按工作频率可分为:低频、高频 和微波三类。 2. 晶体管的规范叙述 ①—MOSFET ②③④ N —MOSFET DUAL 参数SO8 ①MOSFET TYPE ②DUAL N-MOSFET ③参数 ④PACKAGE TYPE 3.按参数选型 3.1.晶体管的类型 3.2.电流 - 集电极 (Ic)(最大)集电极-发射极所能承受的最大直流电流,属于极限参数, 测试时不用散热片,通电时间一般为10s以内 3.3. 电压 - 集电极发射极击穿(最大) 3.4. Ib、Ic条件下的Vce饱和度(最大)饱和导通时集电极-发射极之间的电压差,这个 数值越小,说明IGBT的导通功功耗小 3.5. 电流 - 集电极截止(最大) 3.6. 在某 Ic、Vce 时的最小直流电流增益 (hFE) 3.7. 功率 - 最大 3.8. 频率 - 转换 3.9. 安装类型

3.10封装/外壳 一般可按工作性质按下表选择晶体管: 工作性质 应用要求 类 型 小功率放大 低输入阻抗(小于 1M Ω) 高频晶体管 高输入阻抗(大于 1M Ω) 场效应晶体管 低频低噪声 场效应晶体管 微波低噪声 微波低噪声管 功率放大 1GHZ 以上 微波功率管 10K HZ 以上 高频功率放大 10K HZ 以下 低频功率放大 开关 通态电阻小 开关晶体管 通态内部等效电压为零 场效应晶体管 功率、低频(5KHZ 以下) 低频功率晶体 管 大电流或作可调压电源 闸流晶体管 光电转换、放大 光电晶体管 光电隔离 浮地 光电耦合器 应用注意事项 (1)小功率晶体管: 在小功率晶体管的应用中,对极限参数必须降额使用。极限参数包括:集电极 最大允许功率耗散(PCM )、集电极最大电流(ICM )、基极电流为零时集电极-发射 极击穿电压(VBR (CEO ))

光功率计使用说明

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准;

功率晶体管(GTR)的特性

功率晶体管(GTR)的特性 功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。 —、结构特性 1、结构原理 功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。 对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。目前常用的GTR器件有单管、达林顿管和模块三大系列。 三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。 图1、功率晶体管结构及符号 图2、达林顿GTR结构 (a)NPN-NPN型、(b)PNP-NPNxing 达林顿结构是提高电流增益的一种有效方式。达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。不难推得 IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2) 目前作为大功率开关应用最多的是GTR模块。它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。GTR模块结构紧凑、功能强,因而性能价格比大大提高。

光功率计使用说明书

光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围:850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率:0.01 dB d.准确度:±5%(-70 ~+3 dBm )非线性:≤4%(-70 ~+3 dBm )e.环境条件: 工作温度0 ~55℃ 工作湿度≤85% f.电源:AC 220伏/50Hz ±10% 2.基本功能

a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量处理, 波长校准; 三.原理 光功率计由五部分组成, 即光探測器、程控放大器和程控滤波器、A/D转换器、微处理器以及控制面板与数码显示器。 A/D变换器 P I N I/V 程控放大器和滤波器 C P U 控制面板和显示器 被測光由PIN光探测器检测转换为光电流,由后续斩波稳定程控放大器将电流信号转换成电压信号,即实现I/V转换并放大,经程控滤波器滤除斩波附加分量及干扰信号后,送至A/D 转换器,变成相应于输入光功率电平的数字信号,由微处理器(CPU)进行数据处理,再由数码显示器显示其数据。CPU可根据注入光功率的大小自动设置量程状态和滤波器状态,同时,可由面板输入指令(通过CPU)控制各部分完成指定工作。不注入光的情况下,可指令仪器自动调零。 四.使用

三极管的封装形式

三极管的封装形式 是指三极管的外形参数,也就是安装半导体三极管用的外壳。材料方面,三极管的封装形式主要有金属、陶瓷和塑料形式;结构方面,三极管的封装为TO×××,×××表示三极管的外形;装配方式有通孔插装(通孔式)、表面安装(贴片式)和直接安装;引脚形状有长引线直插、短引线或无引线贴装等。常用三极管的封装形式有TO-92、TO-126、TO-3、TO-220TO等。 国产晶体管按原部标规定有近30种外形和几十种规格,其外形结构和规格分别用字母和数字表示,如TO-162、TO-92等。晶体管的外形及尺寸如图1所示。

图1 晶体管的外形及尺寸 1 封装 1.金属封装 (1)B型:B型分为B-1、B-2、…、B-6共6种规格,主要用于1W及1W以下的高频小功率晶体管,其中B-1、B-3型最为常用。引脚排列:管底面对自己,由管键起,按顺时针方向依次为E、B、C、D(接地极)。其封装外形如图2(a)所示。 (2)C型:引脚排列与B型相同,主要用于小功率。其封装外形如图2(b)所示。 (3)D型:外形结构与B型相同。引脚排列:管底面对自己,等腰三角形的底面朝下,按顺时针方向依次为E、B、C。其封装外形如图2(c)所示。 (4)E型:引脚排列与D型相同,封装外形如图3(d)所示。 (5)F型:该型分为F-0、F-1~F-4共5种规格,各规格外形相同而尺寸不同,主要用于低频大功率管封装,使用最多的是F-2型封装。引脚排列:管底面对自己,小等腰三角形的庵面朝下,左为E,右为B,两固定孔为C。其封装外形如图2(e)所示。¨ (6)G型:分为G-1~G-6共6种规格,主要用于低频大功率晶体管封装,使用最多的是G-3、G-4型。其中G-1、G-2为圆形引出线,G-3~G-6为扁形引出线。引脚排列:管底面对自己,等腰三角形的底面朝下,按顺时针方向依次为E、B、C。其封装外形如图2(f)所示。 2.塑料封装

晶体管原理1

第二章 PN结 填空题 1、若某硅突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为()和()。 2、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。内建电场的方向是从()区指向()区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。 4、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。 5、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 6、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 7、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。若硅P 型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为()。 8、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。 9、PN结的正向电流由()电流、()电流和()电流三部分所组成。 10、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。 11、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 12、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。 13、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄基区二极管中,少子浓度的分布近似为()。 14、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN结的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 15、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 16、PN结的击穿有三种机理,它们分别是()、()和()。 17、PN结的掺杂浓度越高,雪崩击穿电压就越();结深越浅,雪崩击穿电压就越()。 18、雪崩击穿和齐纳击穿的条件分别是()和()。 19、PN结的低掺杂一侧浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi 就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。 问答题 1、简要叙述PN结空间电荷区的形成过程。 2、什么叫耗尽近似?什么叫中性近似? 3、PN结势垒区的宽度与哪些因素有关? 4、写出PN结反向饱和电流I0的表达式,并对影响I0的各种因素进行讨论。 5、PN结的正向电流由正向扩散电流和势垒区复合电流组成。试分别说明这两种电流随外加正向电压的增加而变化的规律。当正向电压较小时以什么电流为主?当正向电压较大时以什么电流为主? 第三章双极结型晶体管 填空题 1、晶体管的基区输运系数是指()电流与()电流之比。为了提高基区输运系数,应当使基区宽度()基区少子扩散长度。 2、晶体管中的少子在渡越()的过程中会发生(),从而使到达集电结的少子比从发射结注入基区的少子()。 3、晶体管的注入效率是指()电流与()电流之比。为了提高注入效率,应当使()区掺杂浓度远大于()区掺杂浓度。

晶体管结构与工作原理

晶体三极管知识 晶体三极管作为重要的半导体器件,其基本结构和工作原理需要掌握。下面具体介绍。 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极( emitter, E )、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。 (a) (b) 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里 我们先讨论最常用的所谓 "正向活性区” (forwad active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E (这部分是三极管作用不需要的部分) 。InB? E在射极与与电 洞复合,即InB? E=I Erec o pnp三极管在正向活性区时主要的电流种类可以清楚地在图3(a)中看出。

功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电 压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空 航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适 用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面, 横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如 图1(a)所示。电气符号,如图1(b)所示。 电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。UGS超过UT越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数

单结晶体管工作原理

单结晶体管工作原理 双基极二极管又称为单结晶体管,它的结构如图1所示。在一片高电阻率的N型硅片一侧的两端各引出一个电极,分别称为第一基极B1和第二基极B2。而在硅片是另一侧较靠近B2处制作一个PN结,在P型硅上引出一个电极,称为发射极E。两个基极之间的电阻为RBB,一般在2~15kW之间,RBB一般可分为两段,RBB = RB1+ RB2,RB1是第一基极B1至PN结的电阻;RB2是第一基极B2至PN结的电阻。双基极二极管的符号见图1的右侧。 图 1 双基极二极管的结构与符号等效电路 将双基极二极管按图2(a)接于电路之中,观察其特性。首先在两个基极之间加电压UBB,再在发射极E和第一基极B1之间加上电压UE,UE可以用电位器RP进行调节。这样该电路可以改画成图2(b)的形式,双基极二极管可以用一个PN结和二个电阻RB1、RB2组成的等效电路替代。 当基极间加电压UBB时,RB1上分得的电压为 式中称为分压比,与管子结构有关,约在0.5~0.9之间。

2.当UE=UBB+UD时,单结晶体管内在PN结导通,发射极电流IE突然增大。把这个突变点称为峰点P。对应的电压UE和电流IE分别称为峰点电压UP和峰点电流IP。显然,峰点电压 Up=UBB+UD T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 式中UD为单结晶体管中PN结的正向压降,一般取UD=0.7V。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 在单结晶体管中PN结导通之后,从发射区(P区)向基压(N区)发射了大量的空穴型载流子,IE增长很快,E和B1之间变成低阻导通状态,RB1迅速减小,而E和B1之间的电压UE也随着下降。这一段特性曲线的动态电阻为负值,因此称为负阻区。而B2的电位高于E的电位,空穴型载流子不会向B2运动,电阻RB2基本上不变。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 当发射极电流IE增大到某一数值时,电压UE下降到最低点。特性由线上的这一点称为谷点V。与此点相对应的是谷点电压UV和谷点电流IV。此后,当调节RP使发射极电流继续增大时,发射极电压略有上升,但变化不大。谷点右边的这部分特性称为饱和区。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 综上所述,单结晶体管具有以下特点:T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 (1)当发射极电压等于峰点电压UP时,单结晶体管导通。导通之后,当发射极电压小于谷点电压UV时,单结晶体管就恢复截止。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 (2)单结晶体管的峰点电压UP与外加固定电压UBB及其分压比有关。而分压比是由管子结构决定的,可以看做常数。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 对于分压比不同的管子,或者外加电压UBB的数值不同时,峰值电压UP也就不同。(3)不同单结晶体管的谷点电压UV和谷点电流IV都不一样。谷点电压大约在2~5V之间。

光功率计1

光功率计 用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。,通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 针对用户的具体应用,要选择适合的光功率计,应该关注以下各点: 1、选择最优的探头类型和接口类型 2、评价校准精度和制造校准程序,与你的光纤和接头要求范围相匹配。 3、确定这些型号与你的测量范围和显示分辨率相一致。 4、具备直接插入损耗测量的 dB功能。 光功率的单位是dbm,在光纤收发器或交换机的说明书中有它的发光和接收光功率,通常发光小于0dbm,接收端能够接收的最小光功率称为灵敏度,能接收的最大光功率减去灵敏度的值的单位是db(dbm-dbm=db),称为动态 范围,发光功率减去接收灵敏度是允许的光纤衰耗值.测试时实际的发光功率减去实际接收到的光功率的值就是光纤衰耗(db).接收端接收到的光功 率最佳值是能接收的最大光功率-(动态范围/2),但一般不会这样好.由于每种光收发器和光模块的动态范围不一样,所以光纤具体能够允许衰耗多 少要看实际情形.一般来说允许的衰耗为15-30db左右. 有的说明书会只有发光功率和传输距离两个参数,有时会说明以每公 里光纤衰耗多少算出的传输距离,大多是0.5db/km.用最小传输距离除以0. 5,就是能接收的最大光功率,如果接收的光功率高于这个值,光收发器可能会被烧坏.用最大传输距离除以0.5,就是灵敏度,如果接收的光功率低于这个值,链路可能会不通. 光纤的连接有两种方式,一种是固定连接一种是活动连接,固定连接就是熔接,是用专用设备通过放电,将光纤熔化使两段光纤连接在一起,优点 是衰耗小,缺点是*作复杂灵活性差.活动连接是通过连接器,通常在ODF上连接尾纤,优点是*作简单灵活性好缺点是衰耗大,一般说来一个活动连接 的衰耗相当于一公里光纤.光纤的衰耗可以这样估算:包括固定和活动连接,每公里光纤衰耗0.5db,如果活动连接相当少,这个值可以为0.4db,单纯光纤不包括活动连接,可以减少至0.3db,理论值纯光纤为0.2db/km;为保险计大多数情况下以0.5为好. 光纤测试TX与RX必须分别测试,在单纤情况下由于仅使用一纤所以当然只需测试一次.单纤的实现原理据生产公司讲是波分复用,但本人认为使用光纤耦合器的可能性更高

晶体三极管的结构及封装

晶体三极管的结构及封装 晶体三极管是各种电子设备中的核心器件。其突出特点是在一定条件下具有电流放大作用,可用做电子开关,在电子电路中被广泛应用。 晶体三极管由两个PN结和三个电极构成,用途及功率不同,封装尺寸也不同。常用的有平面型小功率、中功率及大功率三极管。 小功率三极管的封装尺寸及实物图如下图(a)所示。 中功率三极管的封装尺寸及实物图如下图(b)所示。 大功率三极管的封装尺寸及实物图如下图(c)所示。 贴片式三极管的封装尺寸及实物图如下图(d)所示。 常用的合金型小功率、中功率、大功率三极管有以下几种: 小功率合金型三极管实物图如下图(e)所示。 中功率合金型三极管实物图如下图(f)所示。 大功率合金型三极管实物图如下图(g)所示。

常见的三极管结构有平面型和合金型两类,分别如图5-15(a)和(b)所示。硅管主要是平面型,锗管主要是合金型。 不同类型的三极管虽然制造方法不同,但在结构上都分成PNP或NPN三层。因此又将三极管分为NPN型和PNP型两种。国产硅三极管主要是NPN型,锗管主要是PNP型下图是它们的结构示意图和电路符号。晶体三极管在电路中的表示方法有:国内最早用BG表示,彩色电视机电路中用Q和V表示。目前的电子电路中用VT来表示。 各种三极管都分为发射区、基区和集电区等三个区域。三个区域的引出线分别称为发射极、基极和集电极,并分别用E,B和C表示。发射区与基区之间的PN结称为发射结,基区与集电区之间的P-N结称为集电结。 NPN型三极管和PNP型三极管的工作原理相同,不同的只是使用连接电源的极性不同,管子各极之间的电流方向也不同。下面以NPN晶体三极管为例进行介绍。

相关主题
文本预览
相关文档 最新文档