当前位置:文档之家› 线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念

线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念

线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念
线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念

线性规划

教学目标:

1.解线性约束条件、线性目标函数、线性规划概念;

2.在线性约束条件下求线性目标函数的最优解;

3.了解线性规划问题的图解法。

教学重点:线性规划问题。

教学难点:线性规划在实际中的应用。

教学过程:

1.复习回顾:

上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略)

2.讲授新课:

例1:设z=2x+y,式中变量满足下列条件:

,求z的最大值和最小值.

解:变量x,y所满足的每个不等式都表示一个平面

区域,不等式组则表示这些平面区域的公共

区域.(如右图).

作一组与l0:2x+y=0平行的直线l:2x+y=t.t∈R可知:当l在l0的右上方时,直线l上的点(x,y)满足2x+y>0,即t>0,而且,直线l往右平移时,t随之增大,在经过不等式组①所表示的公共区域内的点且平行于l的直线中,以经过点A(5,2)的直线l2所对应的t最大,以经过点B (1,1)的直线l1所对应的t最小.所以

zmax=2×5+2=12 zmin=2×1+1=3

说明:例1目的在于给出下列线性规划的基本概念.

线性规划的有关概念:

①线性约束条件:

在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.

②线性目标函数:

关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.

③线性规划问题:

一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.

④可行解、可行域和最优解:

满足线性约束条件的解(x,y)叫可行解.

由所有可行解组成的集合叫做可行域.

使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.

Ex:P841,2,3

例2:在x≥0,y≥0,3x+y≤3及2x+3y≤6的条件下,试求x-y的最值。

解:画出不等式组的图形

设x-y=t,则y=x-t

由图知直线l:y=x-t过A(1,0)时纵截距

最小,这时t=1;过B(0,2)时纵截距最大,

这时t=-2. 所以,x-y的最大值为1,最小值为-2。

例3:某工厂生产甲、乙两种产品。已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t。每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?

分析:将已知数据列成下表

消产

耗量品资源甲产品(1t)乙产品(1t)资源限额(t)A种矿石(t)104300B种矿石(t)54200煤(t)49360利润(元)6001000

解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么

z=600x+1000y

作出以上不等式组所表示的平面区域,即可行域。

作直线l:600x+1000y=0,即直线l:3x+5y=0

把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大。此时 z=600x +1000y 取最大值。

解方程组

得M的坐标为 x=≈12.4,

y=≈34.4

答:应生产甲产品约12.4t,乙产

品34.4t,能使利润总额达到最大。

3.课堂练习:

课本P84 1,2,3

4.课堂小结:

通过本节学习,要求大家掌握线性规划问题,并能解决简单的实际应用.

5.课后作业:

课本P87习题 3,4

教学后记:

线性规划

例1:某工厂生产甲、乙两种产品。已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t。每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?

例2:某工厂有甲、乙两种产品,按计划每天各生产不少于15t,已知生产甲产品1t需煤9t,电力4kw,劳动力3个(按工作日计算);生产乙产品l t需煤4t,电力5kw,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200 kw,劳动力只有300个,问每天各生产甲、乙两种产品多少吨,才能既保证完成生产任务,又能为国家创造最多的财富。

例3:一位农民有田2亩,根据他的经验:若种水稻,则每亩每期产量为400 kg;若种花生,则每亩每期产量为100 kg,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每 kg可卖5元,稻米每kg只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?例3:要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:

规格类型

钢板类型A规格B规格C规格第一种钢板211第二种钢板123今需要A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?

线性规划的概念

3.6:线性规划 目录: (1)线性规划的基本概念 (2)线性规划在实际问题中的应用 【知识点1:线性规划的基本概念】 (1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__ 例题:若变量x 、y 满足约束条件2 10x y x y +≤?? ≥??≥? ,则z x y =+的最大值和最小值分别为 ( B ) A. 4和3 B. 4和2 C. 3和2 D. 2和0 分析:本题考查了不等式组表示平面区域,目标函数最值求法. 解:画出可行域如图 作020l x y +=: 所以当直线2z x y =+过()20A , 时z 最大,过()1,0B 时z 最小max min 4, 2.z z == 变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x x y y ≤?? +≤??≥-? ,则z 的最大值是__3___ 解:不等式组表示的平面区域如图所示.

作直线0:20l x y +=,平移直线0l ,当直线0l 经过 平面区域的点()21A -,时,z 取最大值2213?-=. 变式2:设2z x y =+,式中变量x 、y 满足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值 分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性 规划问题,使用图解法求解 解:作出不等式组表示的平面区域(即可行域),如图所示. 把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小. 解方程组430 35250x y x y -+=??+-=?,得A 点坐标为()5,2, 解方程组1 430x x y =??-+=? ,得B 点坐标为()1,1 所以max min 25212,211 3.z z =?+==?+= 变式3:若变量x 、y 满足约束条件6 321x y x y x +≤?? -≤-??≥? ,则23z x y =+的最小值为( C ) A. 17 B. 14 C. 5 D. 3

线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念

线性规划 教学目标: 1.解线性约束条件、线性目标函数、线性规划概念; 2.在线性约束条件下求线性目标函数的最优解; 3.了解线性规划问题的图解法。 教学重点:线性规划问题。 教学难点:线性规划在实际中的应用。 教学过程: 1.复习回顾: 上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略) 2.讲授新课: 例1:设z=2x+y,式中变量满足下列条件: ,求z的最大值和最小值. 解:变量x,y所满足的每个不等式都表示一个平面 区域,不等式组则表示这些平面区域的公共 区域.(如右图). 作一组与l0:2x+y=0平行的直线l:2x+y=t.t∈R可知:当l在l0的右上方时,直线l上的点(x,y)满足2x+y>0,即t>0,而且,直线l往右平移时,t随之增大,在经过不等式组①所表示的公共区域内的点且平行于l的直线中,以经过点A(5,2)的直线l2所对应的t最大,以经过点B (1,1)的直线l1所对应的t最小.所以 zmax=2×5+2=12 zmin=2×1+1=3 说明:例1目的在于给出下列线性规划的基本概念. 线性规划的有关概念: ①线性约束条件: 在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x,y)叫可行解.

线性规划问题中目标函数常见类型梳理

线性规划问题中目标函数常见类型梳理 山东 张吉林 线性规划问题中目标函数的求解是线性规划问题的重点也是难点,对于目标函数的含义学生往往理解的不深不透,只靠死记硬背,生搬硬套,导致思路混乱,解答出错。本文将有关线性规划问题中目标函数的常见类型梳理如下,以期对大家起到一定的帮助。 一 基本类型——直线的截距型(或截距的相反数) 例1.已知实数x 、y 满足约束条件0503x y x y x +≥??-+≥??≤? ,则24z x y =+的最小值为( ) A .5 B .-6 C .10 D .-10 分析:将目标函数变形可得124 z y x =-+,所求的目标函数的最小值即一组平行直线12 y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。 解析:由实数x 、y 满足的约束条件,作可行域如图所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =?+?-=-,答案选B 。 点评:深刻地理解目标函数的含义,正确地将其转化为直线的斜率是解决本题的关键。 二 直线的斜率型 例2.已知实数x 、y 满足不等式组2240x y x ?+≤?≥? ,求函数31y z x +=+的值域. 解析:所给的不等式组表示圆22 4x y +=的右半圆(含边界),

31 y z x +=+可理解为过定点(1,3)P --,斜率为z 的直线族.则问题的几何意义为:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1) z --==--.过点P 所作半圆的切线的斜率最小.设切点为(,)B a b ,则过B 点的切线方程为4ax by +=.又B 在半圆周上,P 在切线上,则有22434 a b a b ?+=?--=?解 得65a b ?=???--?=?? 因 此min z =。综上可知函数的值域 为???? 三 平面内两点间的距离型(或距离的平方型) 例3. 已知实数x 、y 满足10101x y x y y +-≤??-+≥??≥-? ,则22448w x y x y =+--+的最值为___________. 解析:目标函数2222 448(2)(2)w x y x y x y =+--+=-+-,其含义是点(2,2)与可行域内的点的距离的平方。由实数x 、y 所满足的不等式组作可行域如图所示:

线性规划

【考点剖析】 1.命题方向预测: 预计2019年高考对本节内容的考查仍将以求目标函数最值(或取值范围)为主,考查约束条件、目标函数中的参变量取值范围,题型延续选择题或填空题的形式,分值为4到5分. 2.课本结论总结: 画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化,确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法,直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线,特殊点定域,即在直线0Ax By C ++=的某一侧取一个特殊点00(,)x y 作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当0C ≠时,常把原点作为测试点;当0C =时,常选点(1,0)或者(0,1)作为测试点;线性规划的综合运用问题,通常会考查一些非线性目标函数的最值,解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义. 3.名师二级结论: (1)平面区域的画法:线定界、点定域(注意实虚线). (2)求最值:求二元一次函数(0)z ax by ab =+≠的最值,将函数z ax by =+转化为直线的斜截式: a z y x b b =- +,通过求直线的截距z b 的最值间接求出z 的最值.最优解在顶点或边界取得. (3)解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题. 4.考点交汇展示: 设O 为坐标原点,第一象限内的点(,)M x y 的坐标满足约束条件260 20 x y x y --≤??-+≥?,(,)(0,0)ON a b a b =>>, 若OM ON 的最大值为40,则51 a b +的最小值为( ) A. 25 6 B.94 C.1 D.4 【答案】B

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

MAAB非线性规划及非线性约束条件求解

M A T L A B 非线性规划及非线性约束条件求解 【题1】求非线性规划问题:221212121min 262 f x x x x x x = +--- clear all clc f=@(x)((1/2)*x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-6*x(2)); A=[11;-12;21]; b=[2;2;3]; Aeq=[];beq=[]; lb=[0;0]; ub=[100;100]; x0=[11]'; intlist=[0;0]; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题2】求非线性规划问题:123min f x x x =- clear all clc f=@(x)(-x(1)*x(2)*x(3)); A=[-1-2-2;122]; b=[0;72]; Aeq=[];beq=[]; lb=[];ub=[]; x0=[1;1;1]; intlist=[000]'; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题3】求非线性规划问题:()12212122min 42421x f e x x x x x =++++ function [c,ceq]=nolic2(x) c(1)=x(1)*x(2)-x(1)-x(2)+3/2; ceq=[]; end clear all clc f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2) +1); A=[];b=[];Aeq=[];beq=[]; lb=[-10-10]'; ub=[]; x0=[11]'; intlist=[00]';

线性规划问题中目标函数常见类型梳理

线性规划问题中目标函数常见类型梳理 线性规划问题中目标函数的求解是线性规划问题的重点也是难点,对于目标函数的含义学生往往理解的不深不透,只靠死记硬背,生搬硬套,导致思路混乱,解答出错。本文将有关线性规划问题中目标函数的常见类型梳理如下,以期对大家起到一定的帮助。 一 基本类型——直线的截距型(或截距的相反数) 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =-+, 则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。 例1.已知实数x 、y 满足约束条件0 503x y x y x +≥?? -+≥??≤? ,则24z x y =+的最小值为( ) A .5 B .-6 C .10 D .-10 分析:将目标函数变形可得124z y x =- +,所求的目标函数的最小值即一组平行直线1 2 y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。 解析:由实数x 、y 满足的约束条件,作可行域如图1所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =?+?-=-,答案选B 。

二次线性规划求目标函数的最值

1.(13年江苏T9)抛物线2 y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是 . 【测量目标】导数的几何意义、直线方程以及线性规划问题. 【考查方式】给定函数和切点横坐标,利用导数的几何意义求出切线方程,然后得到可行域,再利用线性规划问题的一般解法求解最值范围. 【参考答案】1 [2,]2 - 【试题解析】由于2y x '=,所以抛物线在1x =处的切线方程为 12(1)y x -=-,即21y x =-.画出可行域(如图). (步骤1) 设2x y z +=,则1122y x z =- +经过点1 (,0)2 A ,(0,1) B -时,z 分别取最大值和最小值,此时最大值max 1 2 z =,最小值min 2z =-,故取值范围是 1 [2,]2 -.(步骤2) 2.(13安徽T12)若非负数变量,x y 满足约束条件1 24 x y x y --??+?≥≤,则x y +的最大值为 __________. 【测量目标】二元线性规划求目标函数最值. 【考查方式】结合约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】4 【试题解析】先画出可行线,再画目标函数线过原点时的直线,向上平移,寻找满足条件的 最优解,代入即可得所求.第2题图 FGQ28 根据题目中的约束条件画出可行域,注意到,x y 非负,得可行域为如图所示的阴影部分(包括边界).作直线y x =-,并向上平移,数形结合可知,当直线过点(4,0)A 时,x y +取得最大值,最大值为 4.

线性规划中目标函数斜率与最值的关系

线性规划中最值问题的一种改进解法 摘 要:本文主要是讨论如何利用目标函数的斜率来求最值。首先,分析通用解法步骤以及其存在的一些缺点,引出寻求新解法的必要;其次,对于原解法进行改进,主要是对比等值线的斜率与已知约束条件所对应直线的斜率,确定表示可行域的各条直线和等值线的相对位置;最后,通过实例应用来具体理解。 关键词:目标函数;斜率;等值线;最值 一、引言 在解决线性规划问题时,我们常常会遇到以下三个问题:(1)如何快速有效的检验结果是否正确;(2)约束条件中不等式的数字较大或对应直线与坐标轴的交点不是整点时,画可行域不精确,是否会对结果造成影响;(3)由于精确画图所需时间较多,能不能通过草图解决问题呢?为了解决这三个问题,通过对目标函数的斜率的研究,进而可以得到解决。 二、归纳总结,改进方法 对于线性规划问题,图解法的一般步骤是:(1)作出可行域;(2)作出目标函数对应的等值线;(3)在可行域内平移等值线找到最值点,从而求出最优解。而在这个过程中,第 (2)步最易出错,且第(1)步因为要求精确作图,也容易出现误差,导致结果出现偏差。针对这个问题,提出以下改进步骤: 1、作出可行域,不必精确作图,只需根据各直线的斜率和在坐标轴上的截距来确定它们之间的位置关系,作出其草图,找到可行域,但各直线的位置关系一定要正确; 2、作目标函数()0,≠+=b a by ax Z 的等值线x b a y - =,它的关键点是根据可行域所在直线的斜率和等值线的斜率b a -来确定等值线的相对位置,做出草图; 3、得到结果,在可行域内平移等值线即可。 说明:根据斜率关系确定两直线位置的方法:记两直线21l l 、的斜率分别为21k k 、,倾斜角为21αα、。若21k k 、一正一负,则两直线的位置关系明显可以确定;若21k k 、同正或同 负,则有:(1)021>>k k ,由于2211tan ,tan αα==k k ,正切函数在?? ? ??2,0π内递增,则21αα>,即1l 比2l 更倾斜;(2)021<

线性规划基本概念及模型构建

LP (Linear Programming)

Alex 有一个家庭农场。除了农场上的农作物以外,他还饲养了一些猪拿到市场上出售,猪可获得的饲料及其所含成分如下表:Alex如何喂养猪更好? 成分/每公斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150 问题1:科学养猪线性规划建模(猪饲料的配方)饲养成本最小

--- 每天玉米、槽料、苜蓿各喂多少公斤? --- 必须满足要求12--- 追求成本最低 Min. 84x 1+ 72x 2+ 60x 3 3x 1x 2x 3 知识点 建模三要素 决策变量约 束目标 90x 1+ 20x 2+ 40x 3 ≥ 20030x 1+ 80x 2+ 60x 3 ≥ 18010x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 成分/每公 斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150

s.t. 90x 1+ 20x 2+ 40x 3 ≥ 200 30x 1 + 80x 2+ 60x 3 ≥ 180 10x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 Min . 84x 1+ 72x 2+ 60x 3 目标函数约束函数符号中必含等号符号的右侧为常数线性--变量均为1次方 Max. 或 Min.线性--所有变量均为1次方常规约束:变量非负!知识点 模型表示

?线性规划模型能求解出来吗? 能!--- 万能的单纯形法 结合软件 QSB应用

线性规划中目标函数的几何意义

线性规划中目标函数的几何意义 课例名称:《线性规划中目标函数的几何意义》 授课教师:梁耀冬(罗定实验中学) 课型:高三复习 【教学设计】 一、教材分析 1 .教学背景分析 简单的线性规划是高中数学知识的重要内容,也是高考的主要考点之一,而且对线性规划的要求也越来越灵活,以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积等).多以选择题、填空题出现, 它是本质是“以形助数”即主要利用形的直观性来解决问题.具有应用的多样性.其中也对学生的数形结合思想进行全方位考查. 所以我们要认真研究目标函数的几何意义,使目标函数具体化和明朗化.下面笔者对平时教学中出现的线性规划问题进行分类与剖析,旨在拓展学生思维同时,教给学生掌握一些解题的方法与技巧. 2 .教学目标 知识与技能目标: ( 1 )能正确理解目标函数所表示的几何意义 ( 2 )能运用数形结合的数学思想解决线性规划中目标函数的几种基本的类型 过程与方法目标: ( 1 )培养学生的数学意识,增强学生数形结合的思想; ( 2 )理解数学的转化思想,提高分析问题、解决问题的能力。 情感态度与价值观目标: ( 1 )通过学生的主动参与、学生的合作交流,培养学生的探索方法与精神; ( 2 )体会数形结合的美。 3 .教学重、难点 重点:数形结合; 难点:能运用数形结合的思想方法解决目标函数中的几何意义问题。 二、教法、学法设计 1 .教法设计 本节课的教学通过具体实例采用了启发引导,讲练结合的教学方法,注重学生数学思维方法以及研究问题方法的渗透。 2 .学法设计 在学习中,让其以主体的态度,而不是被动的接受。经历知识的形成和发展过程,通过观察、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

线性规划常见目标函数(含答案)

常见目标函数 1.截距型:形如,by ax z +=可转化为,b z x b a y +-=利用直线在y 轴上的截距大小确定目标函数的最值 2.点到点的距离型:形如:22)()(b y a x z -+-=,表示在区域内的动点(x,y )与定点(b a ,)的距离的平方 3.斜率型:形如a x b y z --=,表示在区域内的动点(x,y )与定点(b a ,)的连线的斜率 4.点到直线的距离型:形如C By Ax z ++=,表示在区域内的动点(x,y )到直线 倍的距离的220B A C By Ax +=++ 1.若满足约束条件y x , 0 10120 2≤-≥-≥+-x y y x 则的最小值为222z y x x ++= A. 21 B 41 C 21- D 4 3- 2.若满足约束条件y x , 1 31≥≤+-≤-y y x x y 则的取值范围2z +=x y ________ 3.已知实数x,y 满足 0 040 2≥≥-+≥+-y y x y x ,求42-+=y x z 的最大值_______ 1.两个不等式 (1)重要不等式:)(222”时取“,当且仅当、==∈≥+b a R b a ab b a (2)基本不等式:2 b a ab +≤ ”)时取“当且仅当(==>>b a b a ,0,0 2.重要结论 b a a b b a b a 1122222+≥≥+≥+”)时取“当且仅当(==>>b a b a ,0,0 1.若实数b a ,满足 的最小值为,则ab ab b a =+21______ 2.已知正实数 b a ,满足____3 111,4的最小值为则+++=+b a b a 3.已知正实数b a ,满足______1911,111的最小值为则-+-=+b a b a

18.1线性规划问题的有关概念

南京商业学校教案 授课日期 2014年 6 月日第周时数 2 课型新课课题第18.1 节线性规划问题的有关概念 教学目标知识目标:了解线性规划的意义以及约束条件、目标函数 能力目标:培养学生“建模”和解决实际问题的能力 情感目标:培养学生分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考 和作出判断 教学重点经历从实际情境中抽象出简单的线性规划问题的过程教学难点提高数学建模能力和意识 教学资源课本网络资料学生学习指导书 教法与学法教法:讲练结合、启发式、讨论法学法:练习法 学情分析(含更新、补充、删节内容) 学生整体在数学上的兴趣不高,基础比较薄弱,针对线性问题的有关概念方面的问题,学生可能在理解方面不是很好,在讲解的时候尽量简单,多举现实生活中的例子来分析。 板书设计1引入 2名词引入3 练习讲解 教后记 教学程序和教学内容(含课外作业)师生活动

引入新课: 1、元旦联欢会,需要甲、乙两种不同的气球来布置班级,要求甲、乙两种气球的比例为2:3,且它们的和不小于30只,不多于60只。若甲种气球每只0.5元,乙种气球每只0.3元,问应买甲、乙两种气球各多少只,才能使花费最省? 设甲种气球需x 只,乙种气球需y 只,总的费用z 由题意得 y x z 3.05.0+= y x 、满足的条件为:??? ? ??? ∈∈≤+≤=N y N x y x y x ,60303 2 由(1)得 2412,3618≤≤≤≤x y ∴ 当 18 ,12==y x 时 4.11183.012 5.0min =?+?=z 元 进一步提出新问题: 2、为使联欢会上的气氛更有节日感,有人提出再做一个“中 国结”,经研究发现做“中国结”需要甲、乙两种彩绳,并需将其截成A 、B 、C 三种规格的彩绳段,其中每根甲种彩绳可同时截得A 规格的彩绳段2根,B 规格的彩绳段1根,C 规格的彩绳段1根,每根乙种彩绳可同时截得A 规格的彩绳段1根,B 规格的彩绳段2根,C 规格的彩绳段3根。一个“中国结”共需要A 规格的彩绳段15根,B 规格的彩绳段18根,C 规格的彩绳段27根,若甲绳每根8元,乙绳每根6元,问应买甲、乙两种彩绳各多少根,才能使花费最省 甲种彩绳 乙种彩绳 所需条数 A 规格 2 1 15 B 规格 1 2 18 C 规格 1 3 27 解:需甲种彩绳x 根、乙种彩绳y 根,总花费为z ,由题意得 提示: 线性规划问题主要分为两类: 1如何合理利用有限的资源,使其产生最大的效益 2如何制定最佳方案,以尽可能少的资源完成所要做的事情。 这就是最优化问题。 教学程序和教学内容(含课外作业) 师生活动

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的呢?

高中数学线性规划

线性规划(1) 教学目标: 1.解线性约束条件、线性目标函数、线性规划概念; 2.在线性约束条件下求线性目标函数的最优解; 3.了解线性规划问题的图解法。 教学重点:线性规划问题。 教学难点:线性规划在实际中的应用。 教学过程: 1.复习回顾: 上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略) 2.讲授新课: 例1:设z =2x +y ,式中变量满足下列条件: ?????x -4y ≤-3 3x +5y ≤25x ≥1 ,求z 的最大值和最小值. 解:变量x ,y 所满足的每个不等式都表示一个平面 区域,不等式组则表示这些平面区域的公共 区域.(如右图). 作一组与l 0:2x +y =0平行的直线l :2x +y =t .t ∈R可知:当l 在l 0的右上方时,直 线l 上的点(x ,y )满足2x +y >0,即t >0,而且,直线l 往右平移时,t 随之增大,在经过不等式组①所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小.所以 z max =2×5+2=12 z min =2×1+1=3 说明:例1目的在于给出下列线性规划的基本概念. 线性规划的有关概念: ①线性约束条件: 在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. Ex :P 841,2,3 例2:在x ≥0,y ≥0,3x +y ≤3及2x +3y ≤6的条件下,试求x -y 的最值。

高考数学巧解:线性规划约束条件中含参数问题

高考数学巧解:线性规划约束条件中含参数问题 一、单选题 1.已知x ,y 满足条件0020x y y x x y k ≥≥??≤??++≤? ,(k 为常数),若目标函数3z x y =+的最大值 为9,则k =( ) A .16- B .6- C .274- D .274 2.已知x ,y 满足不等式00224 x y x y t x y ≥??≥??+≤??+≤?,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6] C .[5,8] D .[6,7] 3.已知实数x y ,满足1{21y y x x y m ≥≤-+≤, ,. 如果目标函数z x y =-的最小值为1-,则实数m 等 于( ) A .7 B .5 C .4 D .3 二、填空题 4.设2z x y =+,其中,x y 满足2000x y x y y k +≥??-≤??≤≤? ,若z 的最小值是9-,则z 的最大值为 _______. 5.若变量x ,y 满足约束条件0200y x x y x a -≥??+-≤??-≥? ,且2z x y =+的最大值是最小值的3倍, 则实数a =______.

参考答案 1.B 画出x ,y 满足的0,0(20x y y x k x y k ????++? 厖……为常数)可行域如下图: 由于目标函数3z x y =+的最大值为9, 可得直线0y =与直线93x y =+的交点(3,0)B , 使目标函数3z x y =+取得最大值, 将3x =,0y =代入20x y k ++=得:6k =-.故选:B . 点评: 如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值. 2.B 画出不等式组0024x y x y ≥??≥??+=? 所表示的可行域如图△ AOB

高考线性规划必考题型(非常全)

线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。 例1 已知4335251x y x y x -≤-??+≤??≥? ,2z x y =+,求z 的最大值和最小值 例2已知,x y 满足124126x y x y x y +=??+≥??-≥-? ,求z=5x y -的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值 例4 求函数4y x x =+ []()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-?,求22448x y x y +--+的最小值。 例6 实数,x y 满足不等式组00220y x y x y ≥??-≥??--≥?,求11y x -+的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例7 已知,x y 满足y 求2 y x +的最大值和最小值

目标函数、约束条件、曲线拟合、线性规划

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):沈阳农业大学 参赛队员(打印并签名) :1. 苏畅 2. 顾娜娜 3. 高正 指导教师或指导教师组负责人(打印并签名): 日期: 2008 年 9 月 22 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

高等教育学费标准探讨 摘要 目前,随着高等教育的普及化,高校学费征收问题已成为人们关注的焦点,所以,应对此问题cvb进行深入研究。 依据能力支付原则以及利益获得原则,本文建立了由均生培养成本、家庭人均年收入、人均GDP及不同专业的个人收益率四个主要影响因子决定的学费标准的线性目标函数。联系题目要求,根据学费与生均培养成本的关系、助学贷款情况、家庭年均总收入和人均GDP的拟合函数,本模型还提出了三个相应的约束条件,运用线性规划的原理和方法,进而得出高等教育学费的标准。同时,本论文还结合我国现阶段经济、政治等因素,对于经济发展情况不同的地区,制定出不同的收费标准;对于不同专业,其收取学费的标准也有所不同。 模型运用了数值拟合法,拟合出了家庭人均年收入与人均GDP之间的函数关系。对模型进行数据处理时,运用了MATLAB软件,精确地确定出高校的收费标准。对学费标准问题的定量分析需要大量的数据,文中使用的相关数据有较好的准确性,而在文中还利用所查数据进行了模型检验。因此,文中最后确定出的学费标准具有一定的可靠性,对有关部门在制定高校收费标准时起到一定的参考作用。 针对当前我国还存在的一些问题,论文中提出了相关的解决措施,并向有关部门提出一些建议。 关键词:学费标准、目标函数、约束条件、曲线拟合、线性规划

MATLAB 非线性规划及非线性约束条件求解

MATLAB 非线性规划及非线性约束条件求解 【题1】求非线性规划问题: 221212121min 262 f x x x x x x =+--- 12121212222.23 ,0 x x x x s t x x x x +≤??-+≤??+≤??≥? clear all clc f=@(x)((1/2)*x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-6*x(2)); A=[1 1;-1 2;2 1]; b=[2;2;3]; Aeq=[];beq=[]; lb=[0;0]; ub=[100;100]; x0=[1 1]'; intlist=[0;0]; [errmsg,Z,X] = BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题2】求非线性规划问题: 123min f x x x =- 1231 23220.2272x x x s t x x x ---≤??++≤? clear all clc f=@(x)(-x(1)*x(2)*x(3)); A=[-1 -2 -2;1 2 2]; b=[0;72]; Aeq=[];beq=[]; lb=[];ub=[]; x0=[1;1;1]; intlist=[0 0 0]'; [errmsg,Z,X] = BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq)

【题3】求非线性规划问题: () 12212122min 42421x f e x x x x x =++++ 12121230.210 x x x x s t x x ?--+≤???≥-? function [c,ceq]=nolic2(x) c(1)=x(1)*x(2)-x(1)-x(2)+3/2; ceq=[]; end clear all clc f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); A=[];b=[];Aeq=[];beq=[]; lb=[-10 -10]'; ub=[]; x0=[1 1]'; intlist=[0 0]'; [errmsg,Z,X] = BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq,@nolic2) 【题4】求非线性规划问题: 2212min 8f x x =++ 212221212 0.20,0x x x s t x x x x ?-≥?--+=??≥? function [c,ceq]=nolic3(x) c(1)=-(x(1)^2)*x(2)+x(2); ceq(1)=-x(1)-x(2)^2+2; end clear all clc f=@(x) x(1)^2+x(2)^2+8; A=[];b=[];Aeq=[];beq=[];lb=[0 0]'; ub=[]; x0=[1 1]'; intlist=[0 0]'; [errmsg,Z,X] = BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq,@nolic3)

相关主题
文本预览
相关文档 最新文档